1
|
Maia-Gil M, Gorjão M, Belousov R, Espina JA, Coelho J, Gouhier J, Ramos AP, Barriga EH, Erzberger A, Norden C. Nuclear deformability facilitates apical nuclear migration in the developing zebrafish retina. Curr Biol 2024; 34:5429-5443.e8. [PMID: 39481375 DOI: 10.1016/j.cub.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Nuclear positioning is a crucial aspect of cell and developmental biology. One example is the apical movement of nuclei in neuroepithelia before mitosis, which is essential for proper tissue formation. While the cytoskeletal mechanisms that drive nuclei to the apical side have been explored, the influence of nuclear properties on apical nuclear migration is less understood. Nuclear properties, such as deformability, can be linked to lamin A/C expression levels, as shown in various in vitro studies. Interestingly, many nuclei in early development, including neuroepithelial nuclei, express only low levels of lamin A/C. Therefore, we investigated whether increased lamin A expression in the densely packed zebrafish retinal neuroepithelium affects nuclear deformability and, consequently, migration phenomena. We found that overexpressing lamin A in retinal nuclei increases nuclear stiffness, which in turn indeed impairs apical nuclear migration. Interestingly, nuclei that do not overexpress lamin A but are embedded in a stiffer lamin A-overexpressing environment also exhibit impaired apical nuclear migration, indicating that these effects can be cell non-autonomous. Additionally, in the less crowded hindbrain neuroepithelium, only minor effects on apical nuclear migration are observed. Together, this suggests that the material properties of the nucleus influence nuclear movements in a tissue-dependent manner.
Collapse
Affiliation(s)
- Mariana Maia-Gil
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Maria Gorjão
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Roman Belousov
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jaime A Espina
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Cluster of Excellence Physics of Life, Arnoldstrasse 18, 01307 Dresden, Germany
| | - João Coelho
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Juliette Gouhier
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana P Ramos
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Elias H Barriga
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Cluster of Excellence Physics of Life, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Anna Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Caren Norden
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
2
|
Knecht H, Petrogiannis-Haliotis T, Louis S, Mai S. 3D-Q-FISH/Telomere/TRF2 Nanotechnology Identifies a Progressively Disturbed Telomere/Shelterin/Lamin AC Complex as the Common Pathogenic, Molecular/Spatial Denominator of Classical Hodgkin Lymphoma. Cells 2024; 13:1748. [PMID: 39513855 PMCID: PMC11545283 DOI: 10.3390/cells13211748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The bi- or multinucleated Reed-Sternberg cell (RS) is the diagnostic cornerstone of Epstein-Barr Virus (EBV)-positive and EBV-negative classical Hodgkin lymphoma (cHL). cHL is a germinal center (GC)-derived B-cell disease. Hodgkin cells (H) are the mononuclear precursors of RS. An experimental model has to fulfill three conditions to qualify as common pathogenic denominator: (i) to be of GC-derived B-cell origin, (ii) to be EBV-negative to avoid EBV latency III expression and (iii) to support permanent EBV-encoded oncogenic latent membrane protein (LMP1) expression upon induction. These conditions are unified in the EBV-, diffuse large B-Cell lymphoma (DLBCL) cell line BJAB-tTA-LMP1. 3D reconstructive nanotechnology revealed spatial, quantitative and qualitative disturbance of telomere/shelterin interactions in mononuclear H-like cells, with further progression during transition to RS-like cells, including progressive complexity of the karyotype with every mitotic cycle, due to BBF (breakage/bridge/fusion) events. The findings of this model were confirmed in diagnostic patient samples and correlate with clinical outcomes. Moreover, in vitro, significant disturbance of the lamin AC/telomere interaction progressively occurred. In summary, our research over the past three decades identified cHL as the first lymphoid malignancy driven by a disturbed telomere/shelterin/lamin AC interaction, generating the diagnostic RS. Our findings may act as trailblazer for tailored therapies in refractory cHL.
Collapse
Affiliation(s)
- Hans Knecht
- Division of Hematology, Department of Medicine, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | | | - Sherif Louis
- Telo Genomics Corp., Ontario, ON M5G 1L7, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
3
|
Farboud SP, Fathi E, Valipour B, Farahzadi R. Toward the latest advancements in cardiac regeneration using induced pluripotent stem cells (iPSCs) technology: approaches and challenges. J Transl Med 2024; 22:783. [PMID: 39175068 PMCID: PMC11342568 DOI: 10.1186/s12967-024-05499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
A novel approach to treating heart failures was developed with the introduction of iPSC technology. Knowledge in regenerative medicine, developmental biology, and the identification of illnesses at the cellular level has exploded since the discovery of iPSCs. One of the most frequent causes of mortality associated with cardiovascular disease is the loss of cardiomyocytes (CMs), followed by heart failure. A possible treatment for heart failure involves restoring cardiac function and replacing damaged tissue with healthy, regenerated CMs. Significant strides in stem cell biology during the last ten years have transformed the in vitro study of human illness and enhanced our knowledge of the molecular pathways underlying human disease, regenerative medicine, and drug development. We seek to examine iPSC advancements in disease modeling, drug discovery, iPSC-Based cell treatments, and purification methods in this article.
Collapse
Affiliation(s)
- Seyedeh Parya Farboud
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Alshaalan KS, Albawardi TK, Zhra M, Bin Sulaiman N, Jnied OY, Saleem RA, Aljada A. Differential Expression of LMNA/C and Insulin Receptor Transcript Variants in Peripheral Blood Mononuclear Cells of Leukemia Patients. J Clin Med 2024; 13:2568. [PMID: 38731097 PMCID: PMC11084221 DOI: 10.3390/jcm13092568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Recent research has identified alternative transcript variants of LMNA/C (LMNA, LMNC, LMNAΔ10, and LMNAΔ50) and insulin receptors (INSRs) as potential biomarkers for various types of cancer. The objective of this study was to assess the expression of LMNA/C and INSR transcript variants in peripheral blood mononuclear cells (PBMCs) of leukemia patients to investigate their potential as diagnostic biomarkers. Methods: Quantitative TaqMan reverse transcriptase polymerase chain reaction (RT-qPCR) was utilized to quantify the mRNA levels of LMNA/C (LMNA, LMNC, LMNAΔ10, and LMNAΔ50) as well as INSR (IR-A and IR-B) variants in PBMCs obtained from healthy individuals (n = 32) and patients diagnosed with primary leukemias (acute myeloid leukemia (AML): n = 17; acute lymphoblastic leukemia (ALL): n = 8; chronic myeloid leukemia (CML): n = 5; and chronic lymphocytic leukemia (CLL): n = 15). Results: Only LMNA and LMNC transcripts were notably present in PBMCs. Both exhibited significantly decreased expression levels in leukemia patients compared to the healthy control group. Particularly, the LMNC:LMNA ratio was notably higher in AML patients. Interestingly, IR-B expression was not detectable in any of the PBMC samples, precluding the calculation of the IR-A:IR-B ratio as a diagnostic marker. Despite reduced expression across all types of leukemia, IR-A levels remained detectable, indicating its potential involvement in disease progression. Conclusions: This study highlights the distinct expression patterns of LMNA/C and INSR transcript variants in PBMCs of leukemia patients. The LMNC:LMNA ratio shows promise as a potential diagnostic indicator for AML, while further research is necessary to understand the role of IR-A in leukemia pathogenesis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Khalid Saud Alshaalan
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Turki Khalid Albawardi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Norah Bin Sulaiman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Osama Yaheia Jnied
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Rimah Abdullah Saleem
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.Z.)
| |
Collapse
|
5
|
Jones TLM, Woulfe KC. Considering impact of age and sex on cardiac cytoskeletal components. Am J Physiol Heart Circ Physiol 2024; 326:H470-H478. [PMID: 38133622 PMCID: PMC11219061 DOI: 10.1152/ajpheart.00619.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023]
Abstract
The cardiac cytoskeletal components are integral to cardiomyocyte function and are responsible for contraction, sustaining cell structure, and providing scaffolding to direct signaling. Cytoskeletal components have been implicated in cardiac pathology; however, less attention has been paid to age-related modifications of cardiac cytoskeletal components and how these contribute to dysfunction with increased age. Moreover, significant sex differences in cardiac aging have been identified, but we still lack a complete understanding to the mechanisms behind these differences. This review summarizes what is known about how key cardiomyocyte cytoskeletal components are modified because of age, as well as reported sex-specific differences. Thorough consideration of both age and sex as integral players in cytoskeletal function may reveal potential avenues for more personalized therapeutics.
