1
|
Dalla E, Papanicolaou M, Park MD, Barth N, Hou R, Segura-Villalobos D, Valencia Salazar L, Sun D, Forrest ARR, Casanova-Acebes M, Entenberg D, Merad M, Aguirre-Ghiso JA. Lung-resident alveolar macrophages regulate the timing of breast cancer metastasis. Cell 2024:S0092-8674(24)01034-1. [PMID: 39378878 DOI: 10.1016/j.cell.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Breast disseminated cancer cells (DCCs) can remain dormant in the lungs for extended periods, but the mechanisms limiting their expansion are not well understood. Research indicates that tissue-resident alveolar macrophages suppress breast cancer metastasis in lung alveoli by inducing dormancy. Through ligand-receptor mapping and intravital imaging, it was found that alveolar macrophages express transforming growth factor (TGF)-β2. This expression, along with persistent macrophage-cancer cell interactions via the TGF-βRIII receptor, maintains cancer cells in a dormant state. Depleting alveolar macrophages or losing the TGF-β2 receptor in cancer cells triggers metastatic awakening. Aggressive breast cancer cells are either suppressed by alveolar macrophages or evade this suppression by avoiding interaction and downregulating the TGF-β2 receptor. Restoring TGF-βRIII in aggressive cells reinstates TGF-β2-mediated macrophage growth suppression. Thus, alveolar macrophages act as a metastasis immune barrier, and downregulation of TGF-β2 signaling allows cancer cells to overcome macrophage-mediated growth suppression.
Collapse
Affiliation(s)
- Erica Dalla
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Papanicolaou
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Matthew D Park
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole Barth
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Deisy Segura-Villalobos
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Luis Valencia Salazar
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Dan Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Maria Casanova-Acebes
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | - David Entenberg
- Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julio A Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Cancer Dormancy Institute, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA.
| |
Collapse
|
2
|
Wang X, Zhang T, Zheng B, Lu Y, Liang Y, Xu G, Zhao L, Tao Y, Song Q, You H, Hu H, Li X, Sun K, Li T, Zhang Z, Wang J, Lan X, Pan D, Fu YX, Yue B, Zheng H. Lymphotoxin-β promotes breast cancer bone metastasis colonization and osteolytic outgrowth. Nat Cell Biol 2024; 26:1597-1612. [PMID: 39147874 DOI: 10.1038/s41556-024-01478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/11/2024] [Indexed: 08/17/2024]
Abstract
Bone metastasis is a lethal consequence of breast cancer. Here we used single-cell transcriptomics to investigate the molecular mechanisms underlying bone metastasis colonization-the rate-limiting step in the metastatic cascade. We identified that lymphotoxin-β (LTβ) is highly expressed in tumour cells within the bone microenvironment and this expression is associated with poor bone metastasis-free survival. LTβ promotes tumour cell colonization and outgrowth in multiple breast cancer models. Mechanistically, tumour-derived LTβ activates osteoblasts through nuclear factor-κB2 signalling to secrete CCL2/5, which facilitates tumour cell adhesion to osteoblasts and accelerates osteoclastogenesis, leading to bone metastasis progression. Blocking LTβ signalling with a decoy receptor significantly suppressed bone metastasis in vivo, whereas clinical sample analysis revealed significantly higher LTβ expression in bone metastases than in primary tumours. Our findings highlight LTβ as a bone niche-induced factor that promotes tumour cell colonization and osteolytic outgrowth and underscore its potential as a therapeutic target for patients with bone metastatic disease.
Collapse
Affiliation(s)
- Xuxiang Wang
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Tengjiang Zhang
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Youxue Lu
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Yong Liang
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Guoyuan Xu
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Luyang Zhao
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Yuwei Tao
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Qianhui Song
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Huiwen You
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Haitian Hu
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xuan Li
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Keyong Sun
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Tianqi Li
- School of Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Zian Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianbin Wang
- School of Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Xun Lan
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Deng Pan
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Yang-Xin Fu
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Hanqiu Zheng
- State Key Laboratory of Molecular Oncology and Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
4
|
Xin Z, Qin L, Tang Y, Guo S, Li F, Fang Y, Li G, Yao Y, Zheng B, Zhang B, Wu D, Xiao J, Ni C, Wei Q, Zhang T. Immune mediated support of metastasis: Implication for bone invasion. Cancer Commun (Lond) 2024; 44:967-991. [PMID: 39003618 PMCID: PMC11492328 DOI: 10.1002/cac2.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Bone is a common organ affected by metastasis in various advanced cancers, including lung, breast, prostate, colorectal, and melanoma. Once a patient is diagnosed with bone metastasis, the patient's quality of life and overall survival are significantly reduced owing to a wide range of morbidities and the increasing difficulty of treatment. Many studies have shown that bone metastasis is closely related to bone microenvironment, especially bone immune microenvironment. However, the effects of various immune cells in the bone microenvironment on bone metastasis remain unclear. Here, we described the changes in various immune cells during bone metastasis and discussed their related mechanisms. Osteoblasts, adipocytes, and other non-immune cells closely related to bone metastasis were also included. This review also summarized the existing treatment methods and potential therapeutic targets, and provided insights for future studies of cancer bone metastasis.
Collapse
Affiliation(s)
- Zengfeng Xin
- Department of Orthopedic SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Luying Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yang Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Siyu Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Fangfang Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yuan Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Gege Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yihan Yao
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Binbin Zheng
- Department of Respiratory MedicineNingbo Hangzhou Bay HospitalNingboZhejiangP. R. China
| | - Bicheng Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jie Xiao
- Department of Orthopedic SurgerySecond Affiliated Hospital (Jiande Branch)Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Breast SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qichun Wei
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Ting Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
5
|
Chang YC, Tsai HJ, Huang TY, Su NW, Su YW, Chang YF, Chen CGS, Lin J, Chang MC, Chen SJ, Chen HC, Lim KH, Chang KC, Kuo SH. Analysis of mutation profiles in extranodal NK/T-cell lymphoma: clinical and prognostic correlations. Ann Hematol 2024; 103:2917-2930. [PMID: 38671297 DOI: 10.1007/s00277-024-05698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/03/2024] [Indexed: 04/28/2024]
Abstract
The molecular pathogenesis of extranodal NK/T-cell lymphoma (NKTCL) remains obscured despite the next-generation sequencing (NGS) studies explored on ever larger cohorts in the last decade. We addressed the highly variable mutation frequencies reported among previous studies with comprehensive amplicon coverage and enhanced sequencing depth to achieve higher genomic resolution for novel genetic discovery and comparative mutational profiling of the oncogenesis of NKTCL. Targeted exome sequencing was conducted to interrogate 415 cancer-related genes in a cohort of 36 patients with NKTCL, and a total of 548 single nucleotide variants (SNVs) and 600 Copy number variances (CNVs) were identified. Recurrent amplification of the MCL1 (67%) and PIM1 (56%) genes was detected in a dominant majority of patients in our cohort. Functional mapping of genetic aberrations revealed that an enrichment of mutations in the JAK-STAT signaling pathway, including the cytokine receptor LIFR (copy number loss) upstream of JAK3, STAT3 (activating SNVs), and downstream effectors of MYC, PIM1 and MCL1 (copy number gains). RNA in situ hybridization showed the significant consistence of MCL1 RNA level and copy number of MCL1 gene. We further correlated molecular and clinical parameters with overall survival (OS) of these patients. When correlations were analyzed by univariate followed by multivariate modelling, only copy number loss of LIFR gene and stage (III-IV) were independent prognostic factors of reduced OS. Our findings identified that novel loss of LIFR gene significantly correlated with the adverse clinical outcome of NKTCL patients and provided therapeutic opportunities for this disease through manipulating LIFR.
Collapse
Affiliation(s)
- Yu-Cheng Chang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Oncology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - To-Yu Huang
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Nai-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Ying-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
- Department of Nursing, Nursing, and Management, MacKay Junior College of Medicine, New Taipei City, Taiwan
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Caleb Gon-Shen Chen
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
- Department of Nursing, Nursing, and Management, MacKay Junior College of Medicine, New Taipei City, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Johnson Lin
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
| | - Ming-Chih Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | | | | | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, No. 92, Section 2, Zhongshan North Road, New Taipei City, 10449, Taiwan.
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
- Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan.
| | - Kung-Chao Chang
- Department of Pathology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.
| | - Sung-Hsin Kuo
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
7
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
8
|
Wang Y, Xue H, Zhu X, Lin D, Dong X, Chen Z, Chen J, Shi M, Ni Y, Cao J, Wu R, Kang N, Pang X, Crea F, Lin YY, Collins CC, Gleave ME, Parolia A, Chinnaiyan A, Ong CJ, Wang Y. Deciphering the Transcription Factor Landscape in Neuroendocrine Prostate Cancer Progression: A Novel Approach to Understand NE Transdifferentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591428. [PMID: 38746377 PMCID: PMC11092479 DOI: 10.1101/2024.04.27.591428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background and Objective Prostate cancer (PCa) is a leading cause of cancer mortality in men, with neuroendocrine prostate cancer (NEPC) representing a particularly resistant subtype. The role of transcription factors (TFs) in the progression from prostatic adenocarcinoma (PRAD) to NEPC is poorly understood. This study aims to identify and analyze lineage-specific TF profiles in PRAD and NEPC and illustrate their dynamic shifts during NE transdifferentiation. Methods A novel algorithmic approach was developed to evaluate the weighted expression of TFs within patient samples, enabling a nuanced understanding of TF landscapes in PCa progression and TF dynamic shifts during NE transdifferentiation. Results unveiled TF profiles for PRAD and NEPC, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs. Enrichment analysis across multiple clinical cohorts confirmed the lineage specificity and clinical relevance of these lineage-TFs signatures. Functional analysis revealed that lineage-TFs are implicated in pathways critical to cell development, differentiation, and lineage determination. Novel lineage-TF candidates were identified, offering potential targets for therapeutic intervention. Furthermore, our longitudinal study on NE transdifferentiation highlighted dynamic TF expression shifts and delineated a three-phase hypothesis for the process comprised of de-differentiation, dormancy, and re-differentiation. and proposing novel insights into the mechanisms of PCa progression. Conclusion The lineage-specific TF profiles in PRAD and NEPC reveal a dynamic shift in the TF landscape during PCa progression, highlighting three distinct phases of NE transdifferentiation.
