1
|
Zhang H, Wang X. The Role of Protein Quantity Control in Polyglutamine Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2575-2592. [PMID: 39052145 DOI: 10.1007/s12311-024-01722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) represent the most prevalent subtype of SCAs. The primary pathogenic mechanism is believed to be the gain-of-function neurotoxicity of polyQ proteins. Strategies such as enhancing the degradation or inhibiting the accumulation of these mutant proteins are pivotal for reducing their toxicity and slowing disease progression. The protein quality control (PQC) system, comprising primarily molecular chaperones and the ubiquitin‒proteasome system (UPS), is essential for maintaining protein homeostasis by regulating protein folding, trafficking, and degradation. Notably, polyQ proteins can disrupt the PQC system by sequestering its critical components and impairing its proteasomal functions. Therefore, restoring the PQC system through genetic or pharmacological interventions could potentially offer beneficial effects and alleviate the symptoms of the disease. Here, we will provide a review on the distribution, expression, and genetic or pharmacological intervention of protein quality control system in cellular or animal models of PolyQ SCAs.
Collapse
Affiliation(s)
- Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361005, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
2
|
Yoshioka Y, Huang Y, Jin X, Ngo KX, Kumaki T, Jin M, Toyoda S, Takayama S, Inotsume M, Fujita K, Homma H, Ando T, Tanaka H, Okazawa H. PQBP3 prevents senescence by suppressing PSME3-mediated proteasomal Lamin B1 degradation. EMBO J 2024; 43:3968-3999. [PMID: 39103492 PMCID: PMC11405525 DOI: 10.1038/s44318-024-00192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Senescence of nondividing neurons remains an immature concept, with especially the regulatory molecular mechanisms of senescence-like phenotypes and the role of proteins associated with neurodegenerative diseases in triggering neuronal senescence remaining poorly explored. In this study, we reveal that the nucleolar polyglutamine binding protein 3 (PQBP3; also termed NOL7), which has been linked to polyQ neurodegenerative diseases, regulates senescence as a gatekeeper of cytoplasmic DNA leakage. PQBP3 directly binds PSME3 (proteasome activator complex subunit 3), a subunit of the 11S proteasome regulator complex, decreasing PSME3 interaction with Lamin B1 and thereby preventing Lamin B1 degradation and senescence. Depletion of endogenous PQBP3 causes nuclear membrane instability and release of genomic DNA from the nucleus to the cytosol. Among multiple tested polyQ proteins, ataxin-1 (ATXN1) partially sequesters PQBP3 to inclusion bodies, reducing nucleolar PQBP3 levels. Consistently, knock-in mice expressing mutant Atxn1 exhibit decreased nuclear PQBP3 and a senescence phenotype in Purkinje cells of the cerebellum. Collectively, these results suggest homologous roles of the nucleolar protein PQBP3 in cellular senescence and neurodegeneration.
Collapse
Affiliation(s)
- Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yong Huang
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Xiaocen Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kien Xuan Ngo
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Tomohiro Kumaki
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Meihua Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Saori Toyoda
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Sumire Takayama
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Maiko Inotsume
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Research Center for Child Mental Development, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Toshio Ando
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
3
|
Jin X, Tanaka H, Jin M, Fujita K, Homma H, Inotsume M, Yong H, Umeda K, Kodera N, Ando T, Okazawa H. PQBP5/NOL10 maintains and anchors the nucleolus under physiological and osmotic stress conditions. Nat Commun 2023; 14:9. [PMID: 36599853 PMCID: PMC9813255 DOI: 10.1038/s41467-022-35602-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Polyglutamine binding protein 5 (PQBP5), also called nucleolar protein 10 (NOL10), binds to polyglutamine tract sequences and is expressed in the nucleolus. Using dynamic imaging of high-speed atomic force microscopy, we show that PQBP5/NOL10 is an intrinsically disordered protein. Super-resolution microscopy and correlative light and electron microscopy method show that PQBP5/NOL10 makes up the skeletal structure of the nucleolus, constituting the granule meshwork in the granular component area, which is distinct from other nucleolar substructures, such as the fibrillar center and dense fibrillar component. In contrast to other nucleolar proteins, which disperse to the nucleoplasm under osmotic stress conditions, PQBP5/NOL10 remains in the nucleolus and functions as an anchor for reassembly of other nucleolar proteins. Droplet and thermal shift assays show that the biophysical features of PQBP5/NOL10 remain stable under stress conditions, explaining the spatial role of this protein. PQBP5/NOL10 can be functionally depleted by sequestration with polyglutamine disease proteins in vitro and in vivo, leading to the pathological deformity or disappearance of the nucleolus. Taken together, these findings indicate that PQBP5/NOL10 is an essential protein needed to maintain the structure of the nucleolus.
Collapse
Affiliation(s)
- Xiaocen Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Meihua Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Maiko Inotsume
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Huang Yong
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kenichi Umeda
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
4
|
Wüstner D. Dynamic Mode Decomposition of Fluorescence Loss in Photobleaching Microscopy Data for Model-Free Analysis of Protein Transport and Aggregation in Living Cells. SENSORS (BASEL, SWITZERLAND) 2022; 22:4731. [PMID: 35808232 PMCID: PMC9269098 DOI: 10.3390/s22134731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023]
Abstract
The phase separation and aggregation of proteins are hallmarks of many neurodegenerative diseases. These processes can be studied in living cells using fluorescent protein constructs and quantitative live-cell imaging techniques, such as fluorescence recovery after photobleaching (FRAP) or the related fluorescence loss in photobleaching (FLIP). While the acquisition of FLIP images is straightforward on most commercial confocal microscope systems, the analysis and computational modeling of such data is challenging. Here, a novel model-free method is presented, which resolves complex spatiotemporal fluorescence-loss kinetics based on dynamic-mode decomposition (DMD) of FLIP live-cell image sequences. It is shown that the DMD of synthetic and experimental FLIP image series (DMD-FLIP) allows for the unequivocal discrimination of subcellular compartments, such as nuclei, cytoplasm, and protein condensates based on their differing transport and therefore fluorescence loss kinetics. By decomposing fluorescence-loss kinetics into distinct dynamic modes, DMD-FLIP will enable researchers to study protein dynamics at each time scale individually. Furthermore, it is shown that DMD-FLIP is very efficient in denoising confocal time series data. Thus, DMD-FLIP is an easy-to-use method for the model-free detection of barriers to protein diffusion, of phase-separated protein assemblies, and of insoluble protein aggregates. It should, therefore, find wide application in the analysis of protein transport and aggregation, in particular in relation to neurodegenerative diseases and the formation of protein condensates in living cells.