Collapse
Affiliation(s)
- Timothy L M Jones
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
6
|
A Lamin Family-Based Signature Predicts Prognosis and Immunotherapy Response in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:4983532. [DOI: 10.1155/2022/4983532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/04/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Background. Lamin family members play crucial roles in promoting oncogenesis and cancer development. The values of lamin family in predicting prognosis and immunotherapy response remain largely unclarified. Our research is aimed at comprehensively estimating the clinical significance of lamin family in hepatocellular carcinoma and constructing a novel lamin family-based signature to predict prognosis and guide the precise immunotherapy. Methods. The expression features and prognostic value of LMNA, LMNB1, and LMNB2 were explored in the TCGA and GEO databases. The biological functions of LMNB1 and LMNB2 were validated by in vitro assays. A lamin family-based signature was built using the TCGA training set. The TCGA test set, entire TCGA set, and GSE14520 set were used to validate its predictive power. Univariate and multivariate analyses were performed to evaluate the independence of the lamin family-based signature from other clinicopathological characteristics. A nomogram was constructed using the lamin family-based signature and TNM stage. The associations of this signature with molecular pathways, clinical characteristics, immune cell infiltration, and immunotherapy response were analyzed. Results. Lamin family members were upregulated in HCC. Upregulation of LMNB1 and LMNB2 promoted HCC proliferation, migration, and invasion. The predictive signature was initially established based on LMNB1 and LMNB2 which could effectively identify differences in overall survival, immune cell infiltration, and clinicopathological characteristics of high- and low-risk patients. The nomogram showed high prognostic predictive accuracy. Importantly, the lamin family-based signature was correlated with immune suppression and expression of immune checkpoint molecules. Conclusions. The lamin family-based signature is a robust biomarker to predict overall survival and immunotherapy response in HCC. High-risk score patients have a poorer overall survival and might be more sensitive to immunotherapy. This signature may contribute to improving individualized prognosis prediction and precision immunotherapy for HCC patients.
Collapse
|
7
|
Bellanger A, Madsen-Østerbye J, Galigniana NM, Collas P. Restructuring of Lamina-Associated Domains in Senescence and Cancer. Cells 2022; 11:1846. [PMID: 35681541 PMCID: PMC9180887 DOI: 10.3390/cells11111846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 01/01/2023] Open
Abstract
Induction of cellular senescence or cancer is associated with a reshaping of the nuclear envelope and a broad reorganization of heterochromatin. At the periphery of mammalian nuclei, heterochromatin is stabilized at the nuclear lamina via lamina-associated domains (LADs). Alterations in the composition of the nuclear lamina during senescence lead to a loss of peripheral heterochromatin, repositioning of LADs, and changes in epigenetic states of LADs. Cancer initiation and progression are also accompanied by a massive reprogramming of the epigenome, particularly in domains coinciding with LADs. Here, we review recent knowledge on alterations in chromatin organization and in the epigenome that affect LADs and related genomic domains in senescence and cancer.
Collapse
Affiliation(s)
- Aurélie Bellanger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (A.B.); (J.M.-Ø.); (N.M.G.)
| | - Julia Madsen-Østerbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (A.B.); (J.M.-Ø.); (N.M.G.)
| | - Natalia M. Galigniana
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (A.B.); (J.M.-Ø.); (N.M.G.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway; (A.B.); (J.M.-Ø.); (N.M.G.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway
| |
Collapse
|
8
|
Urciuoli E, D'Oria V, Petrini S, Peruzzi B. Lamin A/C Mechanosensor Drives Tumor Cell Aggressiveness and Adhesion on Substrates With Tissue-Specific Elasticity. Front Cell Dev Biol 2021; 9:712377. [PMID: 34595168 PMCID: PMC8476891 DOI: 10.3389/fcell.2021.712377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Besides its structural properties in the nucleoskeleton, Lamin A/C is a mechanosensor protein involved in perceiving the elasticity of the extracellular matrix. In this study we provide evidence about Lamin A/C-mediated regulation of osteosarcoma cell adhesion and spreading on substrates with tissue-specific elasticities. Our working hypothesis is based on the observation that low-aggressive and bone-resident SaOS-2 osteosarcoma cells express high level of Lamin A/C in comparison to highly metastatic, preferentially to the lung, osteosarcoma 143B cells, thereby suggesting a role for Lamin A/C in tumor cell tropism. Specifically, LMNA gene over-expression in 143B cells induced a reduction in tumor cell aggressiveness in comparison to parental cells, with decreased proliferation rate and reduced migration capability. Furthermore, LMNA reintegration into 143B cells changed the adhesion properties of tumor cells, from a preferential tropism toward the 1.5 kPa PDMS substrate (resembling normal lung parenchyma) to the 28 kPa (resembling pre-mineralized bone osteoid matrix). Our study suggests that Lamin A/C expression could be involved in the organ tropism of tumor cells, thereby providing a rationale for further studies focused on the definition of cancer mechanism of metastatization.
Collapse
Affiliation(s)
- Enrica Urciuoli
- Multifactorial Disease and Complex Phenotype Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Valentina D'Oria
- Confocal Microscopy Core Facility, Research Center, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Center, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Barbara Peruzzi
- Multifactorial Disease and Complex Phenotype Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
9
|
Bend, Push, Stretch: Remarkable Structure and Mechanics of Single Intermediate Filaments and Meshworks. Cells 2021; 10:cells10081960. [PMID: 34440729 PMCID: PMC8394331 DOI: 10.3390/cells10081960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.
Collapse
|
10
|
Shemer Y, Mekies LN, Ben Jehuda R, Baskin P, Shulman R, Eisen B, Regev D, Arbustini E, Gerull B, Gherghiceanu M, Gottlieb E, Arad M, Binah O. Investigating LMNA-Related Dilated Cardiomyopathy Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22157874. [PMID: 34360639 PMCID: PMC8346174 DOI: 10.3390/ijms22157874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/09/2023] Open
Abstract
LMNA-related dilated cardiomyopathy is an inherited heart disease caused by mutations in the LMNA gene encoding for lamin A/C. The disease is characterized by left ventricular enlargement and impaired systolic function associated with conduction defects and ventricular arrhythmias. We hypothesized that LMNA-mutated patients' induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) display electrophysiological abnormalities, thus constituting a suitable tool for deciphering the arrhythmogenic mechanisms of the disease, and possibly for developing novel therapeutic modalities. iPSC-CMs were generated from two related patients (father and son) carrying the same E342K mutation in the LMNA gene. Compared to control iPSC-CMs, LMNA-mutated iPSC-CMs exhibited the following electrophysiological abnormalities: (1) decreased spontaneous action potential beat rate and decreased pacemaker current (If) density; (2) prolonged action potential duration and increased L-type Ca2+ current (ICa,L) density; (3) delayed afterdepolarizations (DADs), arrhythmias and increased beat rate variability; (4) DADs, arrhythmias and cessation of spontaneous firing in response to β-adrenergic stimulation and rapid pacing. Additionally, compared to healthy control, LMNA-mutated iPSC-CMs displayed nuclear morphological irregularities and gene expression alterations. Notably, KB-R7943, a selective inhibitor of the reverse-mode of the Na+/Ca2+ exchanger, blocked the DADs in LMNA-mutated iPSC-CMs. Our findings demonstrate cellular electrophysiological mechanisms underlying the arrhythmias in LMNA-related dilated cardiomyopathy.
Collapse
Affiliation(s)
- Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
| | - Lucy N. Mekies
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
| | - Ronen Ben Jehuda
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
- Department of Biotechnology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
| | - Rita Shulman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
| | - Danielle Regev
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, Policlinico San Matteo, 27100 Pavia, Italy;
| | - Brenda Gerull
- Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany;
| | | | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 31096, Israel;
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Ramat Gan 52621, Israel;
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Rappaport Research Institute, Technion—Israel Institute of Technology, Haifa 31096, Israel; (Y.S.); (L.N.M.); (R.B.J.); (P.B.); (R.S.); (B.E.); (D.R.)
- Correspondence: ; Tel.: +972-4-8295262; Fax: +972-4-8513919
| |
Collapse
|
11
|
Ovics P, Regev D, Baskin P, Davidor M, Shemer Y, Neeman S, Ben-Haim Y, Binah O. Drug Development and the Use of Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Disease Modeling and Drug Toxicity Screening. Int J Mol Sci 2020; 21:E7320. [PMID: 33023024 PMCID: PMC7582587 DOI: 10.3390/ijms21197320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
: Over the years, numerous groups have employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as a superb human-compatible model for investigating the function and dysfunction of cardiomyocytes, drug screening and toxicity, disease modeling and for the development of novel drugs for heart diseases. In this review, we discuss the broad use of iPSC-CMs for drug development and disease modeling, in two related themes. In the first theme-drug development, adverse drug reactions, mechanisms of cardiotoxicity and the need for efficient drug screening protocols-we discuss the critical need to screen old and new drugs, the process of drug development, marketing and Adverse Drug reactions (ADRs), drug-induced cardiotoxicity, safety screening during drug development, drug development and patient-specific effect and different mechanisms of ADRs. In the second theme-using iPSC-CMs for disease modeling and developing novel drugs for heart diseases-we discuss the rationale for using iPSC-CMs and modeling acquired and inherited heart diseases with iPSC-CMs.