Collapse
|
9
|
Liu R, Zhao Y, Su S, Kwabil A, Njoku PC, Yu H, Li X. Unveiling cancer dormancy: Intrinsic mechanisms and extrinsic forces. Cancer Lett 2024; 591:216899. [PMID: 38649107 DOI: 10.1016/j.canlet.2024.216899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Tumor cells disseminate in various distant organs at early stages of cancer progression. These disseminated tumor cells (DTCs) can stay dormant/quiescent without causing patient symptoms for years or decades. These dormant tumor cells survive despite curative treatments by entering growth arrest, escaping immune surveillance, and/or developing drug resistance. However, these dormant cells can reactivate to proliferate, causing metastatic progression and/or relapse, posing a threat to patients' survival. It's unclear how cancer cells maintain dormancy and what triggers their reactivation. What are better approaches to prevent metastatic progression and relapse through harnessing cancer dormancy? To answer these remaining questions, we reviewed the studies of tumor dormancy and reactivation in various types of cancer using different model systems, including the brief history of dormancy studies, the intrinsic characteristics of dormant cells, and the external cues at the cellular and molecular levels. Furthermore, we discussed future directions in the field and the strategies for manipulating dormancy to prevent metastatic progression and recurrence.
Collapse
Affiliation(s)
- Ruihua Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China; Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Augustine Kwabil
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Prisca Chinonso Njoku
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Haiquan Yu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
10
|
Le TQ, Meesiripan N, Sanggrajang S, Suwanpidokkul N, Prayakprom P, Bodhibukkana C, Khaowroongrueng V, Suriyachan K, Thanasitthichai S, Srisubat A, Surawongsin P, Rungsipipat A, Sakarin S, Rattanapinyopituk K. Anti-proliferative and apoptotic effect of cannabinoids on human pancreatic ductal adenocarcinoma xenograft in BALB/c nude mice model. Sci Rep 2024; 14:6515. [PMID: 38499634 PMCID: PMC10948389 DOI: 10.1038/s41598-024-55307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) is a highly malignant and lethal tumor of the exocrine pancreas. Cannabinoids extracted from the hemp plant Cannabis sativa have been suggested as a potential therapeutic agent in several human tumors. However, the anti-tumor effect of cannabinoids on human PDAC is not entirely clarified. In this study, the anti-proliferative and apoptotic effect of cannabinoid solution (THC:CBD at 1:6) at a dose of 1, 5, and 10 mg/kg body weight compared to the negative control (sesame oil) and positive control (5-fluorouracil) was investigated in human PDAC xenograft nude mice model. The findings showed that cannabinoids significantly decreased the mitotic cells and mitotic/apoptotic ratio, meanwhile dramatically increased the apoptotic cells. Parallelly, cannabinoids significantly downregulated Ki-67 and PCNA expression levels. Interestingly, cannabinoids upregulated BAX, BAX/BCL-2 ratio, and Caspase-3, meanwhile, downregulated BCL-2 expression level and could not change Caspase-8 expression level. These findings suggest that cannabinoid solution (THC:CBD at 1:6) could inhibit proliferation and induce apoptosis in human PDAC xenograft models. Cannabinoids, including THC:CBD, should be further studied for use as the potent PDCA therapeutic agent in humans.
Collapse
Affiliation(s)
- Trung Quang Le
- Department of Veterinary Pathology, Center of Excellent for Companion Animal Cancer-(CECAC), Chulalongkorn University, Bangkok, 10330, Thailand
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho, 94000, Vietnam
| | - Nuntana Meesiripan
- Division of Research and Academic Support, National Cancer Institute, Bangkok, 10400, Thailand
| | - Suleeporn Sanggrajang
- Division of Research and Academic Support, National Cancer Institute, Bangkok, 10400, Thailand
| | | | | | | | | | - Kankanit Suriyachan
- Institute of Medical Research and Technology Assessment, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Somchai Thanasitthichai
- Institute of Medical Research and Technology Assessment, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Attasit Srisubat
- Division of Medical Technical and Academic Affairs, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Pattamaporn Surawongsin
- Research and Technology Assessment Department, Ophthalmology Department, Lerdsin Hospital, Bangkok, 10500, Thailand
| | - Anudep Rungsipipat
- Department of Veterinary Pathology, Center of Excellent for Companion Animal Cancer-(CECAC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriwan Sakarin
- Division of Research and Academic Support, National Cancer Institute, Bangkok, 10400, Thailand.
| | - Kasem Rattanapinyopituk
- Department of Veterinary Pathology, Center of Excellent for Companion Animal Cancer-(CECAC), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Thakur D, Sengupta D, Mahapatra E, Das S, Sarkar R, Mukherjee S. Glucocorticoid receptor: a harmonizer of cellular plasticity in breast cancer-directs the road towards therapy resistance, metastatic progression and recurrence. Cancer Metastasis Rev 2024; 43:481-499. [PMID: 38170347 DOI: 10.1007/s10555-023-10163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Recent therapeutic advances have significantly uplifted the quality of life in breast cancer patients, yet several impediments block the road to disease-free survival. This involves unresponsiveness towards administered therapy, epithelial to mesenchymal transition, and metastatic progression with the eventual appearance of recurrent disease. Attainment of such characteristics is a huge adaptive challenge to which tumour cells respond by acquiring diverse phenotypically plastic states. Several signalling networks and mediators are involved in such a process. Glucocorticoid receptor being a mediator of stress response imparts prognostic significance in the context of breast carcinoma. Involvement of the glucocorticoid receptor in the signalling cascade of breast cancer phenotypic plasticity needs further elucidation. This review attempted to shed light on the inter-regulatory interactions of the glucocorticoid receptor with the mediators of the plasticity program in breast cancer; which may provide a hint for strategizing therapeutics against the glucocorticoid/glucocorticoid receptor axis so as to modulate phenotypic plasticity in breast carcinoma.
Collapse
Affiliation(s)
- Debanjan Thakur
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Debomita Sengupta
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Elizabeth Mahapatra
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Salini Das
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India
| | - Ruma Sarkar
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Gujarat, 388421, India
| | - Sutapa Mukherjee
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, 700 026, India.
| |
Collapse
|
12
|
Aleksandrova KV, Vorobev ML, Suvorova II. mTOR pathway occupies a central role in the emergence of latent cancer cells. Cell Death Dis 2024; 15:176. [PMID: 38418814 PMCID: PMC10902345 DOI: 10.1038/s41419-024-06547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
The current focus in oncology research is the translational control of cancer cells as a major mechanism of cellular plasticity. Recent evidence has prompted a reevaluation of the role of the mTOR pathway in cancer development leading to new conclusions. The mechanistic mTOR inhibition is well known to be a tool for generating quiescent stem cells and cancer cells. In response to mTOR suppression, quiescent cancer cells dynamically change their proteome, triggering alternative non-canonical translation mechanisms. The shift to selective translation may have clinical relevance, since quiescent tumor cells can acquire new phenotypical features. This review provides new insights into the patterns of mTOR functioning in quiescent cancer cells, enhancing our current understanding of the biology of latent metastasis.
Collapse
Affiliation(s)
| | - Mikhail L Vorobev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Irina I Suvorova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation.
| |
Collapse
|
13
|
Edwards CM, Kane JF, Smith JA, Grant DM, Johnson JA, Diaz MAH, Vecchi LA, Bracey KM, Omokehinde TN, Fontana JR, Karno BA, Scott HT, Vogel CJ, Lowery JW, Martin TJ, Johnson RW. PTHrP intracrine actions divergently influence breast cancer growth through p27 and LIFR. Breast Cancer Res 2024; 26:34. [PMID: 38409028 PMCID: PMC10897994 DOI: 10.1186/s13058-024-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
The role of parathyroid hormone (PTH)-related protein (PTHrP) in breast cancer remains controversial, with reports of PTHrP inhibiting or promoting primary tumor growth in preclinical studies. Here, we provide insight into these conflicting findings by assessing the role of specific biological domains of PTHrP in tumor progression through stable expression of PTHrP (-36-139aa) or truncated forms with deletion of the nuclear localization sequence (NLS) alone or in combination with the C-terminus. Although the full-length PTHrP molecule (-36-139aa) did not alter tumorigenesis, PTHrP lacking the NLS alone accelerated primary tumor growth by downregulating p27, while PTHrP lacking the NLS and C-terminus repressed tumor growth through p27 induction driven by the tumor suppressor leukemia inhibitory factor receptor (LIFR). Induction of p27 by PTHrP lacking the NLS and C-terminus persisted in bone disseminated cells, but did not prevent metastatic outgrowth, in contrast to the primary tumor site. These data suggest that the PTHrP NLS functions as a tumor suppressor, while the PTHrP C-terminus may act as an oncogenic switch to promote tumor progression through differential regulation of p27 signaling.
Collapse
Affiliation(s)
- Courtney M Edwards
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy F Kane
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jailyn A Smith
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Déja M Grant
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Meharry Medical College, Nashville, TN, USA
| | - Jasmine A Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria A Hernandez Diaz
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lawrence A Vecchi
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kai M Bracey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Tolu N Omokehinde
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph R Fontana
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, 37232, USA
| | - Breelyn A Karno
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, 37232, USA
| | - Halee T Scott
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University, Nashville, TN, 37232, USA
| | - Carolina J Vogel
- Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
- Bone and Muscle Research Group, Marian University, Indianapolis, IN, USA
| | - Jonathan W Lowery
- Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
- Bone and Muscle Research Group, Marian University, Indianapolis, IN, USA
- Academic Affairs, Marian University, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - T John Martin
- Bone Cell Biology and Disease Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, Australia
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
14
|
Wang Y, Hu Y, Wang M, Wang M, Xu Y. The Role of Breast Cancer Cells in Bone Metastasis: Suitable Seeds for Nourishing Soil. Curr Osteoporos Rep 2024; 22:28-43. [PMID: 38206556 DOI: 10.1007/s11914-023-00849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review was to describe the characteristics of breast cancer cells prone to developing bone metastasis and determine how they are regulated by the bone microenvironment. RECENT FINDINGS The bone is a site of frequent breast cancer metastasis. Bone metastasis accounts for 70% of advanced breast cancer cases and remains incurable. It can lead to skeletal-related events, such as bone fracture and pain, and seriously affect the quality of life of patients. Breast cancer cells escape from the primary lesion and spread to the bone marrow in the early stages. They can then enter the dormant state and restore tumourigenicity after several years to develop overt metastasis. In the last few years, an increasing number of studies have reported on the factors promoting bone metastasis of breast cancer cells, both at the primary and metastatic sites. Identifying factors associated with bone metastasis aids in the early recognition of bone metastasis tendency. How to target these factors and minimize the side effects on the bone remains to be further explored.
