1
|
pVHL suppresses Akt/β-catenin-mediated cell proliferation by inhibiting 14-3-3ζ expression. Biochem J 2017; 474:2679-2689. [DOI: 10.1042/bcj20161097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/16/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
The mechanisms controlling degradation of cytosolic β-catenin are important for regulating β-catenin co-transcriptional activity. Loss of von Hippel–Lindau protein (pVHL) has been shown to stabilize β-catenin, increasing β-catenin transactivation and β-catenin-mediated cell proliferation. However, the role of phosphoinositide 3-kinase (PI3K)/Akt in the regulation of β-catenin signaling downstream from pVHL has never been addressed. Here, we report that hyperactivation of PI3K/Akt in cells lacking pVHL contributes to the stabilization and nuclear accumulation of active β-catenin. PI3K/Akt hyperactivation is facilitated by the up-regulation of 14-3-3ζ and the down-regulation of 14-3-3ε, 14-3-3η and 14-3-3θ. Up-regulation of 14-3-3ζ in response to pVHL is important for the recruitment of PI3K to the cell membrane and for stabilization of soluble β-catenin. In contrast, 14-3-3ε and 14-3-3η enhanced PI3K/Akt signaling by inhibiting PI3K and PDK1, respectively. Thus, our results demonstrated that 14-3-3 family members enhance PI3K/Akt/β-catenin signaling in order to increase proliferation. Inhibition of Akt activation and/or 14-3-3 function strongly reduces β-catenin signaling and decreases cell proliferation. Thus, inhibition of Akt and 14-3-3 function efficiently reduces cell proliferation in 786-0 cells characterized by hyperactivation of β-catenin signaling due to pVHL loss.
Collapse
|
2
|
Abstract
The majority of kidney cancers are associated with mutations in the von Hippel-Lindau gene and a small proportion are associated with infrequent mutations in other well characterized tumour-suppressor genes. In the past 15 years, efforts to uncover other key genes involved in renal cancer have identified many genes that are dysregulated or silenced via epigenetic mechanisms, mainly through methylation of promoter CpG islands or dysregulation of specific microRNAs. In addition, the advent of next-generation sequencing has led to the identification of several novel genes that are mutated in renal cancer, such as PBRM1, BAP1 and SETD2, which are all involved in histone modification and nucleosome and chromatin remodelling. In this Review, we discuss how altered DNA methylation, microRNA dysregulation and mutations in histone-modifying enzymes disrupt cellular pathways in renal cancers.
Collapse
Affiliation(s)
- Mark R Morris
- Brain Tumour Research Centre, Wolverhampton School of Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Farida Latif
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Zhang KL, Zhou X, Han L, Chen LY, Chen LC, Shi ZD, Yang M, Ren Y, Yang JX, Frank TS, Zhang CB, Zhang JX, Pu PY, Zhang JN, Jiang T, Wagner EJ, Li M, Kang CS. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab. Mol Cancer 2014; 13:63. [PMID: 24650032 PMCID: PMC3999939 DOI: 10.1186/1476-4598-13-63] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/11/2014] [Indexed: 01/14/2023] Open
Abstract
Background Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis. Whether microRNAs can impact the therapeutic effects of EGFR inhibitors in glioblastoma is unknown. Methods miR-566 expression levels were detected in glioma cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate VHL as a direct target gene of miR-566. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm whether miR-566 inhibition could sensitize anti-EGFR therapy. Results In this study, we demonstrated that miR-566 is up-regulated in human glioma cell lines and inhibition of miR-566 decreased the activity of the EGFR pathway. Lentiviral mediated inhibition of miR-566 in glioblastoma cell lines significantly inhibited cell proliferation and invasion and led to cell cycle arrest in the G0/G1 phase. In addition, we identified von Hippel-Lindau (VHL) as a novel functional target of miR-566. VHL regulates the formation of the β-catenin/hypoxia-inducible factors-1α complex under miR-566 regulation. Conclusions miR-566 activated EGFR signaling and its inhibition sensitized glioblastoma cells to anti-EGFR therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Eric J Wagner
- Department of Neurosurgery, Tianjin Medical University General Hospital; Laboratory of Neuro-Oncology, Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.