Collapse
Affiliation(s)
- Daniel Wüstner
- Department of Biochemistry and Molecular Biology and Physics of Life Sciences (PhyLife) Center, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
5
|
Mota A, Waxman HK, Hong R, Lagani GD, Niu SY, Bertherat FL, Wolfe L, Malicdan CM, Markello TC, Adams DR, Gahl WA, Cheng CS, Beffert U, Ho A. FOXR1 regulates stress response pathways and is necessary for proper brain development. PLoS Genet 2021; 17:e1009854. [PMID: 34723967 PMCID: PMC8559929 DOI: 10.1371/journal.pgen.1009854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
Abstract
The forkhead box (Fox) family of transcription factors are highly conserved and play essential roles in a wide range of cellular and developmental processes. We report an individual with severe neurological symptoms including postnatal microcephaly, progressive brain atrophy and global developmental delay associated with a de novo missense variant (M280L) in the FOXR1 gene. At the protein level, M280L impaired FOXR1 expression and induced a nuclear aggregate phenotype due to protein misfolding and proteolysis. RNAseq and pathway analysis showed that FOXR1 acts as a transcriptional activator and repressor with central roles in heat shock response, chaperone cofactor-dependent protein refolding and cellular response to stress pathways. Indeed, FOXR1 expression is increased in response to cellular stress, a process in which it directly controls HSPA6, HSPA1A and DHRS2 transcripts. The M280L mutant compromises FOXR1's ability to respond to stress, in part due to impaired regulation of downstream target genes that are involved in the stress response pathway. Quantitative PCR of mouse embryo tissues show Foxr1 expression in the embryonic brain. Using CRISPR/Cas9 gene editing, we found that deletion of mouse Foxr1 leads to a severe survival deficit while surviving newborn Foxr1 knockout mice have reduced body weight. Further examination of newborn Foxr1 knockout brains revealed a decrease in cortical thickness and enlarged ventricles compared to littermate wild-type mice, suggesting that loss of Foxr1 leads to atypical brain development. Combined, these results suggest FOXR1 plays a role in cellular stress response pathways and is necessary for normal brain development.
Collapse
Affiliation(s)
- Andressa Mota
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Hannah K. Waxman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Rui Hong
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Gavin D. Lagani
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Sheng-Yong Niu
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Féodora L. Bertherat
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Lynne Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christine May Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas C. Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David R. Adams
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William A. Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, and National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christine S. Cheng
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Uwe Beffert
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Angela Ho
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Jin M, Jin X, Homma H, Fujita K, Tanaka H, Murayama S, Akatsu H, Tagawa K, Okazawa H. Prediction and verification of the AD-FTLD common pathomechanism based on dynamic molecular network analysis. Commun Biol 2021; 4:961. [PMID: 34385591 PMCID: PMC8361101 DOI: 10.1038/s42003-021-02475-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple gene mutations cause familial frontotemporal lobar degeneration (FTLD) while no single gene mutations exists in sporadic FTLD. Various proteins aggregate in variable regions of the brain, leading to multiple pathological and clinical prototypes. The heterogeneity of FTLD could be one of the reasons preventing development of disease-modifying therapy. We newly develop a mathematical method to analyze chronological changes of PPI networks with sequential big data from comprehensive phosphoproteome of four FTLD knock-in (KI) mouse models (PGRNR504X-KI, TDP43N267S-KI, VCPT262A-KI and CHMP2BQ165X-KI mice) together with four transgenic mouse models of Alzheimer's disease (AD) and with APPKM670/671NL-KI mice at multiple time points. The new method reveals the common core pathological network across FTLD and AD, which is shared by mouse models and human postmortem brains. Based on the prediction, we performed therapeutic intervention of the FTLD models, and confirmed amelioration of pathologies and symptoms of four FTLD mouse models by interruption of the core molecule HMGB1, verifying the new mathematical method to predict dynamic molecular networks.
