1
|
Balu R, Ramachandran SS, Paramasivam SG. Evidence for mouse sulfhydryl oxidase-assisted cross-linking of major seminal vesicle proteins. Mol Reprod Dev 2019; 86:1682-1693. [PMID: 31448842 DOI: 10.1002/mrd.23258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 01/21/2023]
Abstract
Copulatory plug formation in animals is a general phenomenon by which competition is reduced among rival males. In mouse, the copulatory plug formation results from the coagulation of highly viscous seminal vesicle secretion (SVS) that is rich in proteins, such as dimers of SVS I, SVS I + II + III, and SVS II. These high-molecular-weight complexes (HMWCs) are also reported to be the bulk of proteins in the copulatory plug of the female mouse following copulation. In addition, mouse SVS contributes to the existence of sulfhydryl oxidase (Sox), which mediates the disulfide bond formation between cysteine residues. In this study, flavin adenine dinucleotide (FAD)-dependent Sox was purified from mouse SVS using ion exchange and high-performance liquid chromatography. The purified enzyme was identified to be Sox, based on western blot analysis with Sox antiserum and its capability of oxidizing dithiothreitol as substrate. The pH optima and thermal stability of the enzyme were determined. Among the metal ions tested, zinc showed an inhibitory effect on Sox activity. A prosthetic group of the enzyme was identified as FAD. The Km and Vmax of the enzyme was also determined. In addition to purification and biochemical characterization of seminal vesicle Sox, the major breakthrough of this study was proving its cross-linking activity among SVS I-III monomers to form HMWCs in SVS.
Collapse
Affiliation(s)
- Rubhadevi Balu
- Department of Biotechnology, BIT-Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | | | | |
Collapse
|
2
|
Song WJ, Qin QW, Qiu J, Huang CH, Wang F, Hew CL. Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. J Virol 2004; 78:12576-90. [PMID: 15507645 PMCID: PMC525058 DOI: 10.1128/jvi.78.22.12576-12590.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 06/29/2004] [Indexed: 11/20/2022] Open
Abstract
Here we report the complete genome sequence of Singapore grouper iridovirus (SGIV). Sequencing of the random shotgun and restriction endonuclease genomic libraries showed that the entire SGIV genome consists of 140,131 nucleotide bp. One hundred sixty-two open reading frames (ORFs) from the sense and antisense DNA strands, coding for lengths varying from 41 to 1,268 amino acids, were identified. Computer-assisted analyses of the deduced amino acid sequences revealed that 77 of the ORFs exhibited homologies to known virus genes, 23 of which matched functional iridovirus proteins. Forty-two putative conserved domains or signatures were detected in the National Center for Biotechnology Information CD-Search database and PROSITE database. An assortment of enzyme activities involved in DNA replication, transcription, nucleotide metabolism, cell signaling, etc., were identified. Viruses were cultured on a cell line derived from the embryonated egg of the grouper Epinephelus tauvina, isolated, and purified by sucrose gradient ultracentrifugation. The protein extract from the purified virions was analyzed by polyacrylamide gel electrophoresis followed by in-gel digestion of protein bands. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and database searching led to identification of 26 proteins. Twenty of these represented novel or previously unidentified genes, which were further confirmed by reverse transcription-PCR (RT-PCR) and DNA sequencing of their respective RT-PCR products.
Collapse
Affiliation(s)
- Wen Jun Song
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.