| | | | | |
Collapse
|
4
|
Lian X, Duan X, Wu X, Li C, Chen S, Wang S, Cai Y, Weng Z. Expression and clinical significance of von Hippel-Lindau downstream genes: Jade-1 and β-catenin related to renal cell carcinoma. Urology 2012; 80:485.e7-13. [PMID: 22516360 DOI: 10.1016/j.urology.2012.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To investigate the expression of Jade-1 and β-catenin and their effect in the development of renal cell carcinoma (RCC). METHODS The expression of Jade-1 and β-catenin in 11 normal kidney tissue specimens (normal group) and 60 RCC specimens (RCC group) was determined using real-time polymerase chain reaction and immunohistochemistry. Also, their effect on early relapses of RCC was analyzed after 5 years of follow-up. RESULTS The expression of Jade-1 protein in the RCC group was significantly lower than that in the normal group (0.1655 vs 0.7438, P < .05), and the expression of β-catenin protein was significantly greater than that in the normal group (0.2756 vs 0.0855, P < .05). The expression of Jade-1 mRNA in the RCC group was 0.202 times that in the normal group, which were lower (P < .05). The expression of β-catenin mRNA was 1.014 times that in the normal group (P > .05). The expression of Jade-1 protein and β-catenin protein in poorly differentiated RCC specimens was significantly lower and higher than the expression in the well-differentiated RCC specimen (P < .05), respectively. Patients with negative Jade-1 expression and positive β-catenin expression were found to have shorter survival on univariate analysis (P < .05). CONCLUSION RCC with a low expression of Jade-1 and high expression of β-catenin is associated with a poor outcome and decreased survival.
Collapse
Affiliation(s)
- Xin Lian
- Department of Urology, Lishui Central Hospital, Wenzhou Medical College, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Herbert BS, Chanoux RA, Liu Y, Baenziger PH, Goswami CP, McClintick JN, Edenberg HJ, Pennington RE, Lipkin SM, Kopelovich L. A molecular signature of normal breast epithelial and stromal cells from Li-Fraumeni syndrome mutation carriers. Oncotarget 2011; 1:405-22. [PMID: 21311097 DOI: 10.18632/oncotarget.101004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Specific changes in gene expression during cancer initiation should enable discovery of biomarkers for risk assessment, early detection and targets for chemoprevention. It has been previously demonstrated that altered mRNA and proteome signatures of morphologically normal cells bearing a single inherited "hit" in a tumor suppressor gene parallel many changes observed in the corresponding sporadic cancer. Here, we report on the global gene expression profile of morphologically normal, cultured primary breast epithelial and stromal cells from Li-Fraumeni syndrome (LFS) TP53 mutation carriers. Our analyses identified multiple changes in gene expression in both morphologically normal breast epithelial and stromal cells associated with TP53 haploinsufficiency, as well as interlocking pathways. Notably, a dysregulated p53 signaling pathway was readily detectable. Pharmacological intervention with the p53 rescue compounds CP-31398 and PRIMA-1 provided further evidence in support of the central role of p53 in affecting these changes in LFS cells and treatment for this cancer. Because loss of signaling mediated by TP53 is associated with the development and survival of many human tumors, identification of gene expression profiles in morphologically normal cells that carry "one-hit" p53 mutations may reveal novel biomarkers, enabling the discovery of potential targets for chemoprevention of sporadic tumors as well.