Collapse
Affiliation(s)
- Yiou Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Hu
- Department of Outpatient, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mozhi Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengshen Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
15
|
Searcy MB, Johnson RW. Epigenetic control of the vicious cycle. J Bone Oncol 2024; 44:100524. [PMID: 38304486 PMCID: PMC10830514 DOI: 10.1016/j.jbo.2024.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Epigenetic alterations, including DNA methylation and post translational modifications to histones, drive tumorigenesis and metastatic progression. In the context of bone metastasis, epigenetic modifications in tumor cells can modulate dissemination of cancer cells to the bone, tumor progression in the bone marrow, and may be associated with patient survival rates. Bone disseminated tumor cells may enter a dormant state or stimulate osteolysis through the "vicious cycle" of bone metastasis where bone disseminated tumor cells disrupt the bone microenvironment, which fuels tumor progression. Epigenetic alterations may either exacerbate or abrogate the vicious cycle by regulating tumor suppressors and oncogenes, which alter proliferation of bone-metastatic cancer cells. This review focuses on the specific epigenetic alterations that regulate bone metastasis, including DNA methylation, histone methylation, and histone acetylation. Here, we summarize key findings from researchers identifying epigenetic changes that drive tumor progression in the bone, along with pre-clinical and clinical studies investigating the utility of targeting aberrant epigenetic alterations to treat bone metastatic cancer.
Collapse
Affiliation(s)
- Madeline B. Searcy
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachelle W. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
16
|
Liu H, Shen W, Liu W, Yang Z, Yin D, Xiao C. From oncolytic peptides to oncolytic polymers: A new paradigm for oncotherapy. Bioact Mater 2024; 31:206-230. [PMID: 37637082 PMCID: PMC10450358 DOI: 10.1016/j.bioactmat.2023.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Traditional cancer therapy methods, especially those directed against specific intracellular targets or signaling pathways, are not powerful enough to overcome tumor heterogeneity and therapeutic resistance. Oncolytic peptides that can induce membrane lysis-mediated cancer cell death and subsequent anticancer immune responses, has provided a new paradigm for cancer therapy. However, the clinical application of oncolytic peptides is always limited by some factors such as unsatisfactory bio-distribution, poor stability, and off-target toxicity. To overcome these limitations, oncolytic polymers stand out as prospective therapeutic materials owing to their high stability, chemical versatility, and scalable production capacity, which has the potential to drive a revolution in cancer treatment. This review provides an overview of the mechanism and structure-activity relationship of oncolytic peptides. Then the oncolytic peptides-mediated combination therapy and the nano-delivery strategies for oncolytic peptides are summarized. Emphatically, the current research progress of oncolytic polymers has been highlighted. Lastly, the challenges and prospects in the development of oncolytic polymers are discussed.
Collapse
Affiliation(s)
- Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
17
|
Streitfeld WS, Dalton AC, Howley BV, Howe PH. PCBP1 regulates LIFR through FAM3C to maintain breast cancer stem cell self-renewal and invasiveness. Cancer Biol Ther 2023; 24:2271638. [PMID: 37927213 PMCID: PMC10629429 DOI: 10.1080/15384047.2023.2271638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
The poly(rC) binding protein 1 gene (PCBP1) encodes the heterogeneous nuclear ribonucleoprotein E1 (hnRNPE1), a nucleic acid-binding protein that plays a tumor-suppressive role in the mammary epithelium by regulating phenotypic plasticity and cell fate. Following the loss of PCBP1 function, the FAM3C gene (encoding the Interleukin-like EMT inducer, or "ILEI" protein) and the leukemia inhibitory factor receptor (LIFR) gene are upregulated. Interaction between FAM3C and LIFR in the extracellular space induces phosphorylation of signal transducer and activator of transcription 3 (pSTAT3). Overexpression and/or hyperactivity of STAT3 has been detected in 40% of breast cancer cases and is associated with a poor prognosis. Herein, we characterize feed-forward regulation of LIFR expression in response to FAM3C/LIFR/STAT3 signaling in mammary epithelial cells. We show that PCBP1 upregulates LIFR transcription through activity at the LIFR promoter, and that FAM3C participates in transcriptional regulation of LIFR. Additionally, our bioinformatic analysis reveals a signature of transcriptional regulation associated with FAM3C/LIFR interaction and identifies the TWIST1 transcription factor as a downstream effector that participates in the maintenance of LIFR expression. Finally, we characterize the effect of LIFR expression in cell-based experiments that demonstrate the promotion of invasion, migration, and self-renewal of breast cancer stem cells (BCSCs), consistent with previous studies linking LIFR expression to tumor initiation and metastasis in mammary epithelial cells.
Collapse
Affiliation(s)
- William S. Streitfeld
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Annamarie C. Dalton
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Breege V. Howley
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Philip H. Howe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
18
|
Nasr MM, Lynch CC. How circulating tumor cluster biology contributes to the metastatic cascade: from invasion to dissemination and dormancy. Cancer Metastasis Rev 2023; 42:1133-1146. [PMID: 37442876 PMCID: PMC10713810 DOI: 10.1007/s10555-023-10124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Circulating tumor cells (CTCs) are known to be prognostic for metastatic relapse and are detected in patients as solitary cells or cell clusters. Circulating tumor cell clusters (CTC clusters) have been observed clinically for decades and are of significantly higher metastatic potential compared to solitary CTCs. Recent studies suggest distinct differences in CTC cluster biology regarding invasion and survival in circulation. However, differences regarding dissemination, dormancy, and reawakening require more investigations compared to solitary CTCs. Here, we review the current state of CTC cluster research and consider their clinical significance. In addition, we discuss the concept of collective invasion by CTC clusters and molecular evidence as to how cluster survival in circulation compares to that of solitary CTCs. Molecular differences between solitary and clustered CTCs during dormancy and reawakening programs will also be discussed. We also highlight future directions to advance our current understanding of CTC cluster biology.
Collapse
Affiliation(s)
- Mostafa M Nasr
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
19
|
Wang S, Wu W, Lin X, Zhang KM, Wu Q, Luo M, Zhou J. Predictive and prognostic biomarkers of bone metastasis in breast cancer: current status and future directions. Cell Biosci 2023; 13:224. [PMID: 38041134 PMCID: PMC10693103 DOI: 10.1186/s13578-023-01171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
The most common site of metastasis in breast cancer is the bone, where the balance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation is disrupted. This imbalance causes osteolytic bone metastasis in breast cancer, which leads to bone pain, pathological fractures, spinal cord compression, and other skeletal-related events (SREs). These complications reduce patients' quality of life significantly and have a profound impact on prognosis. In this review, we begin by providing a brief overview of the epidemiology of bone metastasis in breast cancer, including current diagnostic tools, treatment approaches, and existing challenges. Then, we will introduce the pathophysiology of breast cancer bone metastasis (BCBM) and the animal models involved in the study of BCBM. We then come to the focus of this paper: a discussion of several biomarkers that have the potential to provide predictive and prognostic value in the context of BCBM-some of which may be particularly compatible with more comprehensive liquid biopsies. Beyond that, we briefly explore the potential of new technologies such as single-cell sequencing and organoid models, which will improve our understanding of tumor heterogeneity and aid in the development of improved biomarkers. The emerging biomarkers discussed hold promise for future clinical application, aiding in the prevention of BCBM, improving the prognosis of patients, and guiding the implementation of personalized medicine.
Collapse
Affiliation(s)
- Shenkangle Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Wenxin Wu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xixi Lin
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | | | - QingLiang Wu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Hangzhou Ninth People's Hospital, Hangzhou, 310014, China
| | - Mingpeng Luo
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310014, China.
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
20
|
Abstract
The pattern of delayed recurrence in a subset of breast cancer patients has long been explained by a model that incorporates a variable period of cellular or tumor mass dormancy prior to disease relapse. In this review, we critically evaluate existing data to develop a framework for inferring the existence of dormancy in clinical contexts of breast cancer. We integrate these clinical data with rapidly evolving mechanistic insights into breast cancer dormancy derived from a broad array of genetically engineered mouse models as well as experimental models of metastasis. Finally, we propose actionable interventions and discuss ongoing clinical trials that translate the wealth of knowledge gained in the laboratory to the long-term clinical management of patients at a high risk of developing recurrence.