Collapse
Affiliation(s)
- Meihua Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Xiaocen Jin
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Brain Bank for Aging Research, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Hiroyasu Akatsu
- Department of Medicine for Aging in Place and Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Račková L, Csekes E. Proteasome Biology: Chemistry and Bioengineering Insights. Polymers (Basel) 2020; 12:E2909. [PMID: 33291646 PMCID: PMC7761984 DOI: 10.3390/polym12122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Proteasomal degradation provides the crucial machinery for maintaining cellular proteostasis. The biological origins of modulation or impairment of the function of proteasomal complexes may include changes in gene expression of their subunits, ubiquitin mutation, or indirect mechanisms arising from the overall impairment of proteostasis. However, changes in the physico-chemical characteristics of the cellular environment might also meaningfully contribute to altered performance. This review summarizes the effects of physicochemical factors in the cell, such as pH, temperature fluctuations, and reactions with the products of oxidative metabolism, on the function of the proteasome. Furthermore, evidence of the direct interaction of proteasomal complexes with protein aggregates is compared against the knowledge obtained from immobilization biotechnologies. In this regard, factors such as the structures of the natural polymeric scaffolds in the cells, their content of reactive groups or the sequestration of metal ions, and processes at the interface, are discussed here with regard to their influences on proteasomal function.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
8
|
McGrail DJ, Garnett J, Yin J, Dai H, Shih DJH, Lam TNA, Li Y, Sun C, Li Y, Schmandt R, Wu JY, Hu L, Liang Y, Peng G, Jonasch E, Menter D, Yates MS, Kopetz S, Lu KH, Broaddus R, Mills GB, Sahni N, Lin SY. Proteome Instability Is a Therapeutic Vulnerability in Mismatch Repair-Deficient Cancer. Cancer Cell 2020; 37:371-386.e12. [PMID: 32109374 PMCID: PMC7337255 DOI: 10.1016/j.ccell.2020.01.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/22/2019] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
Abstract
Deficient DNA mismatch repair (dMMR) induces a hypermutator phenotype that can lead to tumorigenesis; however, the functional impact of the high mutation burden resulting from this phenotype remains poorly explored. Here, we demonstrate that dMMR-induced destabilizing mutations lead to proteome instability in dMMR tumors, resulting in an abundance of misfolded protein aggregates. To compensate, dMMR cells utilize a Nedd8-mediated degradation pathway to facilitate clearance of misfolded proteins. Blockade of this Nedd8 clearance pathway with MLN4924 causes accumulation of misfolded protein aggregates, ultimately inducing immunogenic cell death in dMMR cancer cells. To leverage this immunogenic cell death, we combined MLN4924 treatment with PD1 inhibition and found the combination was synergistic, significantly improving efficacy over either treatment alone.
Collapse
Affiliation(s)
- Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jeannine Garnett
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Dai
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David J H Shih
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Truong Nguyen Anh Lam
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chaoyang Sun
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongsheng Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rosemarie Schmandt
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Yuan Wu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Limei Hu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yulong Liang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melinda S Yates
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Russell Broaddus
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Quantitative and Computational Biosciences (QCB), Baylor College of Medicine, Houston, TX 77030, USA; Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Volovikov EA, Davidenko AV, Lagarkova MA. Molecular Mechanisms of Spinocerebellar Ataxia Type 1. RUSS J GENET+ 2020. [DOI: 10.1134/s102279542002012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Nuclear bodies formed by polyQ-ataxin-1 protein are liquid RNA/protein droplets with tunable dynamics. Sci Rep 2020; 10:1557. [PMID: 32005838 PMCID: PMC6994494 DOI: 10.1038/s41598-020-57994-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 01/02/2020] [Indexed: 12/27/2022] Open
Abstract
A mutant form of the ataxin-1 protein with an expanded polyglutamine (polyQ) tract is the underlying cause of the inherited neurodegenerative disease spinocerebellar ataxia 1 (SCA1). In probing the biophysical features of the nuclear bodies (NBs) formed by polyQ-ataxin-1, we defined ataxin-1 NBs as spherical liquid protein/RNA droplets capable of rapid fusion. We observed dynamic exchange of the ataxin-1 protein into these NBs; notably, cell exposure to a pro-oxidant stress could trigger a transition to slower ataxin-1 exchange, typical of a hydrogel state, which no longer showed the same dependence on RNA or sensitivity to 1,6-hexanediol. Furthermore, we could alter ataxin-1 exchange dynamics either through modulating intracellular ATP levels, RNA helicase inhibition, or siRNA-mediated depletion of select RNA helicases. Collectively, these findings reveal the tunable dynamics of the liquid RNA/protein droplets formed by polyQ-ataxin-1.
Collapse
|
11
|
Hansen CV, Schroll HJ, Wüstner D. A discontinuous Galerkin model for fluorescence loss in photobleaching of intracellular polyglutamine protein aggregates. BMC BIOPHYSICS 2018; 11:7. [PMID: 30519460 PMCID: PMC6264036 DOI: 10.1186/s13628-018-0046-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 10/30/2018] [Indexed: 12/03/2022]
Abstract
Background Intracellular phase separation and aggregation of proteins with extended poly-glutamine (polyQ) stretches are hallmarks of various age-associated neurodegenerative diseases. Progress in our understanding of such processes heavily relies on quantitative fluorescence imaging of suitably tagged proteins. Fluorescence loss in photobleaching (FLIP) is particularly well-suited to study the dynamics of protein aggregation in cellular models of Chorea Huntington and other polyQ diseases, as FLIP gives access to the full spatio-temporal profile of intensity changes in the cell geometry. In contrast to other methods, also dim aggregates become visible during time evolution of fluorescence loss in cellular compartments. However, methods for computational analysis of FLIP data are sparse, and transport models for estimation of transport and diffusion parameters from experimental FLIP sequences are missing. Results In this paper, we present a computational method for analysis of FLIP imaging experiments of intracellular polyglutamine protein aggregates also called inclusion bodies (IBs). By this method, we can determine the diffusion constant and nuclear membrane transport coefficients of polyQ proteins as well as the exchange rates between aggregates and the cytoplasm. Our method is based on a reaction-diffusion multi-compartment model defined on a mesh obtained by segmentation of the cell images from the FLIP sequence. The discontinuous Galerkin (DG) method is used for numerical implementation of our model in FEniCS, which greatly reduces the computing time. The method is applied to representative experimental FLIP sequences, and consistent estimates of all transport parameters are obtained. Conclusions By directly estimating the transport parameters from live-cell image sequences using our new computational FLIP approach surprisingly fast exchange dynamics of mutant Huntingtin between cytoplasm and dim IBs could be revealed. This is likely relevant also for other polyQ diseases. Thus, our method allows for quantifying protein dynamics at different stages of the protein aggregation process in cellular models of neurodegeneration. Electronic supplementary material The online version of this article (10.1186/s13628-018-0046-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian V Hansen