Collapse
Affiliation(s)
- Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cole AM, Ridgway RA, Derkits SE, Parry L, Barker N, Clevers H, Clarke AR, Sansom OJ. p21 loss blocks senescence following Apc loss and provokes tumourigenesis in the renal but not the intestinal epithelium. EMBO Mol Med 2010; 2:472-86. [PMID: 20976827 PMCID: PMC3394507 DOI: 10.1002/emmm.201000101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 12/21/2022] Open
Abstract
Senescence has been implicated as an important mechanism of tumour suppression in a number of human malignancies, including colorectal cancer (CRC). However, we still have a relatively poor understanding of how the underlying mutations that occur in cancer cause senescence and its relevance in vivo. The Apc gene is mutated in approximately 80% of CRC as the initiating event, but rarely elsewhere. In this study we have examined the capacity of Apc loss to induce senescence in the intestinal epithelium compared to the renal epithelium. Within the renal epithelium, loss of Apc function led to an induction of senescence, however, bypassing senescence through combined Apc and p21 or Ink4A gene deletion rapidly initiated renal carcinoma. Within the intestinal epithelium, loss of Apc did not induce senescence. Moreover, combined Apc and p21 or Ink4A loss had no impact upon tumourigenesis. Taken together, these results show that Apc loss in vivo invokes a senescence program in a context-dependent fashion, and implies senescence may play a key barrier to tumourigenesis in the kidney. However, in CRC, escape from senescence is likely to only be a barrier in cancers initiated by other mutations.
Collapse
Affiliation(s)
| | | | | | - Lee Parry
- School of Biosciences, University of CardiffCardiff, UK
| | - Nick Barker
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre UtrechtUtrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre UtrechtUtrecht, Netherlands
| | - Alan R Clarke
- School of Biosciences, University of CardiffCardiff, UK
| | | |
Collapse
|
7
|
Herbert BS, Chanoux RA, Liu Y, Baenziger PH, Goswami CP, McClintick JN, Edenberg HJ, Pennington RE, Lipkin SM, Kopelovich L. A molecular signature of normal breast epithelial and stromal cells from Li-Fraumeni syndrome mutation carriers. Oncotarget 2010; 1:405-422. [PMID: 21311097 PMCID: PMC3039408 DOI: 10.18632/oncotarget.175] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/05/2010] [Indexed: 11/25/2022] Open
Abstract
Specific changes in gene expression during cancer initiation should enable discovery of biomarkers for risk assessment, early detection and targets for chemoprevention. It has been previously demonstrated that altered mRNA and proteome signatures of morphologically normal cells bearing a single inherited "hit" in a tumor suppressor gene parallel many changes observed in the corresponding sporadic cancer. Here, we report on the global gene expression profile of morphologically normal, cultured primary breast epithelial and stromal cells from Li-Fraumeni syndrome (LFS) TP53 mutation carriers. Our analyses identified multiple changes in gene expression in both morphologically normal breast epithelial and stromal cells associated with TP53 haploinsufficiency, as well as interlocking pathways. Notably, a dysregulated p53 signaling pathway was readily detectable. Pharmacological intervention with the p53 rescue compounds CP-31398 and PRIMA-1 provided further evidence in support of the central role of p53 in affecting these changes in LFS cells and treatment for this cancer. Because loss of signaling mediated by TP53 is associated with the development and survival of many human tumors, identification of gene expression profiles in morphologically normal cells that carry "one-hit" p53 mutations may reveal novel biomarkers, enabling the discovery of potential targets for chemoprevention of sporadic tumors as well.
Collapse
MESH Headings
- Adolescent
- Adult
- Aza Compounds/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Cells, Cultured
- Epithelial Cells/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Germ-Line Mutation/genetics
- Haploinsufficiency
- Humans
- Li-Fraumeni Syndrome/genetics
- Neoplasm Proteins/genetics
- Oligonucleotide Array Sequence Analysis
- Pyrimidines/pharmacology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Stromal Cells/metabolism
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Brittney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebecca A. Chanoux
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Biostatistics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter H. Baenziger
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chirayu P. Goswami
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeanette N. McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Howard J. Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert E. Pennington
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven M. Lipkin
- Departments of Medicine and Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|