Collapse
Affiliation(s)
- Paz Ovics
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Danielle Regev
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Mor Davidor
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yuval Shemer
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Shunit Neeman
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| | - Yael Ben-Haim
- Institute of Molecular and Clinical Sciences, St. George’s University of London, London SW17 0RE, UK;
- Cardiology Clinical Academic Group, St. George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, The Rappaport Institute, Ruth & Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (P.O.); (D.R.); (P.B.); (M.D.); (Y.S.); (S.N.)
| |
Collapse
|
12
|
Schnabel F, Kornak U, Wollnik B. Premature aging disorders: A clinical and genetic compendium. Clin Genet 2020; 99:3-28. [PMID: 32860237 DOI: 10.1111/cge.13837] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Progeroid disorders make up a heterogeneous group of very rare hereditary diseases characterized by clinical signs that often mimic physiological aging in a premature manner. Apart from Hutchinson-Gilford progeria syndrome, one of the best-investigated progeroid disorders, a wide spectrum of other premature aging phenotypes exist, which differ significantly in their clinical presentation and molecular pathogenesis. Next-generation sequencing (NGS)-based approaches have made it feasible to determine the molecular diagnosis in the early stages of a disease. Nevertheless, a broad clinical knowledge on these disorders and their associated symptoms is still fundamental for a comprehensive patient management and for the interpretation of variants of unknown significance from NGS data sets. This review provides a detailed overview on characteristic clinical features and underlying molecular genetics of well-known as well as only recently identified premature aging disorders and also highlights novel findings towards future therapeutic options.
Collapse
Affiliation(s)
- Franziska Schnabel
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nat Cell Biol 2019; 21:1248-1260. [PMID: 31576060 DOI: 10.1038/s41556-019-0397-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
Abstract
While nuclear lamina abnormalities are hallmarks of human diseases, their interplay with epigenetic regulators and precise epigenetic landscape remain poorly understood. Here, we show that loss of the lysine acetyltransferase MOF or its associated NSL-complex members KANSL2 or KANSL3 leads to a stochastic accumulation of nuclear abnormalities with genomic instability patterns including chromothripsis. SILAC-based MOF and KANSL2 acetylomes identified lamin A/C as an acetylation target of MOF. HDAC inhibition or acetylation-mimicking lamin A derivatives rescue nuclear abnormalities observed in MOF-deficient cells. Mechanistically, loss of lamin A/C acetylation resulted in its increased solubility, defective phosphorylation dynamics and impaired nuclear mechanostability. We found that nuclear abnormalities include EZH2-dependent histone H3 Lys 27 trimethylation and loss of nascent transcription. We term this altered epigenetic landscape "heterochromatin enrichment in nuclear abnormalities" (HENA). Collectively, the NSL-complex-dependent lamin A/C acetylation provides a mechanism that maintains nuclear architecture and genome integrity.
Collapse
|
14
|
Ji JY. Endothelial Nuclear Lamina in Mechanotransduction Under Shear Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1097:83-104. [PMID: 30315541 DOI: 10.1007/978-3-319-96445-4_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endothelial cells that line the lumen of blood vessels are at the interface between hemodynamic forces and vascular wall biology. Endothelial cells transduce mechanical and biological signals from blood flow into intracellular signaling cascades through a process called mechanotransduction. Mechanotransduction is an important part of normal cell functions, as well as endothelial dysfunction which leads to inflammation and pathological conditions. For example, atherosclerosis preferentially develops in regions of disturbed fluid flow and low shear stress. The nuclear lamina, which sits underneath the nuclear envelope, serves to maintain the nuclear structure while acting as a scaffold for heterochromatin and many transcriptional proteins. Defects in lamina and its associated proteins cause a variety of human diseases including accelerated aging diseases such as Hutchinson-Gilford Progeria syndrome. The role of nuclear lamina in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In one study, lamin A/C was silenced in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to its natural ligand dexamethasone as well as fluid shear stress. Results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus but nuclear lamina is important to properly regulate GRE transcription. Ongoing research continues to investigate how nuclear lamins contribute to endothelial mechanotransduction and to better understand the role of Lamin A in vascular aging and in the progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Julie Y Ji
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
15
|
Khromova NV, Perepelina KI, Ivanova OA, Malashicheva AB, Kostareva AA, Dmitrieva RI. R482L Mutation of the LMNA Gene Affects Dynamics of C2C12 Myogenic Differentiation and Stimulates Formation of Intramuscular Lipid Droplets. BIOCHEMISTRY (MOSCOW) 2019; 84:241-249. [DOI: 10.1134/s0006297919030064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Zhang B, Yang Y, Keyimu R, Hao J, Zhao Z, Ye R. The role of lamin A/C in mesenchymal stem cell differentiation. J Physiol Biochem 2019; 75:11-18. [PMID: 30706289 DOI: 10.1007/s13105-019-00661-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/21/2019] [Indexed: 02/05/2023]
Abstract
Lamin A/C is the major architectural protein of cell nucleus in charge of the nuclear mechanosensing. By integrating extracellular mechanical and biochemical signals, lamin A/C regulates multiple intracellular events including mesenchymal stem cell (MSC) fate determination. Herein, we review the recent findings about the effects and mechanisms of lamin A/C in governing MSC lineage commitment, with a special focus on osteogenesis and adipogenesis. Better understanding of MSC differentiation regulated by lamin A/C could provide insights into pathogenesis of age-related osteoporosis.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Reziwan Keyimu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Hao
- Program in Biological Sciences in Dental Medicine, Harvard School of Dental Medicine, Boston, MA, USA
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Rui Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Lin XF, Luo JW, Liu G, Zhu YB, Jin Z, Lin X. Genetic mutation of familial dilated cardiomyopathy based on next‑generation semiconductor sequencing. Mol Med Rep 2018; 18:4271-4280. [PMID: 30221713 PMCID: PMC6172371 DOI: 10.3892/mmr.2018.9455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a complex myocardial disease of multifactorial etiologies, including enlarged cardiac chambers and contractile dysfunction. It has been suggested that the inheritance of DCM‑associated mutations predominates its onset. Therefore, the present study investigated the pathogenesis of DCM via pedigree analysis and genetic diagnosis by massive whole‑exome screening, and targeted exon capture. To study the familial gene‑phenotype association, the exon and splice sites of 325 hereditary disease‑associated genes in the proband with familial dilated cardiomyopathy (FDC), including 61 cardiac disease‑associated genes, such as the lamins A/C (LMNA), were analyzed by ultra‑high multiplex polymerase chain reaction and the Ion AmpliSeq™ Inherited Disease Panel. The present study also conducted Sanger DNA Sequencing for family members with global minor allele frequencies <1% to verify potential pathogenic mutation sites. A total of three rare missense mutations were detected, including heterozygous c.244G>A in LMNA, c.546C>G in potassium voltage‑gated channel subfamily KQT (KCNQ4) and c.1276G>A in EYA transcriptional coactivator and phosphatase 1 (EYA1), indicating a glutamic acid to lysine substitution at amino acid 82 (p.E82K) in LMNA, a p.F182L in KCNQ4 (a mutation associated with pathogenic deafness) and p.G426S in EYA1 (associated with Branchiootorenal syndrome 1 and Branchiootic syndrome 1 pathogenesis). In the present study, a carrier with slight hearing impairment was detected in the family analyzed; however, no patients with deafness or branchiootorenal syndrome were observed. LMNA p.E82K revealed SIFT and PolyPhen‑2 scores of 0 and 1, respectively. In the second generation, 3 patients with DCM underwent permanent pacemaker implantation due to sick sinus syndrome, atrioventricular block and unstable cardiac electrophysiology. The present study suggested that LMNA p.E82K may contribute to the pathogenesis of FDC and concomitant atrioventricular block. At present, only three families with DCM resulting from similar mutations have been reported. The present study demonstrated the strong pathogenic effects of LMNA p.E82K on DCM.
Collapse
Affiliation(s)
- Xin-Fu Lin
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jie-Wei Luo
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Gui Liu
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yao-Bin Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Zhao Jin
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xing Lin
- Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
18
|
Ermis M, Antmen E, Hasirci V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact Mater 2018; 3:355-369. [PMID: 29988483 PMCID: PMC6026330 DOI: 10.1016/j.bioactmat.2018.05.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Cell-substrate interactions play a crucial role in the design of better biomaterials and integration of implants with the tissues. Adhesion is the binding process of the cells to the substrate through interactions between the surface molecules of the cell membrane and the substrate. There are several factors that affect cell adhesion including substrate surface chemistry, topography, and stiffness. These factors physically and chemically guide and influence the adhesion strength, spreading, shape and fate of the cell. Recently, technological advances enabled us to precisely engineer the geometry and chemistry of substrate surfaces enabling the control of the interaction cells with the substrate. Some of the most commonly used surface engineering methods for eliciting the desired cellular responses on biomaterials are photolithography, electron beam lithography, microcontact printing, and microfluidics. These methods allow production of nano- and micron level substrate features that can control cell adhesion, migration, differentiation, shape of the cells and the nuclei as well as measurement of the forces involved in such activities. This review aims to summarize the current techniques and associate these techniques with cellular responses in order to emphasize the effect of chemistry, dimensions, density and design of surface patterns on cell-substrate interactions. We conclude with future projections in the field of cell-substrate interactions in the hope of providing an outlook for the future studies.