- 1Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense M, 5230 Denmark
| | - Hans J Schroll
- 1Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense M, 5230 Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, Campusvej 55, Odense M, 5230 Denmark
| |
Collapse
|
12
|
Dynamic recruitment of ubiquitin to mutant huntingtin inclusion bodies. Sci Rep 2018; 8:1405. [PMID: 29362455 PMCID: PMC5780509 DOI: 10.1038/s41598-018-19538-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/03/2018] [Indexed: 12/02/2022] Open
Abstract
Many neurodegenerative diseases, such as Huntington’s disease, are hallmarked by the formation of intracellular inclusion bodies (IBs) that are decorated with ubiquitin, proteasomes and chaperones. The apparent enrichment of ubiquitin and components involved in protein quality control at IBs suggests local ubiquitin-dependent enzymatic activity. In this study, we examine recruitment of ubiquitin to IBs of polyglutamine-expanded huntingtin fragments (mHtt) by using synthesized TAMRA-labeled ubiquitin moieties. We show that intracellular TAMRA-ubiquitin is dynamic at mHtt IBs and is incorporated into poly-ubiquitin chains of intracellular substrates, such as mHtt, in a conjugation-dependent manner. Furthermore, we report that mHtt IBs recruit catalytically active enzymes involved in (de)-ubiquitination processes based on novel activity-based probes. However, we also find that the overexpression of the GFP-ubiquitin reporter, unlike the endogenous ubiquitin and TAMRA-ubiquitin, becomes irreversibly sequestered as a ring-like structure around the mHtt IBs, suggesting a methodical disadvantage of GFP-tagged ubiquitin. Our data provide supportive evidence for dynamic recruitment of ubiquitin and ubiquitin (de)-conjugating activity at mHtt initiated IBs.
Collapse
|
13
|
Fujita K, Mao Y, Uchida S, Chen X, Shiwaku H, Tamura T, Ito H, Watase K, Homma H, Tagawa K, Sudol M, Okazawa H. Developmental YAPdeltaC determines adult pathology in a model of spinocerebellar ataxia type 1. Nat Commun 2017; 8:1864. [PMID: 29192206 PMCID: PMC5709507 DOI: 10.1038/s41467-017-01790-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
YAP and its neuronal isoform YAPdeltaC are implicated in various cellular functions. We found that expression of YAPdeltaC during development, but not adulthood, rescued neurodegeneration phenotypes of mutant ataxin-1 knock-in (Atxn1-KI) mice. YAP/YAPdeltaC interacted with RORα via the second WW domain and served as co-activators of its transcriptional activity. YAP/YAPdeltaC formed a transcriptional complex with RORα on cis-elements of target genes and regulated their expression. Both normal and mutant Atxn1 interacted with YAP/YAPdeltaC, but only mutant Atxn1 depleted YAP/YAPdeltaC from the RORα complex to suppress transcription on short timescales. Over longer periods, mutant Atxn1 also decreased RORα in vivo. Genetic supplementation of YAPdeltaC restored the RORα and YAP/YAPdeltaC levels, recovered YAP/YAPdeltaC in the RORα complex and normalized target gene transcription in Atxn1-KI mice in vivo. Collectively, our data suggest that functional impairment of YAP/YAPdeltaC by mutant Atxn1 during development determines the adult pathology of SCA1 by suppressing RORα-mediated transcription.
Collapse
Affiliation(s)
- Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ying Mao
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shigenori Uchida
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Xigui Chen
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroki Shiwaku
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takuya Tamura
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hikaru Ito
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kei Watase
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Li School of Medicine, 2 Medical Drive, Singapore, 117597, Singapore.,Institute of Molecular and Cell Biology (IMCB) A*STAR, Biopolis, Singapore, 138673, Singapore
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. .,Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
14
|
Nath SR, Lieberman AP. The Ubiquitination, Disaggregation and Proteasomal Degradation Machineries in Polyglutamine Disease. Front Mol Neurosci 2017; 10:78. [PMID: 28381987 PMCID: PMC5360718 DOI: 10.3389/fnmol.2017.00078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Polyglutamine disorders are chronic, progressive neurodegenerative diseases caused by expansion of a glutamine tract in widely expressed genes. Despite excellent models of disease, a well-documented clinical history and progression, and established genetic causes, there are no FDA approved, disease modifying treatments for these disorders. Downstream of the mutant protein, several divergent pathways of toxicity have been identified over the last several decades, supporting the idea that targeting only one of these pathways of toxicity is unlikely to robustly alleviate disease progression. As a result, a vast body of research has focused on eliminating the mutant protein to broadly prevent downstream toxicity, either by silencing mutant protein expression or leveraging the endogenous protein quality control machinery. In the latter approach, a focus has been placed on four critical components of mutant protein degradation that are active in the nucleus, a key site of toxicity: disaggregation, ubiquitination, deubiquitination, and proteasomal activity. These machineries have unique functional components, but work together as a cellular defense system that can be successfully leveraged to alleviate disease phenotypes in several models of polyglutamine toxicity. This review will highlight recent advances in understanding both the potential and role of these components of the protein quality control machinery in polyglutamine disease pathophysiology.
Collapse
Affiliation(s)
- Samir R Nath
- Medical Scientist Training Program, University of Michigan Medical SchoolAnn Arbor, MI, USA; Cellular and Molecular Biology Graduate Program, University of Michigan Medical SchoolAnn Arbor, MI, USA; Department of Pathology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School Ann Arbor, MI, USA
| |
Collapse
|
15
|
Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Q Rev Biophys 2015; 48:323-87. [PMID: 26314367 DOI: 10.1017/s0033583515000013] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractFluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure–interaction–diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.