Collapse
Affiliation(s)
- Erica Dalla
- Division of Hematology and Oncology, Department of Medicine and Department of Otolaryngology, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Amulya Sreekumar
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julio A Aguirre-Ghiso
- Department of Cell Biology, Department of Oncology, Cancer Dormancy and Tumor Microenvironment Institute, Montefiore Einstein Cancer Center, Gruss Lipper Biophotonics Center, Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lewis A Chodosh
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Medicine, Abramson Cancer Center, and 2-PREVENT Translational Center of Excellence, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
21
|
Qi Y, Wu H, Zhu T, Liu Z, Liu C, Yan C, Wu Z, Xu Y, Bai Y, Yang L, Cheng D, Zhang X, Zhao H, Zhao C, Dai X. Acetyl-cinobufagin suppresses triple-negative breast cancer progression by inhibiting the STAT3 pathway. Aging (Albany NY) 2023; 15:8258-8274. [PMID: 37651362 PMCID: PMC10497018 DOI: 10.18632/aging.204967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/14/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND The incidence of breast cancer (BC) worldwide has increased substantially in recent years. Epithelial-mesenchymal transition (EMT) refers to a crucial event impacting tumor heterogeneity. Although cinobufagin acts as an effective anticancer agent, the clinical use of cinobufagin is limited due to its strong toxicity. Acetyl-cinobufagin, a pre-drug of cinobufagin, was developed and prepared with greater efficacy and lower toxicity. METHODS A heterograft mouse model using triple negative breast cancer (TNBC) cell lines, was used to evaluate the potency of acetyl-cinobufagin. Signal transducer and stimulator of transcription 3 (STAT3)/EMT involvement was investigated by gene knockout experiments using siRNA and Western blot analysis. RESULTS Acetyl-cinobufagin inhibited proliferation, migration, and cell cycle S/G2 transition and promoted apoptosis in TNBC cells in vitro. In general, IL6 triggered the phosphorylation of the transcription factor STAT3 thereby activating the STAT3 pathway and inducing EMT. Mechanistically, acetyl-cinobufagin suppressed the phosphorylation of the transcription factor STAT3 and blocked the interleukin (IL6)-triggered translocation of STAT3 to the cell nucleus. In addition, acetyl-cinobufagin suppressed EMT in TNBC by inhibiting the STAT3 pathway. Experiments in an animal model of breast cancer clearly showed that acetyl-cinobufagin was able to reduce tumor growth. CONCLUSIONS The findings of this study support the potential clinical use of acetyl-cinobufagin as a STAT3 inhibitor in TNBC adjuvant therapy.
Collapse
Affiliation(s)
- Yufeng Qi
- The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou 311200, Zhejiang, China
| | - Haodong Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Tianru Zhu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Zitian Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Conghui Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Congzhi Yan
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Zhixuan Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yiying Xu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ying Bai
- Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Dezhi Cheng
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xiaohua Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Haiyang Zhao
- Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Chengguang Zhao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xuanxuan Dai
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
22
|
Si H, Esquivel M, Mendoza Mendoza E, Roarty K. The covert symphony: cellular and molecular accomplices in breast cancer metastasis. Front Cell Dev Biol 2023; 11:1221784. [PMID: 37440925 PMCID: PMC10333702 DOI: 10.3389/fcell.2023.1221784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer has emerged as the most commonly diagnosed cancer and primary cause of cancer-related deaths among women worldwide. Although significant progress has been made in targeting the primary tumor, the effectiveness of systemic treatments to prevent metastasis remains limited. Metastatic disease continues to be the predominant factor leading to fatality in the majority of breast cancer patients. The existence of a prolonged latency period between initial treatment and eventual recurrence in certain patients indicates that tumors can both adapt to and interact with the systemic environment of the host, facilitating and sustaining the progression of the disease. In order to identify potential therapeutic interventions for metastasis, it will be crucial to gain a comprehensive framework surrounding the mechanisms driving the growth, survival, and spread of tumor cells, as well as their interaction with supporting cells of the microenvironment. This review aims to consolidate recent discoveries concerning critical aspects of breast cancer metastasis, encompassing the intricate network of cells, molecules, and physical factors that contribute to metastasis, as well as the molecular mechanisms governing cancer dormancy.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Madelyn Esquivel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Erika Mendoza Mendoza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| |
Collapse
|
23
|
Kravitz CJ, Yan Q, Nguyen DX. Epigenetic markers and therapeutic targets for metastasis. Cancer Metastasis Rev 2023; 42:427-443. [PMID: 37286865 PMCID: PMC10595046 DOI: 10.1007/s10555-023-10109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
The last few years have seen an increasing number of discoveries which collectively demonstrate that histone and DNA modifying enzyme modulate different stages of metastasis. Moreover, epigenomic alterations can now be measured at multiple scales of analysis and are detectable in human tumors or liquid biopsies. Malignant cell clones with a proclivity for relapse in certain organs may arise in the primary tumor as a consequence of epigenomic alterations which cause a loss in lineage integrity. These alterations may occur due to genetic aberrations acquired during tumor progression or concomitant to therapeutic response. Moreover, evolution of the stroma can also alter the epigenome of cancer cells. In this review, we highlight current knowledge with a particular emphasis on leveraging chromatin and DNA modifying mechanisms as biomarkers of disseminated disease and as therapeutic targets to treat metastatic cancers.
Collapse
Affiliation(s)
- Carolyn J Kravitz
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Don X Nguyen
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
24
|
Wieder R. Awakening of Dormant Breast Cancer Cells in the Bone Marrow. Cancers (Basel) 2023; 15:cancers15113021. [PMID: 37296983 DOI: 10.3390/cancers15113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Up to 40% of patients with breast cancer (BC) have metastatic cells in the bone marrow (BM) at the initial diagnosis of localized disease. Despite definitive systemic adjuvant therapy, these cells survive in the BM microenvironment, enter a dormant state and recur stochastically for more than 20 years. Once they begin to proliferate, recurrent macrometastases are not curable, and patients generally succumb to their disease. Many potential mechanisms for initiating recurrence have been proposed, but no definitive predictive data have been generated. This manuscript reviews the proposed mechanisms that maintain BC cell dormancy in the BM microenvironment and discusses the data supporting specific mechanisms for recurrence. It addresses the well-described mechanisms of secretory senescence, inflammation, aging, adipogenic BM conversion, autophagy, systemic effects of trauma and surgery, sympathetic signaling, transient angiogenic bursts, hypercoagulable states, osteoclast activation, and epigenetic modifications of dormant cells. This review addresses proposed approaches for either eliminating micrometastases or maintaining a dormant state.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, 185 South Orange Avenue, MSB F671, Newark, NJ 07103, USA
| |
Collapse
|
25
|
Kane JF, Johnson RW. Re-Evaluating the Role of PTHrP in Breast Cancer. Cancers (Basel) 2023; 15:2670. [PMID: 37345007 PMCID: PMC10216606 DOI: 10.3390/cancers15102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Parathyroid-hormone-related protein (PTHrP) is a protein with a long history of association with bone metastatic cancers. The paracrine signaling of PTHrP through the parathyroid hormone receptor (PTHR1) facilitates tumor-induced bone destruction, and PTHrP is known as the primary driver of humoral hypercalcemia of malignancy. In addition to paracrine signaling, PTHrP is capable of intracrine signaling independent of PTHR1 binding, which is essential for cytokine-like functions in normal physiological conditions in a variety of tissue types. Pre-clinical and clinical studies evaluating the role of PTHrP in breast cancer have yielded contradictory conclusions, in some cases indicating the protein is tumor suppressive, and in other studies, pro-growth. This review discusses the possible molecular basis for the disharmonious prognostic indications of these studies and highlights the implications of the paracrine, intracrine, and nuclear functions of the protein. This review also examines the current understanding of the functional domains of PTHrP and re-evaluates their role in the unique context of the breast cancer environment. This review will expand on the current understanding of PTHrP by attempting to reconcile the functional domains of the protein with its intracrine signaling in cancer.
Collapse
Affiliation(s)
- Jeremy F. Kane
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
26
|
Zhao Y, Su S, Li X. Parathyroid Hormone-Related Protein/Parathyroid Hormone Receptor 1 Signaling in Cancer and Metastasis. Cancers (Basel) 2023; 15:cancers15071982. [PMID: 37046642 PMCID: PMC10093484 DOI: 10.3390/cancers15071982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
PTHrP exerts its effects by binding to its receptor, PTH1R, a G protein-coupled receptor (GPCR), activating the downstream cAMP signaling pathway. As an autocrine, paracrine, or intracrine factor, PTHrP has been found to stimulate cancer cell proliferation, inhibit apoptosis, and promote tumor-induced osteolysis of bone. Despite these findings, attempts to develop PTHrP and PTH1R as drug targets have not produced successful results in the clinic. Nevertheless, the efficacy of blocking PTHrP and PTH1R has been shown in various types of cancer, suggesting its potential for therapeutic applications. In light of these conflicting data, we conducted a comprehensive review of the studies of PTHrP/PTH1R in cancer progression and metastasis and highlighted the strengths and limitations of targeting PTHrP or PTH1R in cancer therapy. This review also offers our perspectives for future research in this field.
Collapse
|
27
|
Ruggieri L, Moretti A, Berardi R, Cona MS, Dalu D, Villa C, Chizzoniti D, Piva S, Gambaro A, La Verde N. Host-Related Factors in the Interplay among Inflammation, Immunity and Dormancy in Breast Cancer Recurrence and Prognosis: An Overview for Clinicians. Int J Mol Sci 2023; 24:ijms24054974. [PMID: 36902406 PMCID: PMC10002538 DOI: 10.3390/ijms24054974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
A significant proportion of patients treated for early breast cancer develop medium-term and late distant recurrence. The delayed manifestation of metastatic disease is defined as "dormancy". This model describes the aspects of the clinical latency of isolated metastatic cancer cells. Dormancy is regulated by extremely complex interactions between disseminated cancer cells and the microenvironment where they reside, the latter in turn influenced directly by the host. Among these entangled mechanisms, inflammation and immunity may play leading roles. This review is divided into two parts: the first describes the biological underpinnings of cancer dormancy and the role of the immune response, in particular, for breast cancer; the second provides an overview of the host-related factors that may influence systemic inflammation and immune response, subsequently impacting the dynamics of breast cancer dormancy. The aim of this review is to provide physicians and medical oncologists a useful tool to understand the clinical implications of this relevant topic.