Collapse
Affiliation(s)
- Menekse Ermis
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biomedical Engineering, Ankara, Turkey
| | - Ezgi Antmen
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biomedical Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
- METU, Department of Biological Sciences, Ankara, Turkey
| |
Collapse
|
19
|
Guinde J, Frankel D, Perrin S, Delecourt V, Lévy N, Barlesi F, Astoul P, Roll P, Kaspi E. Lamins in Lung Cancer: Biomarkers and Key Factors for Disease Progression through miR-9 Regulation? Cells 2018; 7:E78. [PMID: 30012957 PMCID: PMC6071028 DOI: 10.3390/cells7070078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 02/08/2023] Open
Abstract
Lung cancer represents the primary cause of cancer death in the world. Malignant cells identification and characterization are crucial for the diagnosis and management of patients with primary or metastatic cancers. In this context, the identification of new biomarkers is essential to improve the differential diagnosis between cancer subtypes, to select the most appropriate therapy, and to establish prognostic correlations. Nuclear abnormalities are hallmarks of carcinoma cells and are used as cytological diagnostic criteria of malignancy. Lamins (divided into A- and B-types) are localized in the nuclear matrix comprising nuclear lamina, where they act as scaffolding protein, involved in many nuclear functions, with regulatory effects on the cell cycle and differentiation, senescence and apoptosis. Previous studies have suggested that lamins are involved in tumor development and progression with opposite results concerning their prognostic role. This review provides an overview of lamins expression in lung cancer and the relevance of these findings for disease diagnosis and prognosis. Furthermore, we discuss the link between A-type lamins expression in lung carcinoma cells and nuclear deformability, epithelial to mesenchymal transition, and metastatic potential, and which mechanisms could regulate A-type lamins expression in lung cancer, such as the microRNA miR-9.
Collapse
Affiliation(s)
- Julien Guinde
- Aix Marseille Université, INSERM, MMG, 13385 Marseille, France.
- APHM, Hôpital Nord, Department of Thoracic Oncology-Pleural Diseases-Interventional Pulmonology, CEDEX 5, 13385 Marseille, France.
| | - Diane Frankel
- Aix Marseille Université, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, 13385 Marseille, France.
| | - Sophie Perrin
- Aix Marseille Université, INSERM, MMG, 13385 Marseille, France.
- ProGeLife, 13385 Marseille, France.
| | | | - Nicolas Lévy
- Aix Marseille Université, APHM, INSERM, MMG, Hôpital la Timone, Département de Génétique Médicale, 13385 Marseille, France.
| | - Fabrice Barlesi
- Aix Marseille Université, APHM, CNRS, INSERM, CRCM, Multidisciplinary Oncology & Therapeutic Innovations Department, 13385 Marseille, France.
| | - Philippe Astoul
- APHM, Hôpital Nord, Department of Thoracic Oncology-Pleural Diseases-Interventional Pulmonology, CEDEX 5, 13385 Marseille, France.
| | - Patrice Roll
- Aix Marseille Université, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, 13385 Marseille, France.
| | - Elise Kaspi
- Aix Marseille Université, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, 13385 Marseille, France.
| |
Collapse
|
20
|
Maraldi NM. The lamin code. Biosystems 2018; 164:68-75. [DOI: 10.1016/j.biosystems.2017.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
|
21
|
Al Saedi A, Gunawardene P, Bermeo S, Vogrin S, Boersma D, Phu S, Singh L, Suriyaarachchi P, Duque G. Lamin A expression in circulating osteoprogenitors as a potential biomarker for frailty: The Nepean Osteoporosis and Frailty (NOF) Study. Exp Gerontol 2017; 102:69-75. [PMID: 29203402 DOI: 10.1016/j.exger.2017.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023]
Abstract
Lamin A is a protein of the nuclear lamina. Low levels of lamin A expression are associated with osteosarcopenia in mice. In this study, we hypothesized that low lamin A expression is also associated with frailty in humans. We aimed to develop a non-invasive method to quantify lamin A expression in epithelial and circulating osteoprogenitor (COP) cells, and to determine the relationship between lamin A expression and frailty in older individuals. COP cells and buccal swabs were obtained from 66 subjects (median age 74; 60% female; 26 non-frail, 23 pre-frail, and 17 frail) participating at the Nepean Osteoporosis and Frailty (NOF) Study. We quantified physical performance and disability, and stratified frailty in this population. Lamin A expression in epithelial and COP cells was quantified by flow cytometry. Linear regression models estimated the relationship between lamin A expression in buccal and COP cells, and prevalent disability and frailty. Lamin A expression in buccal cells showed no association with either disability or frailty. Low lamin A expression values in COP cells were associated with frailty. Frail individuals showed 60% lower levels of lamin A compared to non-frail (95% CI -36 to -74%, p<0.001) and 62% lower levels compared to pre-frail (95%CI -40 to -76%, p<0.001). In summary, we have identified lamin A expression in COP cells as a strong indicator of frailty. Further work is needed to understand lamin A expression as a risk stratifier, biomarker, or therapeutic target in frail older persons.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
| | - Piumali Gunawardene
- Sydney Medical School Nepean, The University of Sydney, Penrith, NSW, Australia; Department of Geriatric Medicine, Nepean Hospital, Penrith, NSW, Australia
| | - Sandra Bermeo
- Sydney Medical School Nepean, The University of Sydney, Penrith, NSW, Australia.
| | - Sara Vogrin
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
| | - Derek Boersma
- Department of Geriatric Medicine, Nepean Hospital, Penrith, NSW, Australia.
| | - Steven Phu
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
| | - Lakshman Singh
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.
| | | | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia; Sydney Medical School Nepean, The University of Sydney, Penrith, NSW, Australia.
| |
Collapse
|
22
|
Perepelina K, Dmitrieva R, Ignatieva E, Borodkina A, Kostareva A, Malashicheva A. Lamin A/C mutation associated with lipodystrophy influences adipogenic differentiation of stem cells through interaction with Notch signaling. Biochem Cell Biol 2017; 96:342-348. [PMID: 29040816 DOI: 10.1139/bcb-2017-0210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lamins A and C are involved in many cellular functions, owing to its ability to bind chromatin and transcription factors and affect their properties. Mutations of the LMNA gene encoding lamin A/C affect differentiation capacity of stem cells. However, the signaling pathways involved in interactions with lamins during cellular differentiation remain unclear. Lipodystrophy associated with LMNA mutation R482L causes loss of fat tissue. In this study we investigated the role of LMNA mutation R482L in modulating Notch signaling activity in the adipogenic differentiation of mesenchymal stem cells. Notch was activated using lentiviral Notch intracellular domain. Activation of Notch was estimated through the expression of Notch-responsive genes by qPCR and by activation of a luciferase CSL-reporter construct. The effect of LMNA mutation on Notch activation and adipogenic differentiation was analyzed in cells bearing lentiviral LMNA WT or LMNA R482L. We show that, when Notch is activated, LMNA R482L contributes to down-regulation of Notch activation in undifferentiated and differentiated cells, and decreases adipogenic differentiation. Thus, lamin A/C interacts with Notch signaling, thereby influencing cellular differentiation, and point mutation in LMNA could halt this interaction.
Collapse
Affiliation(s)
- K Perepelina
- e Almazov National Medical Research Centre, 2 Akkuratova street, Saint-Petersburg 197341, Russia.,f Saint-Petersburg State University, 7/9, Universitetskaya nab., Saint-Petersburg, 199034, Russia
| | - R Dmitrieva
- a Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - E Ignatieva
- a Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A Borodkina
- c Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., Saint-Petersburg, 194064, Russia
| | - A Kostareva
- a Almazov National Medical Research Centre, Saint-Petersburg, Russia.,g ITMO University, Institute of Translational Medicine, 49 Kronverkskiy ave., Saint-Petersburg, 197101, Russia
| | - A Malashicheva
- a Almazov National Medical Research Centre, Saint-Petersburg, Russia.,b Saint-Petersburg State University, Saint-Petersburg, Russia.,d ITMO University, Institute of Translational Medicine, Saint-Petersburg, Russia
| |
Collapse
|
23
|
Turgay Y, Medalia O. The structure of lamin filaments in somatic cells as revealed by cryo-electron tomography. Nucleus 2017. [PMID: 28635493 DOI: 10.1080/19491034.2017.1337622] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Metazoan nuclei are equipped with nuclear lamina - a thin layer of intermediate filaments (IFs) mostly built of nuclear lamins facing the inner nuclear membrane (INM). The nuclear lamina serves as an interaction hub for INM-proteins, soluble nuclear factors and DNA. It confers structural and mechanical stability to the nucleus, transduces mechanical forces and biochemical signals across the nuclear envelope (NE) and regulates the organization of chromatin. By using cryo-electron tomography (cryo-ET), we recently provided an unprecedented view into the 3D organization of lamin filaments within the lamina meshwork in mammalian somatic cells. Through implementation of averaging procedures, we resolved the rod and globular Ig-fold domains of lamin filaments. The density maps suggested that they assemble into 3.5 nm thick filaments. Our analysis revealed interesting structural differences between nucleoplasmic and cytoplasmic intermediate filaments, raising the question of which molecular cues define their assembly modes inside the cell.