Collapse
|
16
|
Animal Models of Spinocerebellar Ataxia Type 1. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Truant R, Raymond LA, Xia J, Pinchev D, Burtnik A, Atwal RS. Canadian Association of Neurosciences Review: Polyglutamine Expansion Neurodegenerative Diseases. Can J Neurol Sci 2014; 33:278-91. [PMID: 17001815 DOI: 10.1017/s031716710000514x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT:Since the early 1990s, DNA triplet repeat expansions have been found to be the cause in an ever increasing number of genetic neurologic diseases. A subset of this large family of genetic diseases has the expansion of a CAG DNA triplet in the open reading frame of a coding exon. The result of this DNA expansion is the expression of expanded glutamine amino acid repeat tracts in the affected proteins, leading to the term, Polyglutamine Diseases, which is applied to this sub-family of diseases. To date, nine distinct genes are known to be linked to polyglutamine diseases, including Huntington's disease, Machado-Joseph Disease and spinobulbar muscular atrophy or Kennedy's disease. Most of the polyglutamine diseases are characterized clinically as spinocerebellar ataxias. Here we discuss recent successes and advancements in polyglutamine disease research, comparing these different diseases with a common genetic flaw at the level of molecular biology and early drug design for a family of diseases where many new research tools for these genetic disorders have been developed. Polyglutamine disease research has successfully used interdisciplinary collaborative efforts, informative multiple mouse genetic models and advanced tools of pharmaceutical industry research to potentially serve as the prototype model of therapeutic research and development for rare neurodegenerative diseases.
Collapse
Affiliation(s)
- Ray Truant
- Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Dantuma NP, Bott LC. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci 2014; 7:70. [PMID: 25132814 PMCID: PMC4117186 DOI: 10.3389/fnmol.2014.00070] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/09/2014] [Indexed: 01/17/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) has been implicated in neurodegenerative diseases based on the presence of deposits consisting of ubiquitylated proteins in affected neurons. It has been postulated that aggregation-prone proteins associated with these disorders, such as α-synuclein, β-amyloid peptide, and polyglutamine proteins, compromise UPS function, and delay the degradation of other proteasome substrates. Many of these substrates play important regulatory roles in signaling, cell cycle progression, or apoptosis, and their inadvertent stabilization due to an overloaded and improperly functioning UPS may thus be responsible for cellular demise in neurodegeneration. Over the past decade, numerous studies have addressed the UPS dysfunction hypothesis using various model systems and techniques that differ in their readout and sensitivity. While an inhibitory effect of some disease proteins on the UPS has been demonstrated, increasing evidence attests that the UPS remains operative in many disease models, which opens new possibilities for treatment. In this review, we will discuss the paradigm shift that repositioned the UPS from being a prime suspect in the pathophysiology of neurodegeneration to an attractive therapeutic target that can be harnessed to accelerate the clearance of disease-linked proteins.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, Sweden
| | - Laura C Bott
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, Sweden ; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
19
|
Lin XP, Feng L, Xie CG, Chen DB, Pei Z, Liang XL, Xie QY, Li XH, Pan SY. Valproic acid attenuates the suppression of acetyl histone H3 and CREB activity in an inducible cell model of Machado-Joseph disease. Int J Dev Neurosci 2014; 38:17-22. [PMID: 25068645 DOI: 10.1016/j.ijdevneu.2014.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/26/2022] Open
Abstract
Machado-Joseph disease (MJD) is caused by a (CAG)n trinucleotide repeat expansion that is translated into an abnormally long polyglutamine tract. This disease is considered the most common form of spinocerebellar ataxia (SCA). In the present study, we developed stable inducible cell lines (PC12Tet-On-Ataxin-3-Q28/84) expressing ataxin-3 with either normal or abnormal CAG repeats under doxycycline control. The expression of acetyl histone H3 and the induction of c-Fos in response to cAMP were strongly suppressed in cells expressing the protein with the expanded polyglutamine tract. Treatment with valproic acid, a histone deacetylase inhibitor (HDACi), attenuated mutant ataxin-3-induced cell toxicity and suppression of acetyl histone H3, phosphorylated cAMP-responsive element binding protein (p-CREB) as well as c-Fos expression. These results indicate that VPA can stimulate the up-regulation of gene transcription through hyperacetylation. Thus, VPA might have a therapeutic effect on MJD.
Collapse
Affiliation(s)
- X P Lin
- Department of Huiqiao Building, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - L Feng
- Department of Neurological Intensive Care Unit, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - C G Xie
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - D B Chen
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Z Pei
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - X L Liang
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Q Y Xie
- Department of Hyperbaric Oxygen Therapy, Guangzhou General Hospital of Guangzhou Military Area Command of Chinese PLA, Guangzhou, Guangdong Province, China
| | - X H Li
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - S Y Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
20
|
Long Z, Tang B, Jiang H. Alleviating neurodegeneration in Drosophila models of PolyQ diseases. CEREBELLUM & ATAXIAS 2014; 1:9. [PMID: 26331033 PMCID: PMC4552282 DOI: 10.1186/2053-8871-1-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/06/2014] [Indexed: 11/23/2022]
Abstract
Polyglutamine (polyQ) diseases are a group of neurodegenerative conditions, induced from CAG trinucleotide repeat expansion within causative gene respectively. Generation of toxic proteins, containing polyQ-expanded tract, is the key process to cause neurodegeneration. Till now, although polyQ diseases remain uncurable, numerous therapeutic strategies with great potential have been examined and have been proven to be effective against polyQ diseases, including diverse small biological molecules and many pharmacological compounds mainly through prevention on formation of aggregates and inclusions, acceleration on degradation of toxic proteins and regulation of cellular function. We review promising therapeutic strategies by using Drosophila models of polyQ diseases including HD, SCA1, SCA3 and SBMA.