Collapse
Affiliation(s)
- Lorenzo Ruggieri
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Anna Moretti
- Medical Oncology Unit, S. Carlo Hospital, ASST Santi Paolo e Carlo, 20153 Milan, Italy
| | - Rossana Berardi
- Department of Oncology, Università Politecnica delle Marche—AOU delle Marche, 60121 Ancona, Italy
| | - Maria Silvia Cona
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Davide Dalu
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Cecilia Villa
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Davide Chizzoniti
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Sheila Piva
- Medical Oncology Unit, Fatebenefratelli Hospital, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy
| | - Anna Gambaro
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
| | - Nicla La Verde
- Medical Oncology Unit, Luigi Sacco University Hospital, ASST Fatebenefratelli-Sacco, Via G.B. Grassi, n° 74, 20157 Milan, Italy
- Correspondence: ; Tel.: +39-02-3904-2492
| |
Collapse
|
28
|
Abstract
The genomics and pathways governing metastatic dormancy are critically important drivers of long-term patient survival given the considerable portion of cancers that recur aggressively months to years after initial treatments. Our understanding of dormancy has expanded greatly in the last two decades, with studies elucidating that the dormant state is regulated by multiple genes, microenvironmental (ME) interactions, and immune components. These forces are exerted through mechanisms that are intrinsic to the tumor cell, manifested through cross-talk between tumor and ME cells including those from the immune system, and regulated by angiogenic processes in the nascent micrometastatic niche. The development of new in vivo and 3D ME models, as well as enhancements to decades-old tumor cell pedigree models that span the development of metastatic dormancy to aggressive growth, has helped fuel what arguably is one of the least understood areas of cancer biology that nonetheless contributes immensely to patient mortality. The current review focuses on the genes and molecular pathways that regulate dormancy via tumor-intrinsic and ME cells, and how groups have envisioned harnessing these therapeutically to benefit patient survival.
Collapse
|
29
|
Dormancy, stemness, and therapy resistance: interconnected players in cancer evolution. Cancer Metastasis Rev 2023; 42:197-215. [PMID: 36757577 PMCID: PMC10014678 DOI: 10.1007/s10555-023-10092-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
The biological complexity of cancer represents a tremendous clinical challenge, resulting in the frequent failure of current treatment protocols. In the rapidly evolving scenario of a growing tumor, anticancer treatments impose a drastic perturbation not only to cancer cells but also to the tumor microenvironment, killing a portion of the cells and inducing a massive stress response in the survivors. Consequently, treatments can act as a double-edged sword by inducing a temporary response while laying the ground for therapy resistance and subsequent disease progression. Cancer cell dormancy (or quiescence) is a central theme in tumor evolution, being tightly linked to the tumor's ability to survive cytotoxic challenges, metastasize, and resist immune-mediated attack. Accordingly, quiescent cancer cells (QCCs) have been detected in virtually all the stages of tumor development. In recent years, an increasing number of studies have focused on the characterization of quiescent/therapy resistant cancer cells, unveiling QCCs core transcriptional programs, metabolic plasticity, and mechanisms of immune escape. At the same time, our partial understanding of tumor quiescence reflects the difficulty to identify stable QCCs biomarkers/therapeutic targets and to control cancer dormancy in clinical settings. This review focuses on recent discoveries in the interrelated fields of dormancy, stemness, and therapy resistance, discussing experimental evidences in the frame of a nonlinear dynamics approach, and exploring the possibility that tumor quiescence may represent not only a peril but also a potential therapeutic resource.
Collapse
|
30
|
Clements ME, Holtslander L, Johnson JR, Johnson RW. Select HDAC Inhibitors Enhance Osteolysis and Bone Metastasis Outgrowth but Can Be Mitigated With Bisphosphonate Therapy. JBMR Plus 2023; 7:e10694. [PMID: 36936362 PMCID: PMC10020917 DOI: 10.1002/jbm4.10694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Breast cancer has a high predilection for spreading to bone with approximately 70% of patients who succumb to disease harboring bone disseminated tumor cells. Despite this high prevalence, treatments for bone metastatic breast cancer predominantly manage morbidities, including pain and hypercalcemia, rather than reducing bone metastasis incidence or growth. Histone deacetylase inhibitors (HDACi), including panobinostat, entinostat, and valproic acid, typically slow primary tumor progression and are currently in clinical trials for the treatment of many cancers, including primary and metastatic breast cancer, but their effects on bone metastatic disease have not been examined in preclinical models. We report that treatment with the HDACi panobinostat, but not entinostat or valproic acid, significantly reduced trabecular bone volume in tumor-naïve mice, consistent with previous reports of HDACi-induced bone loss. Surprisingly, treatment with entinostat or panobinostat, but not valproic acid, increased tumor burden and incidence in an experimental model of breast cancer bone metastasis. In vitro, multiple HDACi stimulated expression of pro-osteolytic genes in breast tumor cells, suggesting this may be a mechanism by which HDACi fuel tumor growth. In support of this, combination therapy of panobinostat or entinostat with the antiresorptive bisphosphonate zoledronic acid prevented bone metastatic progression; however, the addition of zoledronic acid to panobinostat therapy failed to fully correct panobinostat-induced bone loss. Together these data demonstrate that select HDACi fuel bone metastatic growth and provide potential mechanistic and therapeutic avenues to offset these effects. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Miranda E Clements
- Program in Cancer BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Lauren Holtslander
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Joshua R Johnson
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Rachelle W Johnson
- Program in Cancer BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
31
|
Hua X, Li Y, Pentaparthi SR, McGrail DJ, Zou R, Guo L, Shrawat A, Cirillo KM, Li Q, Bhat A, Xu M, Qi D, Singh A, McGrath F, Andrews S, Aung KL, Das J, Zhou Y, Lodi A, Mills GB, Eckhardt SG, Mendillo ML, Tiziani S, Wu E, Huang JH, Sahni N, Yi SS. Landscape of MicroRNA Regulatory Network Architecture and Functional Rerouting in Cancer. Cancer Res 2023; 83:59-73. [PMID: 36265133 PMCID: PMC9811166 DOI: 10.1158/0008-5472.can-20-0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 12/15/2020] [Accepted: 10/14/2022] [Indexed: 02/05/2023]
Abstract
Somatic mutations are a major source of cancer development, and many driver mutations have been identified in protein coding regions. However, the function of mutations located in miRNA and their target binding sites throughout the human genome remains largely unknown. Here, we built detailed cancer-specific miRNA regulatory networks across 30 cancer types to systematically analyze the effect of mutations in miRNAs and their target sites in 3' untranslated region (3' UTR), coding sequence (CDS), and 5' UTR regions. A total of 3,518,261 mutations from 9,819 samples were mapped to miRNA-gene interactions (mGI). Mutations in miRNAs showed a mutually exclusive pattern with mutations in their target genes in almost all cancer types. A linear regression method identified 148 candidate driver mutations that can significantly perturb miRNA regulatory networks. Driver mutations in 3'UTRs played their roles by altering RNA binding energy and the expression of target genes. Finally, mutated driver gene targets in 3' UTRs were significantly downregulated in cancer and functioned as tumor suppressors during cancer progression, suggesting potential miRNA candidates with significant clinical implications. A user-friendly, open-access web portal (mGI-map) was developed to facilitate further use of this data resource. Together, these results will facilitate novel noncoding biomarker identification and therapeutic drug design targeting the miRNA regulatory networks. SIGNIFICANCE A detailed miRNA-gene interaction map reveals extensive miRNA-mediated gene regulatory networks with mutation-induced perturbations across multiple cancers, serving as a resource for noncoding biomarker discovery and drug development.
Collapse
Affiliation(s)
- Xu Hua
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yongsheng Li
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Sairahul R. Pentaparthi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Daniel J. McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond Zou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Guo
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aditya Shrawat
- College of Natural Sciences, The University of Texas at Austin, Austin, Texas
| | - Kara M. Cirillo
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Akshay Bhat
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Min Xu
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
| | - Dan Qi
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
| | - Ashok Singh
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Francis McGrath
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Steven Andrews
- Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Kyaw Lwin Aung
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, and Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yunyun Zhou
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Gordon B. Mills
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Precision Oncology, Knight Cancer Institute, Portland, Oregon
| | - S. Gail Eckhardt
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stefano Tiziani
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
| | - Erxi Wu
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, Texas
- Department of Pharmaceutical Sciences, Texas A & M University Health Science Center, College of Pharmacy, College Station, Texas
| | - Jason H. Huang
- Neuroscience Institute and Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas
- Department of Surgery, Texas A & M University Health Science Center, College of Medicine, Temple, Texas
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, Texas
| | - S. Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas
- Interdisciplinary Life Sciences Graduate Programs (ILSGP), The University of Texas at Austin, Austin, Texas
- Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, Texas
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
32
|
Zhang F, Wang Y, Li H, Li L, Yang X, You X, Tang L. Pan-cancer analysis identifies LIFR as a prognostic and immunological biomarker for uterine corpus endometrial carcinoma. Front Oncol 2023; 13:1118906. [PMID: 36925915 PMCID: PMC10011451 DOI: 10.3389/fonc.2023.1118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Background Leukemia inhibitory factor (LIF) exhibits significant tumor-promoting function, while its cognate receptor (LIFR) is considered to act as either a tumor promoter or suppressor. Dysregulation of LIF and LIFR is associated with the initiation, progression and metastasis of multiple cancer entities. Although increasing numbers of studies are revealing an indispensable critical role of LIFR in tumorigenesis for various different cancers, no systematic analysis of LIFR has appeared thus far. Methods Here, we comprehensively analyzed the expression profile and prognostic value of LIFR, and correlations between LIFR and the infiltration of immune cells and clinicopathological parameters across different tumor types using several bioinformatic tools. The expression profile of LIFR in various tumor types and clinical stages was investigated using the TIMER2 and GEPIA2 databases. Genetic alternations of LIFR were extracted from cBioPortal. The prognostic value of LIFR was assessed using GEPIA2 and Sanger box databases, and correlations between LIFR expression and immune infiltration were analyzed using the CIBERSORT method and TIMER2 database. The correlations between LIFR expression and immune and stromal scores were assessed using ESTIMATE. We also analyzed correlations between LIFR and immunoregulators. Finally, we detected an effect of LIFR on Uterine Corpus Endometrial Carcinoma (UCEC) and evaluated the expression level of LIFR in clinical UCEC samples. Results Aberrant expression of LIFR in cancers and its prognosis ability, especially in UCEC was documented. Significantly lower levels of LIFR expression level correlated with better prognosis in multiple tumor types. LIFR expression was positively correlated with the abundance of cancer-associated fibroblasts (CAFs) and endothelial cells in the tumor microenvironment. Additionally, LIFR expression was strongly associated with the presence of immune modulators and checkpoint genes. Overexpression of LIFR suppressed the migration and invasion of UCEC cells in vitro. Conclusion Our pan-cancer detection data provided a novel understanding of the roles of LIFR in oncogenesis.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yali Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Hongjuan Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaoyan You
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lina Tang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Abstract
Metastasis is the leading cause of mortality in most patients with cancer. Despite its clinical importance, mechanistic underpinnings of metastatic progression remain poorly understood. Hypoxia, a condition of insufficient oxygen availability, frequently occurs in solid tumors because of their high oxygen/nutrient demand and abnormal tumor vasculature. In this review, we describe the roles of hypoxia and hypoxia-inducible factor (HIF) signaling in the metastatic cascade, with an emphasis on recent biological insights from in vivo studies.