Collapse
Affiliation(s)
- Y Turgay
- a Department of Biochemistry , University of Zurich , Zurich , Switzerland
| | - O Medalia
- a Department of Biochemistry , University of Zurich , Zurich , Switzerland.,b Department of Life Sciences and the National Institute for Biotechnology in the Negev , Ben-Gurion University , Beer-Sheva , Israel
| |
Collapse
|
24
|
Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1359-1369. [PMID: 28460880 DOI: 10.1016/j.bbamcr.2017.04.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/24/2022]
Abstract
Reprogramming, or generation of induced pluripotent stem (iPS) cells (functionally similar to embryonic stem cells or ES cells) by the use of transcription factors (typically: Oct3/4, Sox2, c-Myc, Klf4) called "Yamanaka factors" (OSKM), has revolutionized regenerative medicine. However, factors used to induce stemness are also overexpressed in cancer. Both, ES cells and iPS cells cause teratoma formation when injected to tissues. This raises a safety concern for therapies based on iPS derivates. Transdifferentiation (lineage reprogramming, or -conversion), is a process in which one mature, specialized cell type changes into another without entering a pluripotent state. This process involves an ectopic expression of transcription factors and/or other stimuli. Unlike in the case of reprogramming, tissues obtained by this method do not carry the risk of subsequent teratomagenesis.
Collapse
|
25
|
Rauschert I, Aldunate F, Preussner J, Arocena-Sutz M, Peraza V, Looso M, Benech JC, Agrelo R. Promoter hypermethylation as a mechanism for Lamin A/C silencing in a subset of neuroblastoma cells. PLoS One 2017; 12:e0175953. [PMID: 28422997 PMCID: PMC5397038 DOI: 10.1371/journal.pone.0175953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Nuclear lamins support the nuclear envelope and provide anchorage sites for chromatin. They are involved in DNA synthesis, transcription, and replication. It has previously been reported that the lack of Lamin A/C expression in lymphoma and leukaemia is due to CpG island promoter hypermethylation. Here, we provide evidence that Lamin A/C is silenced via this mechanism in a subset of neuroblastoma cells. Moreover, Lamin A/C expression can be restored with a demethylating agent. Importantly, Lamin A/C reintroduction reduced cell growth kinetics and impaired migration, invasion, and anchorage-independent cell growth. Cytoskeletal restructuring was also induced. In addition, the introduction of lamin Δ50, known as Progerin, caused senescence in these neuroblastoma cells. These cells were stiffer and developed a cytoskeletal structure that differed from that observed upon Lamin A/C introduction. Of relevance, short hairpin RNA Lamin A/C depletion in unmethylated neuroblastoma cells enhanced the aforementioned tumour properties. A cytoskeletal structure similar to that observed in methylated cells was induced. Furthermore, atomic force microscopy revealed that Lamin A/C knockdown decreased cellular stiffness in the lamellar region. Finally, the bioinformatic analysis of a set of methylation arrays of neuroblastoma primary tumours showed that a group of patients (around 3%) gives a methylation signal in some of the CpG sites located within the Lamin A/C promoter region analysed by bisulphite sequencing PCR. These findings highlight the importance of Lamin A/C epigenetic inactivation for a subset of neuroblastomas, leading to enhanced tumour properties and cytoskeletal changes. Additionally, these findings may have treatment implications because tumour cells lacking Lamin A/C exhibit more aggressive behaviour.
Collapse
Affiliation(s)
- Ines Rauschert
- Laboratory of Cellular Signaling and Nanobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Fabian Aldunate
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jens Preussner
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Miguel Arocena-Sutz
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Vanina Peraza
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Juan C. Benech
- Laboratory of Cellular Signaling and Nanobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ruben Agrelo
- Epigenetics of Cancer and Aging Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
26
|
Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells (Review). Int J Mol Med 2017; 39:775-782. [PMID: 28290609 DOI: 10.3892/ijmm.2017.2912] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 01/13/2017] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been used in cell-based therapy for various diseases, due to their immunomodulatory and inflammatory effects. However, the function of MSCs is known to decline with age, a process that is called senescence. To date, the process of MSC senescence remains unknown as in-depth understanding of the mechanisms involved in cellular senescence is lacking. First, senescent MSCs are so heterogeneous that not all of them express the same phenotypic markers. In addition, the genes and signaling pathways which regulate this process in MSCs are still unknown. Thus, an understanding of the molecular processes controlling MSC senescence is crucial to determining the drivers and effectors of age-associated MSC dysfunction. Moreover, the proper use of MSCs for clinical application requires a general understanding of the MSC aging process. Furthermore, such knowledge is essential for the development of therapeutic interventions that can slow or reverse age-related degenerative changes to enhance repair processes and maintain healthy function in aging tissues. To further clarify the properties of senescent cells, as well as to present significant findings from studies on the mechanisms of cellular aging, we summarize these biological features in the senescence of MSCs in this scenario. This review summarizes recent advances in our understanding of the markers and differentiation potential indicating MSC senescence, as well as factors affecting MSC senescence with particular emphasis on the roles of oxidative stress, intrinsic changes in telomere shortening, histone deacetylase and DNA methyltransferase, genes and signaling pathways and immunological properties.
Collapse
Affiliation(s)
- Yi Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiong Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yujia Wang
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Li
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ji Bao
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
27
|
A high throughput approach for analysis of cell nuclear deformability at single cell level. Sci Rep 2016; 6:36917. [PMID: 27841297 PMCID: PMC5107983 DOI: 10.1038/srep36917] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 10/12/2016] [Indexed: 01/14/2023] Open
Abstract
Various physiological and pathological processes, such as cell differentiation, migration, attachment, and metastasis are highly dependent on nuclear elasticity. Nuclear morphology directly reflects the elasticity of the nucleus. We propose that quantification of changes in nuclear morphology on surfaces with defined topography will enable us to assess nuclear elasticity and deformability. Here, we used soft lithography techniques to produce 3 dimensional (3-D) cell culture substrates decorated with micron sized pillar structures of variable aspect ratios and dimensions to induce changes in cellular and nuclear morphology. We developed a high content image analysis algorithm to quantify changes in nuclear morphology at the single-cell level in response to physical cues from the 3-D culture substrate. We present that nuclear stiffness can be used as a physical parameter to evaluate cancer cells based on their lineage and in comparison to non-cancerous cells originating from the same tissue type. This methodology can be exploited for systematic study of mechanical characteristics of large cell populations complementing conventional tools such as atomic force microscopy and nanoindentation.
Collapse
|
28
|
Abstract
One of the original hypotheses of organismal longevity posits that aging is the natural result of entropy on the cells, tissues, and organs of the animal—a slow, inexorable slide into nonfunctionality caused by stochastic degradation of its parts. We now have evidence that aging is instead at least in part genetically regulated. Many mutations have been discovered to extend lifespan in organisms of all complexities, from yeast to mammals. The study of metazoan model organisms, such as Caenorhabditis elegans, has been instrumental in understanding the role of genetics in the cell biology of aging. Longevity mutants across the spectrum of model organisms demonstrate that rates of aging are regulated through genetic control of cellular processes. The regulation and subsequent breakdown of cellular processes represent a programmatic decision by the cell to either continue or abandon maintenance procedures with age. Our understanding of cell biological processes involved in regulating aging have been particularly informed by longevity mutants and treatments, such as reduced insulin/IGF-1 signaling and dietary restriction, which are critical in determining the distinction between causes of and responses to aging and have revealed a set of downstream targets that participate in a range of cell biological activities. Here we briefly review some of these important cellular processes.
Collapse
Affiliation(s)
- Race DiLoreto
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Coleen T Murphy
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| |
Collapse
|
29
|
Zuela N, Zwerger M, Levin T, Medalia O, Gruenbaum Y. Impaired mechanical response of an EDMD mutation leads to motility phenotypes that are repaired by loss of prenylation. J Cell Sci 2016; 129:1781-91. [PMID: 27034135 DOI: 10.1242/jcs.184309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/21/2016] [Indexed: 12/20/2022] Open
Abstract
There are roughly 14 distinct heritable autosomal dominant diseases associated with mutations in lamins A/C, including Emery-Dreifuss muscular dystrophy (EDMD). The mechanical model proposes that the lamin mutations change the mechanical properties of muscle nuclei, leading to cell death and tissue deterioration. Here, we developed an experimental protocol that analyzes the effect of disease-linked lamin mutations on the response of nuclei to mechanical strain in living Caenorhabditis elegans We found that the EDMD mutation L535P disrupts the nuclear mechanical response specifically in muscle nuclei. Inhibiting lamin prenylation rescued the mechanical response of the EDMD nuclei, reversed the muscle phenotypes and led to normal motility. The LINC complex and emerin were also required to regulate the mechanical response of C. elegans nuclei. This study provides evidence to support the mechanical model and offers a potential future therapeutic approach towards curing EDMD.