Collapse
Affiliation(s)
- Zhe Long
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, 410008 Hunan China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, 410008 Hunan China ; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 87 Xiangya road, Changsha, 410008 Hunan China ; State Key Laboratory of Medical Genetics, Central South University, 110 Xiangyaroad, Changsha, 410078 Hunan China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya road, Changsha, 410008 Hunan China ; Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, 87 Xiangya road, Changsha, 410008 Hunan China ; State Key Laboratory of Medical Genetics, Central South University, 110 Xiangyaroad, Changsha, 410078 Hunan China
| |
Collapse
|
21
|
A functional deficiency of TERA/VCP/p97 contributes to impaired DNA repair in multiple polyglutamine diseases. Nat Commun 2013; 4:1816. [PMID: 23652004 DOI: 10.1038/ncomms2828] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 03/11/2013] [Accepted: 04/03/2013] [Indexed: 11/08/2022] Open
Abstract
It is hypothesized that a common underlying mechanism links multiple neurodegenerative disorders. Here we show that transitional endoplasmic reticulum ATPase (TERA)/valosin-containing protein (VCP)/p97 directly binds to multiple polyglutamine disease proteins (huntingtin, ataxin-1, ataxin-7 and androgen receptor) via polyglutamine sequence. Although normal and mutant polyglutamine proteins interact with TERA/VCP/p97, only mutant proteins affect dynamism of TERA/VCP/p97. Among multiple functions of TERA/VCP/p97, we reveal that functional defect of TERA/VCP/p97 in DNA double-stranded break repair is critical for the pathology of neurons in which TERA/VCP/p97 is located dominantly in the nucleus in vivo. Mutant polyglutamine proteins impair accumulation of TERA/VCP/p97 and interaction of related double-stranded break repair proteins, finally causing the increase of unrepaired double-stranded break. Consistently, the recovery of lifespan in polyglutamine disease fly models by TERA/VCP/p97 corresponds well to the improvement of double-stranded break in neurons. Taken together, our results provide a novel common pathomechanism in multiple polyglutamine diseases that is mediated by DNA repair function of TERA/VCP/p97.
Collapse
|
22
|
Rusmini P, Crippa V, Giorgetti E, Boncoraglio A, Cristofani R, Carra S, Poletti A. Clearance of the mutant androgen receptor in motoneuronal models of spinal and bulbar muscular atrophy. Neurobiol Aging 2013; 34:2585-603. [PMID: 23810450 PMCID: PMC3748343 DOI: 10.1016/j.neurobiolaging.2013.05.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/23/2013] [Accepted: 05/27/2013] [Indexed: 12/13/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease caused by an abnormal expansion of a tandem CAG repeat in exon 1 of the androgen receptor (AR) gene that results in an abnormally long polyglutamine tract (polyQ) in the AR protein. As a result, the mutant AR (ARpolyQ) misfolds, forming cytoplasmic and nuclear aggregates in the affected neurons. Neurotoxicity only appears to be associated with the formation of nuclear aggregates. Thus, improved ARpolyQ cytoplasmic clearance, which indirectly decreases ARpolyQ nuclear accumulation, has beneficial effects on affected motoneurons. In addition, increased ARpolyQ clearance contributes to maintenance of motoneuron proteostasis and viability, preventing the blockage of the proteasome and autophagy pathways that might play a role in the neuropathy in SBMA. The expression of heat shock protein B8 (HspB8), a member of the small heat shock protein family, is highly induced in surviving motoneurons of patients affected by motoneuron diseases, where it seems to participate in the stress response aimed at cell protection. We report here that HspB8 facilitates the autophagic removal of misfolded aggregating species of ARpolyQ. In addition, though HspB8 does not influence p62 and LC3 (two key autophagic molecules) expression, it does prevent p62 bodies formation, and restores the normal autophagic flux in these cells. Interestingly, trehalose, a well-known autophagy stimulator, induces HspB8 expression, suggesting that HspB8 might act as one of the molecular mediators of the proautophagic activity of trehalose. Collectively, these data support the hypothesis that treatments aimed at restoring a normal autophagic flux that result in the more efficient clearance of mutant ARpolyQ might produce beneficial effects in SBMA patients.
Collapse
Affiliation(s)
- Paola Rusmini
- Sezione di Biomedicina e Endocrinologia, Dipartimento di Scienze Farmacologiche e Biomolecolari, Centro di Eccellenza sulle Malattie Neurodegenerative, Universita' degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Margulis BA, Vigont V, Lazarev VF, Kaznacheyeva EV, Guzhova IV. Pharmacological protein targets in polyglutamine diseases: mutant polypeptides and their interactors. FEBS Lett 2013; 587:1997-2007. [PMID: 23684638 DOI: 10.1016/j.febslet.2013.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/18/2022]
Abstract
Polyglutamine diseases are a group of pathologies affecting different parts of the brain and causing dysfunction and atrophy of certain neural cell populations. These diseases stem from mutations in various cellular genes that result in the synthesis of proteins with extended polyglutamine tracts. In particular, this concerns huntingtin, ataxins, and androgen receptor. These mutant proteins can form oligomers, aggregates, and, finally, aggresomes with distinct functions and different degrees of cytotoxicity. In this review, we analyze the effects of different forms of polyQ proteins on other proteins and their functions, which are considered as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, St. Petersburg 194064, Russia
| | | | | | | | | |
Collapse
|
24
|
Gsponer J, Babu M. Cellular strategies for regulating functional and nonfunctional protein aggregation. Cell Rep 2012; 2:1425-37. [PMID: 23168257 PMCID: PMC3607227 DOI: 10.1016/j.celrep.2012.09.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/23/2012] [Accepted: 09/27/2012] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier’s principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control.