Collapse
Affiliation(s)
- Kyoung Eun Lee
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
34
|
Regulation of Metastatic Tumor Dormancy and Emerging Opportunities for Therapeutic Intervention. Int J Mol Sci 2022; 23:ijms232213931. [PMID: 36430404 PMCID: PMC9698240 DOI: 10.3390/ijms232213931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer recurrence and metastasis, following successful treatment, constitutes a critical threat in clinical oncology and are the leading causes of death amongst cancer patients. This phenomenon is largely attributed to metastatic tumor dormancy, a rate-limiting stage during cancer progression, in which disseminated cancer cells remain in a viable, yet not proliferating state for a prolonged period. Dormant cancer cells are characterized by their entry into cell cycle arrest and survival in a quiescence state to adapt to their new microenvironment through the acquisition of mutations and epigenetic modifications, rendering them resistant to anti-cancer treatment and immune surveillance. Under favorable conditions, disseminated dormant tumor cells 're-awake', resume their proliferation and thus colonize distant sites. Due to their rarity, detection of dormant cells using current diagnostic tools is challenging and, thus, therapeutic targets are hard to be identified. Therefore, unraveling the underlying mechanisms required for keeping disseminating tumor cells dormant, along with signals that stimulate their "re-awakening" are crucial for the discovery of novel pharmacological treatments. In this review, we shed light into the main mechanisms that control dormancy induction and escape as well as emerging therapeutic strategies for the eradication of metastatic dormant cells, including dormancy maintenance, direct targeting of dormant cells and re-awakening dormant cells. Studies on the ability of the metastatic cancer cells to cease proliferation and survive in a quiescent state before re-initiating proliferation and colonization years after successful treatment, will pave the way toward developing innovative therapeutic strategies against dormancy-mediated metastatic outgrowth.
Collapse
|
35
|
Dai R, Liu M, Xiang X, Xi Z, Xu H. Osteoblasts and osteoclasts: an important switch of tumour cell dormancy during bone metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:316. [PMID: 36307871 PMCID: PMC9615353 DOI: 10.1186/s13046-022-02520-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
Abstract
Bone metastasis occurs when tumour cells dissociate from primary tumours, enter the circulation (circulating tumour cells, CTCs), and colonize sites in bone (disseminated tumour cells, DTCs). The bone marrow seems to be a particularly dormancy-inducing environment for DTCs, yet the mechanisms of dormancy initiation, reactivation, and interaction within the bone marrow have to be elucidated. Intriguingly, some evidence has suggested that dormancy is a reversible state that is switched 'on' or 'off' depending on the presence of various bone marrow resident cells, particularly osteoclasts and osteoblasts. It has become clear that these two cells contribute to regulating dormant tumour cells in bone both directly (interaction) and indirectly (secreted factors). The involved mechanisms include TGFβ signalling, the Wnt signalling axis, the Notch2 pathway, etc. There is no detailed review that specifically focuses on ascertaining the dynamic interactions between tumour cell dormancy and bone remodelling. In addition, we highlighted the roles of inflammatory cytokines during this 'cell-to-cell' communication. We also discussed the potential clinical relevance of remodelling the bone marrow niche in controlling dormant tumour cells. Understanding the unique role of osteoclasts and osteoblasts in regulating tumour dormancy in bone marrow will provide new insight into preventing and treating tumour bone metastasis.
Collapse
Affiliation(s)
- Rongchen Dai
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China ,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203 China
| | - Mengfan Liu
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China ,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203 China
| | - Xincheng Xiang
- grid.47840.3f0000 0001 2181 7878Rausser College of Natural Resources, University of California Berkeley, Berkeley, CA 94720 USA
| | - Zhichao Xi
- grid.412540.60000 0001 2372 7462School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China ,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203 China
| | - Hongxi Xu
- grid.412585.f0000 0004 0604 8558Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
36
|
Stromal Co-Cultivation for Modeling Breast Cancer Dormancy in the Bone Marrow. Cancers (Basel) 2022; 14:cancers14143344. [PMID: 35884405 PMCID: PMC9320268 DOI: 10.3390/cancers14143344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers metastasize to the bone marrow before primary tumors can be detected. Bone marrow micrometastases are resistant to therapy, and while they are able to remain dormant for decades, they recur steadily and result in incurable metastatic disease. The bone marrow microenvironment maintains the dormancy and chemoresistance of micrometastases through interactions with multiple cell types and through structural and soluble factors. Modeling dormancy in vitro can identify the mechanisms of these interactions. Modeling also identifies mechanisms able to disrupt these interactions or define novel interactions that promote the reawakening of dormant cells. The in vitro modeling of the interactions of cancer cells with various bone marrow elements can generate hypotheses on the mechanisms that control dormancy, treatment resistance and reawakening in vivo. These hypotheses can guide in vivo murine experiments that have high probabilities of succeeding in order to verify in vitro findings while minimizing the use of animals in experiments. This review outlines the existing data on predominant stromal cell types and their use in 2D co-cultures with cancer cells.
Collapse
|
37
|
Liu F, Cao L, Zhang Y, Xia X, Ji Y. LncRNA LIFR-AS1 overexpression suppressed the progression of serous ovarian carcinoma. J Clin Lab Anal 2022; 36:e25470. [PMID: 35778954 PMCID: PMC9396205 DOI: 10.1002/jcla.24570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Background Serous ovarian carcinoma (SOC) is a common malignant tumor in female reproductive system. Long noncoding RNA (lncRNA) LIFR‐AS1 is a tumor suppressor gene in colorectal cancer, but its effect and underlying mechanism in SOC are still unclear. Therefore, this study focuses on unveiling the regulatory mechanism of LIFR‐AS1 in SOC. Methods The relationship between LIFR‐AS1 expression and prognosis of SOC patients was analyzed by TCGA database and Starbase, and then, the LIFR‐AS1 expression in SOC tissues and cells was detected by quantitative real‐time PCR (qRT‐PCR) and in situ hybridization (ISH). Besides, the relationship between LIFR‐AS1 and clinical characteristics was analyzed. Also, the effects of LIFR‐AS1 on the biological behaviors of SOC cells were measured by Cell Counting Kit‐8, colony formation, and wound‐healing and Transwell assays, respectively. Western blot and qRT‐PCR were employed to determine the protein expressions of genes related to proliferation (PCNA), apoptosis (cleaved caspase‐3), epithelial‐mesenchymal transition (E‐cadherin, N‐cadherin, and Snail). Results LIFR‐AS1 was lowly expressed in SOC, which was correlated with the poor prognosis of SOC patients. Low expression of LIFR‐AS1 in SOC was associated with the tumor size, clinical stage, lymph node metastasis, and distant metastasis. LIFR‐AS1 overexpression promoted the expressions of cleaved caspase‐3 and E‐cadherin while suppressing the malignant behaviors (proliferation, migration, and invasion) of SOC cells, the expressions of PCNA, N‐cadherin, and Snail. Besides, silencing LIFR‐AS1 exerted the effects opposite to overexpressed LIFR‐AS1. Conclusion LIFR‐AS1 overexpression inhibits biological behaviors of SOC cells, which may be a new therapeutic method.
Collapse
Affiliation(s)
- Fang Liu
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Linyan Cao
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yufang Zhang
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xinyi Xia
- Department of Gynecology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yanhua Ji
- Department of Gynecology, The Fourth People's Hospital of Tongxiang, Jiaxing, China
| |
Collapse
|
38
|
Halder S, Parte S, Kshirsagar P, Muniyan S, Nair HB, Batra SK, Seshacharyulu P. The Pleiotropic role, functions and targeted therapies of LIF/LIFR axis in cancer: Old spectacles with new insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188737. [PMID: 35680099 PMCID: PMC9793423 DOI: 10.1016/j.bbcan.2022.188737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022]
Abstract
The dysregulation of leukemia inhibitory factor (LIF) and its cognate receptor (LIFR) has been associated with multiple cancer initiation, progression, and metastasis. LIF plays a significant tumor-promoting role in cancer, while LIFR functions as a tumor promoter and suppressor. Epithelial and stromal cells secrete LIF via autocrine and paracrine signaling mechanism(s) that bind with LIFR and subsequently with co-receptor glycoprotein 130 (gp130) to activate JAK/STAT1/3, PI3K/AKT, mTORC1/p70s6K, Hippo/YAP, and MAPK signaling pathways. Clinically, activating the LIF/LIFR axis is associated with poor survival and anti-cancer therapy resistance. This review article provides an overview of the structure and ligands of LIFR, LIF/LIFR signaling in developmental biology, stem cells, cancer stem cells, genetics and epigenetics of LIFR, LIFR regulation by long non-coding RNAs and miRNAs, and LIF/LIFR signaling in cancers. Finally, neutralizing antibodies and small molecule inhibitors preferentially blocking LIF interaction with LIFR and antagonists against LIFR under pre-clinical and early-phase pre-clinical trials were discussed.
Collapse
Affiliation(s)
- Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| |
Collapse
|
39
|
Viswanadhapalli S, Dileep KV, Zhang KY, Nair HB, Vadlamudi RK. Targeting LIF/LIFR signaling in cancer. Genes Dis 2022; 9:973-980. [PMID: 35685476 PMCID: PMC9170604 DOI: 10.1016/j.gendis.2021.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Leukemia inhibitory factor (LIF), and its receptor (LIFR), are commonly over-expressed in many solid cancers and recent studies have implicated LIF/LIFR axis as a promising clinical target for cancer therapy. LIF/LIFR activate oncogenic signaling pathways including JAK/STAT3 as immediate effectors and MAPK, AKT, mTOR further downstream. LIF/LIFR signaling plays a key role in tumor growth, progression, metastasis, stemness and therapy resistance. Many solid cancers show overexpression of LIF and autocrine stimulation of the LIF/LIFR axis; these are associated with a poorer relapse-free survival. LIF/LIFR signaling also plays a role in modulating multiple immune cell types present in tumor micro environment (TME). Recently, two targeted agents that target LIF (humanized anti-LIF antibody, MSC-1) and LIFR inhibitor (EC359) were under development. Both agents showed effectivity in preclinical models and clinical trials using MSC-1 antibody are in progress. This article reviews the significance of LIF/LIFR pathways and inhibitors that disrupt this process for the treatment of cancer.