Collapse
Affiliation(s)
- Noam Zuela
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Monika Zwerger
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Tal Levin
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
30
|
Aljada A, Doria J, Saleh AM, Al-Matar SH, AlGabbani S, Shamsa HB, Al-Bawab A, Ahmed AA. Altered Lamin A/C splice variant expression as a possible diagnostic marker in breast cancer. Cell Oncol (Dordr) 2016; 39:161-74. [PMID: 26732077 DOI: 10.1007/s13402-015-0265-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Lamin A/C alternative splice variants (Lamin A, Lamin C, Lamin AΔ10 and Lamin AΔ50) have been implicated in cell cycle regulation, DNA replication, transcription regulation, cellular differentiation, apoptosis and aging. In addition, loss of Lamin A/C expression has been observed in several cancers, including breast cancer, and it has been found that Lamin A/C suppression may lead to cancer-like aberrations in nuclear morphology and aneuploidy. Based on these observations, we hypothesized that Lamin A/C transcript variant quantification might be employed for the diagnosis of breast cancer. METHODS Newly designed TaqMan qRT-PCR assays for the analysis of Lamin A/C splice variants were validated and their use as biomarkers for the diagnosis of breast cancer was assessed using 16 normal breast tissues and 128 breast adenocarcinomas. In addition, the expression levels of the Lamin A/C transcript variants were measured in samples derived from seven other types of cancer. RESULTS We found that the expression level of Lamin C was significantly increased in the breast tumors tested, whereas the expression levels of Lamin A and Lamin AΔ50 were significantly decreased. No significant change in Lamin AΔ10 expression was observed. Our data also indicated that the Lamin C : Lamin A mRNA ratio was increased in all clinical stages of breast cancer. Additionally, we observed increased Lamin C : Lamin A mRNA ratios in liver, lung and thyroid carcinomas and in colon, ovary and prostate adenocarcinomas. CONCLUSIONS From our data we conclude that the Lamin C : Lamin A mRNA ratio is increased in breast cancer and that this mRNA ratio may be of diagnostic use in all clinical stages of breast cancer and, possibly, also in liver, lung, thyroid, colon, ovary and prostate cancers.
Collapse
Affiliation(s)
- Ahmad Aljada
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia.
- King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia.
| | - Joseph Doria
- Department of Neurology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Ayman M Saleh
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Shahad H Al-Matar
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Sarah AlGabbani
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Heba Bani Shamsa
- King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Ahmad Al-Bawab
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Altayeb Abdalla Ahmed
- Department of Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Swahari V, Nakamura A. Speeding up the clock: The past, present and future of progeria. Dev Growth Differ 2015; 58:116-30. [DOI: 10.1111/dgd.12251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Vijay Swahari
- Neuroscience Center; University of North Carolina; Chapel Hill North Carolina USA
| | - Ayumi Nakamura
- Neuroscience Center; University of North Carolina; Chapel Hill North Carolina USA
| |
Collapse
|
32
|
Han Y, Wang L, Yao QP, Zhang P, Liu B, Wang GL, Shen BR, Cheng B, Wang Y, Jiang ZL, Qi YX. Nuclear envelope proteins Nesprin2 and LaminA regulate proliferation and apoptosis of vascular endothelial cells in response to shear stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1165-73. [PMID: 25721888 DOI: 10.1016/j.bbamcr.2015.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/19/2015] [Accepted: 02/15/2015] [Indexed: 11/27/2022]
Abstract
The dysfunction of vascular endothelial cells (ECs) influenced by flow shear stress is crucial for vascular remodeling. However, the roles of nuclear envelope (NE) proteins in shear stress-induced EC dysfunction are still unknown. Our results indicated that, compared with normal shear stress (NSS), low shear stress (LowSS) suppressed the expression of two types of NE proteins, Nesprin2 and LaminA, and increased the proliferation and apoptosis of ECs. Targeted small interfering RNA (siRNA) and gene overexpression plasmid transfection revealed that Nesprin2 and LaminA participate in the regulation of EC proliferation and apoptosis. A protein/DNA array was further used to detect the activation of transcription factors in ECs following transfection with target siRNAs and overexpression plasmids. The regulation of AP-2 and TFIID mediated by Nesprin2 and the activation of Stat-1, Stat-3, Stat-5 and Stat-6 by LaminA were verified under shear stress. Furthermore, using Ingenuity Pathway Analysis software and real-time RT-PCR, the effects of Nesprin2 or LaminA on the downstream target genes of AP-2, TFIID, and Stat-1, Stat-3, Stat-5 and Stat-6, respectively, were investigated under LowSS. Our study has revealed that NE proteins are novel mechano-sensitive molecules in ECs. LowSS suppresses the expression of Nesprin2 and LaminA, which may subsequently modulate the activation of important transcription factors and eventually lead to EC dysfunction.
Collapse
Affiliation(s)
- Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Ping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Zhang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Liang Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Bao-Rong Shen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Binbin Cheng
- Department of Bioengineering, University of CA, San Diego, USA
| | - Yingxiao Wang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, University of CA, San Diego, USA
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Cabanelas N, Martins VP. Laminopathies: a Pandora's box of heart failure, bradyarrhythmias and sudden death. Rev Port Cardiol 2015; 34:139.e1-5. [PMID: 25656816 DOI: 10.1016/j.repc.2014.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/17/2014] [Accepted: 08/25/2014] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The LMNA gene encodes a group of proteins that have an important structural and functional role in the cell nucleus. Mutations in this gene have been found in 6% of all forms of dilated cardiomyopathy and in up to 33% of those with conduction system disturbances. AIMS AND METHODS Using a case report as an example, we performed a review of the literature on the pathophysiological mechanisms, clinical manifestations, risk stratification and treatment options of cardiac involvement in laminopathies. CASE REPORT We present the case of a 46-year-old man, whose ECG showed bizarre voltage criteria for left ventricular hypertrophy and first-degree atrioventricular block, a dilated left ventricle with mildly impaired global systolic function and non-sustained ventricular tachycardia on Holter monitoring, and with a family history of sudden death. Genetic testing identified an LMNA mutation. No ventricular arrhythmias were induced during electrophysiological study. The patient is under close clinical and echocardiographic monitoring and an event loop recorder has been implanted. DISCUSSION Phenotypically, myocardial involvement in laminopathies is indistinguishable from other forms of idiopathic dilated cardiomyopathy. Ventricular arrhythmias are common, but the best method for sudden death risk stratification has yet to be established. The few studies that have been performed, with a very limited number of patients, show that factors associated with an unfavorable prognosis are ejection fraction <45%, non-sustained ventricular tachycardia, male gender and any form of atrioventricular block. Given the lack of evidence, indications for an implantable cardioverter-defibrillator for primary prevention in this context are the same as conventional indications for other forms of idiopathic dilated cardiomyopathy. CONCLUSIONS Cardiac involvement as a consequence of LMNA mutations generally has a more aggressive natural history than other forms of non-ischemic dilated cardiomyopathy. A high index of suspicion and prompt referral for genetic testing are essential for appropriate therapeutic management.
Collapse
Affiliation(s)
- Nuno Cabanelas
- Serviço de Cardiologia, Hospital Distrital de Santarém, Santarém, Portugal.
| | | |
Collapse
|
34
|
Cabanelas N, Martins VP. Laminopathies: A Pandora's box of heart failure, bradyarrhythmias and sudden death. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2015. [DOI: 10.1016/j.repce.2014.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
35
|
Kuniakova M, Oravcova L, Varchulova-Novakova Z, Viglaska D, Danisovic L. Somatic stem cell aging and malignant transformation – impact on therapeutic application. ACTA ACUST UNITED AC 2015; 20:743-56. [DOI: 10.1515/cmble-2015-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/07/2015] [Indexed: 12/22/2022]
Abstract
AbstractSomatic stem cells possess unique properties of self-renewal and plasticity which make them promising candidates for use in tissue engineering and regenerative medicine, in addition to serving as efficient delivery vehicles in site-specific therapy. In the case of therapeutic application, it is essential to isolate and culture stem cells in vitro, to obtain them in sufficient quantities. Although long-term cultivation provides an adequate number of cells, it has been shown that this approach is associated with increased risk of transformation of cultured cells, which presents a significant biological hazard. This article reviews information about biological features and cellular events which occur during long-term cultivation of somatic stem cells, with respect to their safe utilization in potential clinical practice.