| | | | | | | | | | | |
Collapse
|
3
|
Odegard AL, Chandran K, Liemann S, Harrison SC, Nibert ML. Disulfide bonding among micro 1 trimers in mammalian reovirus outer capsid: a late and reversible step in virion morphogenesis. J Virol 2003; 77:5389-400. [PMID: 12692241 PMCID: PMC153963 DOI: 10.1128/jvi.77.9.5389-5400.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined how a particular type of intermolecular disulfide (ds) bond is formed in the capsid of a cytoplasmically replicating nonenveloped animal virus despite the normally reducing environment inside cells. The micro 1 protein, a major component of the mammalian reovirus outer capsid, has been implicated in penetration of the cellular membrane barrier during cell entry. A recent crystal structure determination supports past evidence that the basal oligomer of micro 1 is a trimer and that 200 of these trimers surround the core in the fenestrated T=13 outer capsid of virions. We found in this study that the predominant forms of micro 1 seen in gels after the nonreducing disruption of virions are ds-linked dimers. Cys679, near the carboxyl terminus of micro 1, was shown to form this ds bond with the Cys679 residue from another micro 1 subunit. The crystal structure in combination with a cryomicroscopy-derived electron density map of virions indicates that the two subunits that contribute a Cys679 residue to each ds bond must be from adjacent micro 1 trimers in the outer capsid, explaining the trimer-dimer paradox. Successful in vitro assembly of the outer capsid by a nonbonding mutant of micro 1 (Cys679 substituted by serine) confirmed the role of Cys679 and suggested that the ds bonds are not required for assembly. A correlation between micro 1-associated ds bond formation and cell death in experiments in which virions were purified from cells at different times postinfection indicated that the ds bonds form late in infection, after virions are exposed to more oxidizing conditions than those in healthy cells. The infectivity measurements of the virions with differing levels of ds-bonded micro 1 showed that these bonds are not required for infection in culture. The ds bonds in purified virions were susceptible to reduction and reformation in situ, consistent with their initial formation late in morphogenesis and suggesting that they may undergo reduction during the entry of reovirus particles into new cells.
Collapse
Affiliation(s)
- Amy L Odegard
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
4
|
Abstract
Both in prokaryotic and eukaryotic cells, disulfide bond formation (oxidation and isomerization steps) are catalyzed exclusively in extracytoplasmic compartments. In eukaryotes, protein folding and disulfide bond formation are coupled processes that occur both co- and posttranslationally in the endoplasmic reticulum (ER), which is the main site of the synthesis and posttranslational modification of secretory and membrane proteins. The formation of a disulfide bond from the thiol groups of two cysteine residues requires the removal of two electrons, consequently, these bonds cannot form spontaneously; an oxidant is needed to accept the electrons. In aerobic conditions the ultimate electron acceptor is usually oxygen; however, oxygen itself is not effective in protein thiol oxidation. Therefore, a small molecular weight membrane permeable compound should be supposed for the transfer of electrons from the ER lumen. The aim of the present study was the investigation of the role of ascorbate/dehydroascorbate redox couple in oxidative folding of proteins. We demonstrated that ascorbate addition or its in situ synthesis from gulonolactone results in protein thiol (and/or glutathione; GSH) oxidation in rat liver microsomes. Since microsomal membrane is hardly permeable to ascorbate, the existence of a transport metabolon was hypothesized. Three components of the system have been described and partially characterized: (i) A microsomal metalloenzyme is responsible for ascorbate oxidation on the outer surface of the ER. Ascorbate oxidation results in ascorbate free radical and dehydroascorbate production. (ii) Facilitated diffusion of dehydroascorbate is present in microsomal vesicles. The transport is presumably mediated by a GLUT-type transporter. On the contrary, the previously hypothesized glutathione disulfide (GSSG) transport is practically absent, while GSH is transported with a moderate velocity. (iii) Protein disulfide isomerase catalyzes the reduction of dehydroascorbate in the ER lumen. Both GSH and protein thiols can be electron donors in the process. Intraluminal dehydroascorbate reduction and the consequent ascorbate accumulation strictly correlate with protein disulfide isomerase activity and protein thiol concentration. The concerted action of the three components of the system results in the intraluminal accumulation of ascorbate, protein disulfide and GSSG. In fact, intraluminal ascorbate and GSSG accumulation could be observed upon dehydroascorbate and GSH uptake. In conclusion, ascorbate is able to promote protein disulfide formation in an in vitro system. Further work is needed to justify its role in intact cellular and in vivo systems, as well as to explore the participation of other antioxidants (e.g. tocopherol, ubiquinone, and vitamin K) in the electron transfer chain responsible for oxidative protein folding in the ER.