Collapse
Affiliation(s)
- Jörg Gsponer
- Centre for High-Throughput Biology, Department of Biochemistry and Molecular Biology, University of British Columbia, East Mall, Vancouver V6T 1Z4, Canada
- Corresponding author
| | - M. Madan Babu
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
- Corresponding author
| |
Collapse
|
25
|
Switonski PM, Szlachcic WJ, Gabka A, Krzyzosiak WJ, Figiel M. Mouse models of polyglutamine diseases in therapeutic approaches: review and data table. Part II. Mol Neurobiol 2012; 46:430-66. [PMID: 22944909 PMCID: PMC3461214 DOI: 10.1007/s12035-012-8316-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 07/29/2012] [Indexed: 12/13/2022]
Abstract
Mouse models of human diseases are created both to understand the pathogenesis of the disorders and to find successful therapies for them. This work is the second part in a series of reviews of mouse models of polyglutamine (polyQ) hereditary disorders and focuses on in vivo experimental therapeutic approaches. Like part I of the polyQ mouse model review, this work is supplemented with a table that contains data from experimental studies of therapeutic approaches in polyQ mouse models. The aim of this review was to characterize the benefits and outcomes of various therapeutic strategies in mouse models. We examine whether the therapeutic strategies are specific to a single disease or are applicable to more than one polyQ disorder in mouse models. In addition, we discuss the suitability of mouse models in therapeutic approaches. Although the majority of therapeutic studies were performed in mouse models of Huntington disease, similar strategies were also used in other disease models.
Collapse
Affiliation(s)
- Pawel M Switonski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | | | | | | | | |
Collapse
|
26
|
Miettinen MS, Knecht V, Monticelli L, Ignatova Z. Assessing polyglutamine conformation in the nucleating event by molecular dynamics simulations. J Phys Chem B 2012; 116:10259-65. [PMID: 22770401 DOI: 10.1021/jp305065c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polyglutamine (polyQ) diseases comprise a group of dominantly inherited pathology caused by an expansion of an unstable polyQ stretch which is presumed to form β-sheets. Similar to other amyloid pathologies, polyQ amyloidogenesis occurs via a nucleated polymerization mechanism, and proceeds through energetically unfavorable nucleus whose existence and structure are difficult to detect. Here, we use atomistic molecular dynamics simulations in explicit solvent to assess the conformation of the polyQ stretch in the nucleus that initiates polyQ fibrillization. Comparison of the kinetic stability of various structures of polyQ peptide with a Q-length in the pathological range (Q40) revealed that steric zipper or nanotube-like structures (β-nanotube or β-pseudohelix) are not kinetically stable enough to serve as a template to initiate polyQ fibrillization as opposed to β-hairpin-based (β-sheet and β-sheetstack) or α-helical conformations. The selection of different structures of the polyQ stretch in the aggregation-initiating event may provide an alternative explanation for polyQ aggregate polymorphism.
Collapse
Affiliation(s)
- Markus S Miettinen
- Institute of Biochemistry and Biology, University of Potsdam , Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | | | | | |
Collapse
|
27
|
Petrakis S, Raskó T, Russ J, Friedrich RP, Stroedicke M, Riechers SP, Muehlenberg K, Möller A, Reinhardt A, Vinayagam A, Schaefer MH, Boutros M, Tricoire H, Andrade-Navarro MA, Wanker EE. Identification of human proteins that modify misfolding and proteotoxicity of pathogenic ataxin-1. PLoS Genet 2012; 8:e1002897. [PMID: 22916034 PMCID: PMC3420947 DOI: 10.1371/journal.pgen.1002897] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 07/02/2012] [Indexed: 02/06/2023] Open
Abstract
Proteins with long, pathogenic polyglutamine (polyQ) sequences have an enhanced propensity to spontaneously misfold and self-assemble into insoluble protein aggregates. Here, we have identified 21 human proteins that influence polyQ-induced ataxin-1 misfolding and proteotoxicity in cell model systems. By analyzing the protein sequences of these modifiers, we discovered a recurrent presence of coiled-coil (CC) domains in ataxin-1 toxicity enhancers, while such domains were not present in suppressors. This suggests that CC domains contribute to the aggregation- and toxicity-promoting effects of modifiers in mammalian cells. We found that the ataxin-1-interacting protein MED15, computationally predicted to possess an N-terminal CC domain, enhances spontaneous ataxin-1 aggregation in cell-based assays, while no such effect was observed with the truncated protein MED15ΔCC, lacking such a domain. Studies with recombinant proteins confirmed these results and demonstrated that the N-terminal CC domain of MED15 (MED15CC) per se is sufficient to promote spontaneous ataxin-1 aggregation in vitro. Moreover, we observed that a hybrid Pum1 protein harboring the MED15CC domain promotes ataxin-1 aggregation in cell model systems. In strong contrast, wild-type Pum1 lacking a CC domain did not stimulate ataxin-1 polymerization. These results suggest that proteins with CC domains are potent enhancers of polyQ-mediated protein misfolding and aggregation in vitro and in vivo.
Collapse
Affiliation(s)
- Spyros Petrakis
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Tamás Raskó
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jenny Russ
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Ralf P. Friedrich
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Martin Stroedicke
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | - Katja Muehlenberg
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Angeli Möller
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Anita Reinhardt
- Unité BFA (EAC 7059), Université Paris Diderot-Paris7/CNRS, Paris, France
| | | | - Martin H. Schaefer
- Computational Biology and Data Mining, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany
| | - Hervé Tricoire
- Unité BFA (EAC 7059), Université Paris Diderot-Paris7/CNRS, Paris, France
| | | | - Erich E. Wanker
- Neuroproteomics, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- * E-mail:
| |
Collapse
|
28
|
LANP mediates neuritic pathology in Spinocerebellar ataxia type 1. Neurobiol Dis 2012; 48:526-32. [PMID: 22884877 DOI: 10.1016/j.nbd.2012.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/30/2012] [Accepted: 07/25/2012] [Indexed: 01/18/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease that results from a pathogenic glutamine-repeat expansion in the protein ataxin-1 (ATXN1). Although the functions of ATXN1 are still largely unknown, there is evidence to suggest that ATXN1 plays a role in regulating gene expression, the earliest process known to go awry in SCA1 mouse models. In this study, we show that ATXN1 reduces histone acetylation, a post-translational modification of histones associated with enhanced transcription, and represses histone acetyl transferase-mediated transcription. In addition, we find that depleting the Leucine-rich Acidic Nuclear Protein (LANP)-an ATXN1 binding inhibitor of histone acetylation-reverses aspects of SCA1 neuritic pathology.