Collapse
|
36
|
Davies BSJ, Coffinier C, Yang SH, Barnes RH, Jung HJ, Young SG, Fong LG. Investigating the purpose of prelamin A processing. Nucleus 2014. [DOI: 10.4161/nucl.13723] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
Bogdanova MA, Gudkova AY, Zabirnik AS, Ignatieva EV, Dmitrieva RI, Smolina NA, Kostareva AA, Malashicheva AB. Nuclear lamins regulate osteogenic differentiation of mesenchymal stem cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s1990519x14040026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
González-Granado JM, Silvestre-Roig C, Rocha-Perugini V, Trigueros-Motos L, Cibrián D, Morlino G, Blanco-Berrocal M, Osorio FG, Freije JMP, López-Otín C, Sánchez-Madrid F, Andrés V. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci Signal 2014; 7:ra37. [PMID: 24757177 DOI: 10.1126/scisignal.2004872] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In many cell types, nuclear A-type lamins regulate multiple cellular functions, including higher-order genome organization, DNA replication and repair, gene transcription, and signal transduction; however, their role in specialized immune cells remains largely unexplored. We showed that the abundance of A-type lamins was almost negligible in resting naïve T lymphocytes, but was increased upon activation of the T cell receptor (TCR). The increase in lamin-A was an early event that accelerated formation of the immunological synapse between T cells and antigen-presenting cells. Polymerization of F-actin in T cells is a critical step for immunological synapse formation, and lamin-A interacted with the linker of nucleoskeleton and cytoskeleton (LINC) complex to promote F-actin polymerization. We also showed that lamin-A expression accelerated TCR clustering and led to enhanced downstream signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) signaling, as well as increased target gene expression. Pharmacological inhibition of the ERK pathway reduced lamin-A-dependent T cell activation. Moreover, mice lacking lamin-A in immune cells exhibited impaired T cell responses in vivo. These findings underscore the importance of A-type lamins for TCR activation and identify lamin-A as a previously unappreciated regulator of the immune response.
Collapse
Affiliation(s)
- José María González-Granado
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Carlos Silvestre-Roig
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Vera Rocha-Perugini
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Laia Trigueros-Motos
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Danay Cibrián
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Giulia Morlino
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Marta Blanco-Berrocal
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fernando Garcia Osorio
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo-IUOPA, Oviedo, Spain
| | | | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo-IUOPA, Oviedo, Spain
| | - Francisco Sánchez-Madrid
- Vascular Biology and Inflammation. CNIC, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Vicente Andrés
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
39
|
Kochin V, Shimi T, Torvaldson E, Adam SA, Goldman A, Pack CG, Melo-Cardenas J, Imanishi SY, Goldman RD, Eriksson JE. Interphase phosphorylation of lamin A. J Cell Sci 2014; 127:2683-96. [PMID: 24741066 DOI: 10.1242/jcs.141820] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear lamins form the major structural elements that comprise the nuclear lamina. Loss of nuclear structural integrity has been implicated as a key factor in the lamin A/C gene mutations that cause laminopathies, whereas the normal regulation of lamin A assembly and organization in interphase cells is still undefined. We assumed phosphorylation to be a major determinant, identifying 20 prime interphase phosphorylation sites, of which eight were high-turnover sites. We examined the roles of these latter sites by site-directed mutagenesis, followed by detailed microscopic analysis - including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy and nuclear extraction techniques. The results reveal three phosphorylation regions, each with dominant sites, together controlling lamin A structure and dynamics. Interestingly, two of these interphase sites are hyper-phosphorylated in mitotic cells and one of these sites is within the sequence that is missing in progerin of the Hutchinson-Gilford progeria syndrome. We present a model where different phosphorylation combinations yield markedly different effects on the assembly, subunit turnover and the mobility of lamin A between, and within, the lamina, the nucleoplasm and the cytoplasm of interphase cells.
Collapse
Affiliation(s)
- Vitaly Kochin
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland Department of Biosciences, Åbo Akademi University, FIN-20520 Turku, Finland Department of Pathology, Sapporo Medical University, Sapporo, Hokkaido 060-8556, Japan
| | - Takeshi Shimi
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Elin Torvaldson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland Department of Biosciences, Åbo Akademi University, FIN-20520 Turku, Finland
| | - Stephen A Adam
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Anne Goldman
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Chan-Gi Pack
- Cellular Informatics Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Johanna Melo-Cardenas
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
| | - Robert D Goldman
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - John E Eriksson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland Department of Biosciences, Åbo Akademi University, FIN-20520 Turku, Finland
| |
Collapse
|
40
|
Giusti L, Da Valle Y, Bonotti A, Donadio E, Ciregia F, Ventroni T, Foddis R, Giannaccini G, Guglielmi G, Cristaudo A, Lucacchini A. Comparative proteomic analysis of malignant pleural mesothelioma evidences an altered expression of nuclear lamin and filament-related proteins. Proteomics Clin Appl 2014; 8:258-68. [PMID: 24415579 DOI: 10.1002/prca.201300052] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/11/2013] [Accepted: 11/12/2013] [Indexed: 12/28/2022]
Abstract
PURPOSE Malignant mesothelioma is a neoplastic disease linked to asbestos exposure whose diagnosis is limited, so detection methods for an early diagnosis and treatment result essential. Here, we compared proteomic profiles of malignant pleural mesothelioma (MPM) and benign biopsies to search potential biomarkers useful in differential diagnosis. EXPERIMENTAL DESIGN Tissue biopsies were obtained from 53 patients who were subjected to a diagnostic thoracoscopy. 2DE/MS based approach was used for proteomic analysis and protein validation was carried out by Western blot analysis versus benign and lung carcinoma samples. RESULTS Among the proteins identified we confirmed known MPM biomarkers such as calretinin and suggested the new ones as prelamin A/C, desmin, vimentin, calretinin, fructose-bisphosphate aldolase A, myosin regulatory light chain 2, ventricular/cardiac muscle isoform, myosin light chain 3 and myosin light chain 6B. Ingenuity software was used to identify the biological processes to which these proteins belong and to construct a potential network. CONCLUSIONS AND CLINICAL RELEVANCE Overall, our results suggest potential biomarkers that can be useful in occupational medicine for the early identification of the onset of disease in health surveillance of past asbestos-exposed workers, for monitoring the progress of disease and for assessing the response to treatment.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Harada T, Swift J, Irianto J, Shin JW, Spinler KR, Athirasala A, Diegmiller R, Dingal PCDP, Ivanovska IL, Discher DE. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. ACTA ACUST UNITED AC 2014; 204:669-82. [PMID: 24567359 PMCID: PMC3941057 DOI: 10.1083/jcb.201308029] [Citation(s) in RCA: 434] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lamins impede 3D migration but also promote survival against migration-induced stresses. Cell migration through solid tissue often involves large contortions of the nucleus, but biological significance is largely unclear. The nucleoskeletal protein lamin-A varies both within and between cell types and was shown here to contribute to cell sorting and survival in migration through constraining micropores. Lamin-A proved rate-limiting in 3D migration of diverse human cells that ranged from glioma and adenocarcinoma lines to primary mesenchymal stem cells (MSCs). Stoichiometry of A- to B-type lamins established an activation barrier, with high lamin-A:B producing extruded nuclear shapes after migration. Because the juxtaposed A and B polymer assemblies respectively conferred viscous and elastic stiffness to the nucleus, subpopulations with different A:B levels sorted in 3D migration. However, net migration was also biphasic in lamin-A, as wild-type lamin-A levels protected against stress-induced death, whereas deep knockdown caused broad defects in stress resistance. In vivo xenografts proved consistent with A:B-based cell sorting, and intermediate A:B-enhanced tumor growth. Lamins thus impede 3D migration but also promote survival against migration-induced stresses.
Collapse
Affiliation(s)
- Takamasa Harada
- Molecular and Cell Biophysics Lab and 2 Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Datta S, Snow CJ, Paschal BM. A pathway linking oxidative stress and the Ran GTPase system in progeria. Mol Biol Cell 2014; 25:1202-15. [PMID: 24523287 PMCID: PMC3982987 DOI: 10.1091/mbc.e13-07-0430] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintaining the Ran GTPase at a proper concentration in the nucleus is important for nucleocytoplasmic transport. Previously we found that nuclear levels of Ran are reduced in cells from patients with Hutchinson-Gilford progeria syndrome (HGPS), a disease caused by constitutive attachment of a mutant form of lamin A (termed progerin) to the nuclear membrane. Here we explore the relationship between progerin, the Ran GTPase, and oxidative stress. Stable attachment of progerin to the nuclear membrane disrupts the Ran gradient and results in cytoplasmic localization of Ubc9, a Ran-dependent import cargo. Ran and Ubc9 disruption can be induced reversibly with H2O2. CHO cells preadapted to oxidative stress resist the effects of progerin on Ran and Ubc9. Given that HGPS-patient fibroblasts display elevated ROS, these data suggest that progerin inhibits nuclear transport via oxidative stress. A drug that inhibits pre-lamin A cleavage mimics the effects of progerin by disrupting the Ran gradient, but the effects on Ran are observed before a substantial ROS increase. Moreover, reducing the nuclear concentration of Ran is sufficient to induce ROS irrespective of progerin. We speculate that oxidative stress caused by progerin may occur upstream or downstream of Ran, depending on the cell type and physiological setting.