Collapse
Affiliation(s)
- Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
5
|
Haebel PW, Goldstone D, Katzen F, Beckwith J, Metcalf P. The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex. EMBO J 2002; 21:4774-84. [PMID: 12234918 PMCID: PMC126285 DOI: 10.1093/emboj/cdf489] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Escherichia coli disulfide bond isomerase DsbC rearranges incorrect disulfide bonds during oxidative protein folding. It is specifically activated by the periplasmic N-terminal domain (DsbDalpha) of the transmembrane electron transporter DsbD. An intermediate of the electron transport reaction was trapped, yielding a covalent DsbC-DsbDalpha complex. The 2.3 A crystal structure of the complex shows for the first time the specific interactions between two thiol oxidoreductases. DsbDalpha is a novel thiol oxidoreductase with the active site cysteines embedded in an immunoglobulin fold. It binds into the central cleft of the V-shaped DsbC dimer, which assumes a closed conformation on complex formation. Comparison of the complex with oxidized DsbDalpha reveals major conformational changes in a cap structure that regulates the accessibility of the DsbDalpha active site. Our results explain how DsbC is selectively activated by DsbD using electrons derived from the cytoplasm.
Collapse
Affiliation(s)
- Peter W. Haebel
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA Present address: Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, ETH Hönggerberg HPK, CH-8093 Zurich, Switzerland Corresponding author e-mail:
| | - David Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA Present address: Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, ETH Hönggerberg HPK, CH-8093 Zurich, Switzerland Corresponding author e-mail:
| | - Federico Katzen
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA Present address: Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, ETH Hönggerberg HPK, CH-8093 Zurich, Switzerland Corresponding author e-mail:
| | - Jon Beckwith
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA Present address: Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, ETH Hönggerberg HPK, CH-8093 Zurich, Switzerland Corresponding author e-mail:
| | - Peter Metcalf
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA Present address: Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology, ETH Hönggerberg HPK, CH-8093 Zurich, Switzerland Corresponding author e-mail:
| |
Collapse
|
6
|
Katzen F, Deshmukh M, Daldal F, Beckwith J. Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J 2002; 21:3960-9. [PMID: 12145197 PMCID: PMC126151 DOI: 10.1093/emboj/cdf405] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Modular organization of proteins has been postulated as a widely used strategy for protein evolution. The multidomain transmembrane protein DsbD catalyzes the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. Most bacterial species do not have DsbD, but instead their genomes encode a much smaller protein, CcdA, which resembles the central hydrophobic domain of DsbD. We used reciprocal heterologous complementation assays between E.coli and Rhodobacter capsulatus to show that, despite their differences in size and structure, DsbD and CcdA are functional homologs. While DsbD transfers reducing potential to periplasmic protein disulfide bond isomerases and to the cytochrome c thioreduction pathway, CcdA appears to be involved only in cytochrome c biogenesis. Our findings strongly suggest that, by the acquisition of additional thiol-redox active domains, DsbD expanded its substrate specificity.
Collapse
Affiliation(s)
| | - Meenal Deshmukh
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and
Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104, USA Corresponding author e-mail:
| | - Fevzi Daldal
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and
Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104, USA Corresponding author e-mail:
| | - Jon Beckwith
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115 and
Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104, USA Corresponding author e-mail:
| |
Collapse
|
7
|
Szarka A, Stadler K, Jenei V, Margittai E, Csala M, Jakus J, Mandl J, Bánhegyi G. Ascorbyl free radical and dehydroascorbate formation in rat liver endoplasmic reticulum. J Bioenerg Biomembr 2002; 34:317-23. [PMID: 12392195 DOI: 10.1023/a:1020212720330] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanism of ascorbate oxidation was studied in rat liver microsomes. A continuous consumption of the added ascorbate was observed, which was accompanied with a prompt appearance of ascorbyl free radical and dehydroascorbate. Microsomes sustained steady-state level of ascorbyl free radical and dehydroascorbate till ascorbate was present in the medium. Ascorbyl free radical formation was diminished when microsomes had been pretreated with heat or trypsine. It was also decreased by addition of quercetin, econazole or metal chelators, including the copper specific neocuproine. Enzymatic (superoxide dismutase, catalase) and nonenzymatic (dimethyl sulfoxide, mannitol) antioxidants did not modify the microsomal production of ascorbyl free radical. Investigation of the subcellular distribution of ascorbate oxidation showed that the microsomal fraction of liver had the highest activity. The decrease of ascorbate oxidation after protease treatment and the negligible increase upon permeabilization of microsomal vesicles showed that a membrane protein is responsible for the activity, which is exposed to the outer surface of the endoplasmic reticulum. The results indicate the presence of a primary enzymatic ascorbate oxidation in rat liver endoplasmic reticulum which is able to generate dehydroascorbate, an important source of the oxidizing environment in the endoplasmic reticulum.
Collapse
Affiliation(s)
- András Szarka
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|