Collapse
Key Words
- AKT, protein kinase B
- HER2, human epidermal growth factor receptor 2
- JAK, Janus kinase
- LIF
- LIF receptor, (LIFR)
- LIFR
- LIFR inhibitor
- STAT3
- Targeted therapy
- breast cancer, (BCa)
- cancer stem cells, (CSCs)
- cardiotrophin 1, (CTF1)
- ciliary neurotrophic factor, (CNTF)
- colorectal cancer, (CRC)
- endometrial cancer, (ECa)
- humanized Anti-LIF antibody, (MSC-1)
- leukemia inhibitory factor, (LIF)
- mammalian target of rapamycin, (mTOR)
- mitogen activated protein kinase, (MAPK)
- oncostatin M, (OSM)
- ovarian cancer, (OCa)
- pancreatic ductal adenocarcinoma, (PDAC)
- programmed death-ligand 1, (PD-L1)
- prostate cancer, (PCa)
- signal transducer and activator of transcription 3, (STAT3)
- triple negative breast cancer, (TNBC)
- tumor micro environment, (TME)
Collapse
Affiliation(s)
- Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Kalarickal V. Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y.J. Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | | | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
40
|
Ring A, Spataro M, Wicki A, Aceto N. Clinical and Biological Aspects of Disseminated Tumor Cells and Dormancy in Breast Cancer. Front Cell Dev Biol 2022; 10:929893. [PMID: 35837334 PMCID: PMC9274007 DOI: 10.3389/fcell.2022.929893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Progress in detection and treatment have drastically improved survival for early breast cancer patients. However, distant recurrence causes high mortality and is typically considered incurable. Cancer dissemination occurs via circulating tumor cells (CTCs) and up to 75% of breast cancer patients could harbor micrometastatses at time of diagnosis, while metastatic recurrence often occurs years to decades after treatment. During clinical latency, disseminated tumor cells (DTCs) can enter a state of cell cycle arrest or dormancy at distant sites, and are likely shielded from immune detection and treatment. While this is a challenge, it can also be seen as an outstanding opportunity to target dormant DTCs on time, before their transformation into lethal macrometastatic lesions. Here, we review and discuss progress made in our understanding of DTC and dormancy biology in breast cancer. Strides in our mechanistic insights of these features has led to the identification of possible targeting strategies, yet, their integration into clinical trial design is still uncertain. Incorporating minimally invasive liquid biopsies and rationally designed adjuvant therapies, targeting both proliferating and dormant tumor cells, may help to address current challenges and improve precision cancer care.
Collapse
Affiliation(s)
- Alexander Ring
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Spataro
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- *Correspondence: Nicola Aceto,
| |
Collapse
|
41
|
Qin S, Li B, Ming H, Nice EC, Zou B, Huang C. Harnessing redox signaling to overcome therapeutic-resistant cancer dormancy. Biochim Biophys Acta Rev Cancer 2022; 1877:188749. [PMID: 35716972 DOI: 10.1016/j.bbcan.2022.188749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023]
Abstract
Dormancy occurs when cells preserve viability but stop proliferating, which is considered an important cause of tumor relapse, which may occur many years after clinical remission. Since the life cycle of dormant cancer cells is affected by both intracellular and extracellular factors, gene mutation or epigenetic regulation of tumor cells may not fully explain the mechanisms involved. Recent studies have indicated that redox signaling regulates the formation, maintenance, and reactivation of dormant cancer cells by modulating intracellular signaling pathways and the extracellular environment, which provides a molecular explanation for the life cycle of dormant tumor cells. Indeed, redox signaling regulates the onset of dormancy by balancing the intrinsic pathways, the extrinsic environment, and the response to therapy. In addition, redox signaling sustains dormancy by managing stress homeostasis, maintaining stemness and immunogenic equilibrium. However, studies on dormancy reactivation are still limited, partly explained by redox-mediated activation of lipid metabolism and the transition from the tumor microenvironment to inflammation. Encouragingly, several drug combination strategies based on redox biology are currently under clinical evaluation. Continuing to gain an in-depth understanding of redox regulation and develop specific methods targeting redox modification holds the promise to accelerate the development of strategies to treat dormant tumors and benefit cancer patients.
Collapse
Affiliation(s)
- Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
42
|
Li J, Camirand A, Zakikhani M, Sellin K, Guo Y, Luan X, Mihalcioiu C, Kremer R. Parathyroid Hormone-Related Protein Inhibition Blocks Triple-Negative Breast Cancer Expansion in Bone Through Epithelial to Mesenchymal Transition Reversal. JBMR Plus 2022; 6:e10587. [PMID: 35720668 PMCID: PMC9189913 DOI: 10.1002/jbm4.10587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) plays a major role in skeletal metastasis but its action mechanism has not been fully defined. We previously demonstrated the crucial importance of PTHrP in promoting mammary tumor initiation, growth, and metastasis in a mouse model with a mammary epithelium-targeted Pthlh gene ablation. We demonstrate here a novel mechanism for bone invasion involving PTHrP induction of epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs) regulation. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated Pthlh gene ablation was used to study EMT markers, phenotype, and invasiveness in two triple-negative breast cancer (TNBC) cell types (established MDA-MB-231 and patient-derived PT-TNBC cells). In vitro, Pthlh ablation in TNBC cells reduced EMT markers, mammosphere-forming ability, and CD44high/CD24low cells ratio. In vivo, cells were injected intratibially into athymic nude mice, and therapeutic treatment with our anti-PTHrP blocking antibody was started 2 weeks after skeletal tumors were established. In vivo, compared to control, lytic bone lesion from Pthlh -ablated cells decreased significantly over 2 weeks by 27% for MDA-MB-231 and by 75% for PT-TNBC-injected mice (p < 0.001). Micro-CT (μCT) analyses also showed that antibody therapy reduced bone lytic volume loss by 52% and 48% for non-ablated MDA-MB-231 and PT-TNBC, respectively (p < 0.05). Antibody therapy reduced skeletal tumor burden by 45% and 87% for non-ablated MDA-MB-231 and PT-TNBC, respectively (p < 0.002) and caused a significant decrease of CSC/EMT markers ALDH1, vimentin, and Slug, and an increase in E-cadherin in bone lesions. We conclude that PTHrP is a targetable EMT molecular driver and suggest that its pharmacological blockade can provide a potential therapeutic approach against established TNBC-derived skeletal lesions. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jiarong Li
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Anne Camirand
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Mahvash Zakikhani
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Karine Sellin
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Yubo Guo
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
- Third Affiliated HospitalBeijing University of Chinese MedicineBeijingChina
| | - XiaoRui Luan
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
- Department of Genetics, School of MedicineZhejiang UniversityHangzhouChina
| | - Catalin Mihalcioiu
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| | - Richard Kremer
- Centre for Translational BiologyMcGill University Health CentreMontréalQCCanada
| |
Collapse
|
43
|
Dormancy in Breast Cancer, the Role of Autophagy, lncRNAs, miRNAs and Exosomes. Int J Mol Sci 2022; 23:ijms23095271. [PMID: 35563661 PMCID: PMC9105119 DOI: 10.3390/ijms23095271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women for which numerous diagnostic and therapeutic options have been developed. Namely, the targeted treatment of BC, for the most part, relies on the expression of growth factors and hormone receptors by these cancer cells. Despite this, close to 30% of BC patients may experience relapse due to the presence of minimal residual disease (MRD) consisting of surviving disseminated tumour cells (DTCs) from the primary tumour which can colonise a secondary site. This can lead to either detectable metastasis or DTCs entering a dormant state for a prolonged period where they are undetectable. In the latter, cells can re-emerge from their dormant state due to intrinsic and microenvironmental cues leading to relapse and metastatic outgrowth. Pre- and clinical studies propose that targeting dormant DTCs may inhibit metastasis, but the choice between keeping them dormant or forcing their “awakening” is still controversial. This review will focus on cancer cells’ microenvironmental cues and metabolic and molecular properties, which lead to dormancy, relapse, and metastatic latency in BC. Furthermore, we will focus on the role of autophagy, long non-coding RNAs (lncRNAs), miRNAs, and exosomes in influencing the induction of dormancy and awakening of dormant BC cells. In addition, we have analysed BC treatment from a viewpoint of autophagy, lncRNAs, miRNAs, and exosomes. We propose the targeted modulation of these processes and molecules as modern aspects of precision medicine for BC treatment, improving both novel and traditional BC treatment options. Understanding these pathways and processes may ultimately improve BC patient prognosis, patient survival, and treatment response.
Collapse
|
44
|
Ecology and evolution of dormant metastasis. Trends Cancer 2022; 8:570-582. [DOI: 10.1016/j.trecan.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022]
|
45
|
Felcher CM, Bogni ES, Kordon EC. IL-6 Cytokine Family: A Putative Target for Breast Cancer Prevention and Treatment. Int J Mol Sci 2022; 23:ijms23031809. [PMID: 35163731 PMCID: PMC8836921 DOI: 10.3390/ijms23031809] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
The IL-6 cytokine family is a group of signaling molecules with wide expression and function across vertebrates. Each member of the family signals by binding to its specific receptor and at least one molecule of gp130, which is the common transmembrane receptor subunit for the whole group. Signal transduction upon stimulation of the receptor complex results in the activation of multiple downstream cascades, among which, in mammary cells, the JAK-STAT3 pathway plays a central role. In this review, we summarize the role of the IL-6 cytokine family—specifically IL-6 itself, LIF, OSM, and IL-11—as relevant players during breast cancer progression. We have compiled evidence indicating that this group of soluble factors may be used for early and more precise breast cancer diagnosis and to design targeted therapy to treat or even prevent metastasis development, particularly to the bone. Expression profiles and possible therapeutic use of their specific receptors in the different breast cancer subtypes are also described. In addition, participation of these cytokines in pathologies of the breast linked to lactation and involution of the gland, as post-partum breast cancer and mastitis, is discussed.