Collapse
Affiliation(s)
- Sutirtha Datta
- Center for Cell Signaling, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903
| | | | | |
Collapse
|
43
|
Mizuhashi K, Kanamoto T, Moriishi T, Muranishi Y, Miyazaki T, Terada K, Omori Y, Ito M, Komori T, Furukawa T. Filamin-interacting proteins, Cfm1 and Cfm2, are essential for the formation of cartilaginous skeletal elements. Hum Mol Genet 2014; 23:2953-67. [DOI: 10.1093/hmg/ddu007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
44
|
Collas P, Lund EG, Oldenburg AR. Closing the (nuclear) envelope on the genome: how nuclear lamins interact with promoters and modulate gene expression. Bioessays 2013; 36:75-83. [PMID: 24272858 DOI: 10.1002/bies.201300138] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nuclear envelope shapes the functional organization of the nucleus. Increasing evidence indicates that one of its main components, the nuclear lamina, dynamically interacts with the genome, including the promoter region of specific genes. This seems to occur in a manner that accords developmental significance to these interactions. This essay addresses key issues raised by recent data on the association of nuclear lamins with the genome. We discuss how lamins interact with large chromatin domains and with spatially restricted regions on gene promoters. We address the relationship between these interactions, chromatin modifications and gene expression outcomes. Lamin-genome contacts are redistributed after cell division and during stem cell differentiation, with evidence of lineage specificity. Thus, we also speculate on a developmental role of lamin interactions with specific genes. Finally, we highlight how concepts arising from this recent work lay the foundations of future challenges and investigations.
Collapse
Affiliation(s)
- Philippe Collas
- Stem Cell Epigenetics Laboratory, Faculty of Medicine, Institute of Basic Medical Sciences, Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
45
|
Abstract
The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics.
Collapse
Affiliation(s)
- Jan Lammerding
- Brigham and Women's Hospital/Harvard Medical School, Cambridge, Massachusetts, USA.
| |
Collapse
|
46
|
Nicolaou P, Christodoulou K. Advances in the molecular diagnosis of Charcot-Marie-Tooth disease. World J Neurol 2013; 3:42-55. [DOI: 10.5316/wjn.v3.i3.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/23/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease or hereditary motor and sensory neuropathy is the most common inherited neuromuscular disorder affecting at least 1 in 2500. CMT disease is pathologically and genetically heterogeneous and is characterized by a variable age of onset, slowly progressive weakness and muscle atrophy, starting in the lower limbs and subsequently affecting the upper extremities. Symptoms are usually slowly progressive, especially for the classic and late-onset phenotypes, but can be rather severe in early-onset forms. CMT is grouped into demyelinating, axonal and intermediate forms, based on electrophysiological and pathological findings. The demyelinating types are characterized by severely reduced motor nerve conduction velocities (MNCVs) and mainly by myelin abnormalities. The axonal types are characterized by normal or slightly reduced MNCVs and mainly axonal abnormalities. The intermediate types are characterized by MNCVs between 25 m/s and 45 m/s and they have features of both demyelination and axonopathy. Inheritance can be autosomal dominant, X-linked, or autosomal recessive. Mutations in more than 30 genes have been associated with the different forms of CMT, leading to major advancements in molecular diagnostics of the disease, as well as in the understanding of pathogenetic mechanisms. This editorial aims to provide an account that is practicable and efficient on the current molecular diagnostic procedures for CMT, in correlation with the clinical, pathological and electrophysiological findings. The most frequent causative mutations of CMT will also be outlined.
Collapse
|
47
|
Yu KR, Kang KS. Aging-related genes in mesenchymal stem cells: a mini-review. Gerontology 2013; 59:557-63. [PMID: 23970150 DOI: 10.1159/000353857] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/19/2013] [Indexed: 12/25/2022] Open
Abstract
Adult stem cells in mammalian organs play pivotal roles in the maintenance and repair of these organs throughout the life of the adult and maintain the proper homeostasis of a tissue or organ. Among the adult stem cells described to date, mesenchymal stem cells (MSCs) are highlighted for clinical applications because MSCs have many advantages for cell therapy, including multilineage differentiation, homing, immune modulation and wound-healing effects. However, as the aging of MSCs leads to an age-associated decline in their number and function, it is important to clarify the age-associated factors and regulatory mechanism associated with the MSC aging process. In this review, we amass and discuss the recent data related to age-associated genes in MSCs. In particular, the activities of epigenetic regulatory factors, including histone acetylase and DNA methyltransferase, modulate gene expression and crosstalk with each other during the MSC senescence process. p16(INK4A) and high-mobility group A2 play important age-associated roles in the regulation of MSC stemness, and lamin A- and prelamin A-dependent nuclear abnormalities have significant biological relevance in MSC aging. Taken together, the information described here, including the epigenetic regulatory factors, transcription factors and cell signaling, could be used toward the development of treatments for MSC aging and related defects.
Collapse
Affiliation(s)
- Kyung-Rok Yu
- Adult Stem Cell Research Center College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | |
Collapse
|
48
|
Nayebosadri A, Ji JY. Endothelial nuclear lamina is not required for glucocorticoid receptor nuclear import but does affect receptor-mediated transcription activation. Am J Physiol Cell Physiol 2013; 305:C309-22. [PMID: 23703529 DOI: 10.1152/ajpcell.00293.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The lamina serves to maintain the nuclear structure and stiffness while acting as a scaffold for heterochromatin and many transcriptional proteins. Its role in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In this study, we successfully silenced lamin A/C in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to dexamethasone and shear stress. Nuclear translocation of GR, an anti-inflammatory nuclear receptor, in response to dexamethasone or shear stress (5, 10, and 25 dyn/cm(2)) was observed via time-lapse cell imaging and quantified using a Bayesian image analysis algorithm. Transcriptional activity of the GRE promoter was assessed using a dual-luciferase reporter plasmid. We found no dependence on nuclear lamina for GR translocation from the cytoplasm into the nucleus. However, the absence of lamin A/C led to significantly increased expression of luciferase under dexamethasone and shear stress induction as well as changes in histone protein function. PCR results for NF-κB inhibitor alpha (NF-κBIA) and dual specificity phosphatase 1 (DUSP1) genes further supported our luciferase data with increased expression in the absence of lamin. Our results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus, but nuclear lamina is important to properly regulate GRE transcription. Nuclear lamina, rather than histone deacetylase (HDAC), is a more significant mediator of shear stress-induced transcriptional activity, while dexamethasone-initiated transcription is more HDAC dependent. Our findings provide more insights into the molecular pathways involved in nuclear mechanotransduction.
Collapse
Affiliation(s)
- Arman Nayebosadri
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | | |
Collapse
|
49
|
Burgon P. Human genome organization--symbolized muscle-enriched a-type lamin-interacting protein to clear up confusion. Circ Res 2012; 111:e252; author reply e253-4. [PMID: 23065348 DOI: 10.1161/circresaha.112.278614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Abstract
Sunlight that reaches the human skin contains solar energy composed of 6.8% ultraviolet (UV), 38.9% visible light and 54.3% infrared radiation. In addition to natural near-infrared (NIR), human skin is increasingly exposed to artificial NIR from medical devices and electrical appliances. Thus, we are exposed to tremendous amounts of NIR. Many studies have proven the effects of UV exposure on human skin and skin cancers but have not investigated well the effects of NIR exposure. Furthermore, many of the previous NIR studies have used NIR resources without a water filter or a contact cooling. With these resources, a substantial amount of NIR energy is absorbed in the superficial layers and only limited NIR energy can be delivered to deeper tissues. Thus, they could not sufficiently evaluate the effects of incident solar NIR. In order to simulate solar NIR that reaches the skin, a water filter is essential because solar NIR is filtered by atmospheric water. In reality, NIR increases the surface temperature and induces thermal effects so a contact cooling is needed to pursue the properties of NIR. I clarify that NIR can penetrate the skin and non-thermally affect the subcutaneous tissues, including muscle and bone marrow, using a NIR resource with a water filter and a cooling system. I would like to emphasize the biological effects of NIR which have both merits and demerits. Appropriate NIR irradiation induces dermal heating thermally and non-thermally induces collagen and elastin stimulation, which results in skin tightening. NIR also induces non-thermal DNA damage of mitotic cells, which may have the potential application for treating cancer. However, as continuous NIR exposure may induce photoaging and potentially photocarcinogenesis, we should consider the effect of, not only UV, but also NIR and the necessity for protection against solar NIR. Here, this paper introduces the new aspects of the biological effects of NIR radiation.
Collapse
|