Collapse
Affiliation(s)
- Carla M. Felcher
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (IFIBYNE-UBA-CONICET), Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina; (C.M.F.); (E.S.B.)
| | - Emilia S. Bogni
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (IFIBYNE-UBA-CONICET), Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina; (C.M.F.); (E.S.B.)
| | - Edith C. Kordon
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (IFIBYNE-UBA-CONICET), Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina; (C.M.F.); (E.S.B.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina
- Correspondence:
| |
Collapse
|
46
|
Omokehinde T, Jotte A, Johnson RW. gp130 Cytokines Activate Novel Signaling Pathways and Alter Bone Dissemination in ER+ Breast Cancer Cells. J Bone Miner Res 2022; 37:185-201. [PMID: 34477239 PMCID: PMC8828687 DOI: 10.1002/jbmr.4430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/09/2021] [Accepted: 08/29/2021] [Indexed: 02/03/2023]
Abstract
Breast cancer cells frequently home to the bone marrow, where they encounter signals that promote survival and quiescence or stimulate their proliferation. The interleukin-6 (IL-6) cytokines signal through the co-receptor glycoprotein130 (gp130) and are abundantly secreted within the bone microenvironment. Breast cancer cell expression of leukemia inhibitory factor (LIF) receptor (LIFR)/STAT3 signaling promotes tumor dormancy in the bone, but it is unclear which, if any of the cytokines that signal through LIFR, including LIF, oncostatin M (OSM), and ciliary neurotrophic factor (CNTF), promote tumor dormancy and which signaling pathways are induced. We first confirmed that LIF, OSM, and CNTF and their receptor components were expressed across a panel of breast cancer cell lines, although expression was lower in estrogen receptor-negative (ER- ) bone metastatic clones compared with parental cell lines. In estrogen receptor-positive (ER+ ) cells, OSM robustly stimulated phosphorylation of known gp130 signaling targets STAT3, ERK, and AKT, while CNTF activated STAT3 signaling. In ER- breast cancer cells, OSM alone stimulated AKT and ERK signaling. Overexpression of OSM, but not CNTF, reduced dormancy gene expression and increased ER+ breast cancer bone dissemination. Reverse-phase protein array revealed distinct and overlapping pathways stimulated by OSM, LIF, and CNTF with known roles in breast cancer progression and metastasis. In breast cancer patients, downregulation of the cytokines or receptors was associated with reduced relapse-free survival, but OSM was significantly elevated in patients with invasive disease and distant metastasis. Together these data indicate that the gp130 cytokines induce multiple signaling cascades in breast cancer cells, with a potential pro-tumorigenic role for OSM and pro-dormancy role for CNTF. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tolu Omokehinde
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alec Jotte
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Rachelle W Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
47
|
Satcher RL, Zhang XHF. Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer 2022; 22:85-101. [PMID: 34611349 DOI: 10.1038/s41568-021-00406-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Many cancer types metastasize to bone. This propensity may be a product of genetic traits of the primary tumour in some cancers. Upon arrival, cancer cells establish interactions with various bone-resident cells during the process of colonization. These interactions, to a large degree, dictate cancer cell fates at multiple steps of the metastatic cascade, from single cells to overt metastases. The bone microenvironment may even influence cancer cells to subsequently spread to multiple other organs. Therefore, it is imperative to spatiotemporally delineate the evolving cancer-bone crosstalk during bone colonization. In this Review, we provide a summary of the bone microenvironment and its impact on bone metastasis. On the basis of the microscopic anatomy, we tentatively define a roadmap of the journey of cancer cells through bone relative to various microenvironment components, including the potential of bone to function as a launch pad for secondary metastasis. Finally, we examine common and distinct features of bone metastasis from various cancer types. Our goal is to stimulate future studies leading to the development of a broader scope of potent therapies.
Collapse
Affiliation(s)
- Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
48
|
Metabolic Features of Tumor Dormancy: Possible Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14030547. [PMID: 35158815 PMCID: PMC8833651 DOI: 10.3390/cancers14030547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Tumor recurrence still represents a major clinical challenge for cancer patients. Cancer cells may undergo a dormant state for long times before re-emerging. Both intracellular- and extracellular-driven pathways are involved in maintaining the dormant state and the subsequent awakening, with a mechanism that is still mostly unknown. In this scenario, cancer metabolism is emerging as a critical driver of tumor progression and dissemination and have gained increasing attention in cancer research. This review focuses on the metabolic adaptations characterizing the dormant phenotype and supporting tumor re-growth. Deciphering the metabolic adaptation sustaining tumor dormancy may pave the way for novel therapeutic approaches to prevent tumor recurrence based on combined metabolic drugs. Abstract Tumor relapse represents one of the main obstacles to cancer treatment. Many patients experience cancer relapse even decades from the primary tumor eradication, developing more aggressive and metastatic disease. This phenomenon is associated with the emergence of dormant cancer cells, characterized by cell cycle arrest and largely insensitive to conventional anti-cancer therapies. These rare and elusive cells may regain proliferative abilities upon the induction of cell-intrinsic and extrinsic factors, thus fueling tumor re-growth and metastasis formation. The molecular mechanisms underlying the maintenance of resistant dormant cells and their awakening are intriguing but, currently, still largely unknown. However, increasing evidence recently underlined a strong dependency of cell cycle progression to metabolic adaptations of cancer cells. Even if dormant cells are frequently characterized by a general metabolic slowdown and an increased ability to cope with oxidative stress, different factors, such as extracellular matrix composition, stromal cells influence, and nutrient availability, may dictate specific changes in dormant cells, finally resulting in tumor relapse. The main topic of this review is deciphering the role of the metabolic pathways involved in tumor cells dormancy to provide new strategies for selectively targeting these cells to prevent fatal recurrence and maximize therapeutic benefit.
Collapse
|
49
|
Uddin MN, Wang X. Identification of key tumor stroma-associated transcriptional signatures correlated with survival prognosis and tumor progression in breast cancer. Breast Cancer 2022; 29:541-561. [PMID: 35020130 DOI: 10.1007/s12282-022-01332-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND The aberrant expression of stromal gene signatures in breast cancer has been widely studied. However, the association of stromal gene signatures with tumor immunity, progression, and clinical outcomes remains lacking. METHODS Based on eight breast tumor stroma (BTS) transcriptomics datasets, we identified differentially expressed genes (DEGs) between BTS and normal breast stroma. Based on the DEGs, we identified dysregulated pathways and prognostic hub genes, hub oncogenes, hub protein kinases, and other key marker genes associated with breast cancer. Moreover, we compared the enrichment levels of stromal and immune signatures between breast cancer patients with bad and good clinical outcomes. We also investigated the association between tumor stroma-related genes and breast cancer progression. RESULTS The DEGs included 782 upregulated and 276 downregulated genes in BTS versus normal breast stroma. The pathways significantly associated with the DEGs included cytokine-cytokine receptor interaction, chemokine signaling, T cell receptor signaling, cell adhesion molecules, focal adhesion, and extracellular matrix-receptor interaction. Protein-protein interaction network analysis identified the stromal hub genes with prognostic value in breast cancer, including two oncogenes (COL1A1 and IL21R), two protein kinases encoding genes (PRKACA and CSK), and a growth factor encoding gene (PLAU). Moreover, we observed that the patients with bad clinical outcomes were less enriched in stromal and antitumor immune signatures (CD8 + T cells and tumor-infiltrating lymphocytes) but more enriched in tumor cells and immunosuppressive signatures (MDSCs and CD4 + regulatory T cells) compared with the patients with good clinical outcomes. The ratios of CD8 + /CD4 + regulatory T cells were lower in the patients with bad clinical outcomes. Furthermore, we identified the tumor stroma-related genes, including MCM4, SPECC1, IMPA2, and AGO2, which were gradually upregulated through grade I, II, and III breast cancers. In contrast, COL14A1, ESR1, SLIT2, IGF1, CH25H, PRR5L, ABCA6, CEP126, IGDCC4, LHFP, MFAP3, PCSK5, RAB37, RBMS3, SETBP1, and TSPAN11 were gradually downregulated through grade I, II, and III breast cancers. It suggests that the expression of these stromal genes has an association with the progression of breast cancers. These progression-associated genes also displayed an expression association with recurrence-free survival in breast cancer patients. CONCLUSIONS This study identified tumor stroma-associated biomarkers correlated with deregulated pathways, tumor immunity, tumor progression, and clinical outcomes in breast cancer. Our findings provide new insights into the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Md Nazim Uddin
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
50
|
Bone marrow NG2 +/Nestin + mesenchymal stem cells drive DTC dormancy via TGFβ2. NATURE CANCER 2022; 2:327-339. [PMID: 34993493 DOI: 10.1038/s43018-021-00179-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the bone marrow (BM) microenvironment, where breast cancer (BC) disseminated tumour cells (DTCs) can remain dormant for decades, NG2+/Nestin+ mesenchymal stem cells (MSCs) promote hematopoietic stem cell quiescence. Here, we reveal that periarteriolar BM-resident NG2+/Nestin+ MSCs can also instruct BC DTCs to enter dormancy. NG2+/Nestin+ MSCs produce TGFβ2 and BMP7 and activate a quiescence pathway dependent on TGFBRIII and BMPRII, which via p38-kinase result in p27 induction. Genetic depletion of MSCs or conditional knock-out of TGFβ2 in MSCs using an NG2-CreER driver led to bone metastatic outgrowth of otherwise dormant p27+/Ki67- DTCs. Also ER+ BC patients without systemic recurrence displayed higher frequency of TGFβ2 and BMP7 detection in the BM. Our results provide a direct proof that HSC dormancy niches control BC DTC dormancy and suggest that aging or extrinsic factors that affect the NG2+/Nestin+ MSC niche homeostasis may result in a break from dormancy and BC bone relapse.
Collapse
|