Collapse
|
29
|
Skibinski GA, Boyd L. Ubiquitination is involved in secondary growth, not initial formation of polyglutamine protein aggregates in C. elegans. BMC Cell Biol 2012; 13:10. [PMID: 22494772 PMCID: PMC3368771 DOI: 10.1186/1471-2121-13-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 04/11/2012] [Indexed: 11/13/2022] Open
Abstract
Background Protein misfolding and subsequent aggregation are hallmarks of several human diseases. The cell has a variety of mechanisms for coping with misfolded protein stress, including ubiquitin-mediated protein degradation. In fact, the presence of ubiquitin at protein aggregates is a common feature of protein misfolding diseases. Ubiquitin conjugating enzymes (UBCs) are part of the cascade of enzymes responsible for the regulated attachment of ubiquitin to protein substrates. The specific UBC used during ubiquitination can determine the type of polyubiquitin chain linkage, which in turn plays an important role in determining the fate of the ubiquitinated protein. Thus, UBCs may serve an important role in the cellular response to misfolded proteins and the fate of protein aggregates. Results The Q82 strain of C. elegans harbors a transgene encoding an aggregation prone tract of 82 glutamine residues fused to green fluorescent protein (Q82::GFP) that is expressed in the body wall muscle. When measured with time-lapse microscopy in young larvae, the initial formation of individual Q82::GFP aggregates occurs in approximately 58 minutes. This process is largely unaffected by a mutation in the C. elegans E1 ubiquitin activating enzyme. RNAi of ubc-22, a nematode homolog of E2-25K, resulted in higher pre-aggregation levels of Q82::GFP and a faster initial aggregation rate relative to control. Knockdown of ubc-1 (RAD6 homolog), ubc-13, and uev-1 did not affect the kinetics of initial aggregation. However, RNAi of ubc-13 decreases the rate of secondary growth of the aggregate. This result is consistent with previous findings that aggregates in young adult worms are smaller after ubc-13 RNAi. mCherry::ubiquitin becomes localized to Q82::GFP aggregates during the fourth larval (L4) stage of life, a time point long after most aggregates have formed. FLIP and FRAP analysis indicate that mCherry::ubiquitin is considerably more mobile than Q82::GFP within aggregates. Conclusions These data indicate that initial formation of Q82::GFP aggregates in C. elegans is not directly dependent on ubiquitination, but is more likely a spontaneous process driven by biophysical properties in the cytosol such as the concentration of the aggregating species. The effect of ubiquitination appears to be most significant in later, secondary aggregate growth.
Collapse
Affiliation(s)
- Gregory A Skibinski
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville AL 35899, USA.
| | | |
Collapse
|
30
|
Atkin TA, Brandon NJ, Kittler JT. Disrupted in Schizophrenia 1 forms pathological aggresomes that disrupt its function in intracellular transport. Hum Mol Genet 2012; 21:2017-28. [DOI: 10.1093/hmg/dds018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Wetzel R. Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 2012; 421:466-90. [PMID: 22306404 DOI: 10.1016/j.jmb.2012.01.030] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/18/2012] [Indexed: 01/08/2023]
Abstract
Polyglutamine (polyQ) sequences of unknown normal function are present in a significant number of proteins, and their repeat expansion is associated with a number of genetic neurodegenerative diseases. PolyQ solution structure and properties are important not only because of the normal and abnormal biology associated with these sequences but also because they represent an interesting case of a biologically relevant homopolymer. As the common thread in expanded polyQ repeat diseases, it is important to understand the structure and properties of simple polyQ sequences. At the same time, experience has shown that sequences attached to polyQ, whether in artificial constructs or in disease proteins, can influence structure and properties. The two major contenders for the molecular source of the neurotoxicity implicit in polyQ expansion within disease proteins are a populated toxic conformation in the monomer ensemble and a toxic aggregated species. This review summarizes experimental and computational studies on the solution structure and aggregation properties of both simple and complex polyQ sequences, and their repeat-length dependence. As a representative of complex polyQ proteins, the behavior of huntingtin N-terminal fragments, such as exon-1, receives special attention.
Collapse
Affiliation(s)
- Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
32
|
Polling S, Hill AF, Hatters DM. Polyglutamine aggregation in Huntington and related diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:125-40. [PMID: 23560308 DOI: 10.1007/978-1-4614-5434-2_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyglutamine (polyQ)-expansions in different proteins cause nine neurodegenerative diseases. While polyQ aggregation is a key pathological hallmark of these diseases, how aggregation relates to pathogenesis remains contentious. In this chapter, we review what is known about the aggregation process and how cells respond and interact with the polyQ-expanded proteins. We cover detailed biophysical and structural studies to uncover the intrinsic features of polyQ aggregates and concomitant effects in the cellular environment. We also examine the functional consequences ofpolyQ aggregation and how cells may attempt to intervene and guide the aggregation process.
Collapse
Affiliation(s)
- Saskia Polling
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
33
|
Hinz J, Lehnhardt L, Zakrzewski S, Zhang G, Ignatova Z. Polyglutamine expansion alters the dynamics and molecular architecture of aggregates in dentatorubropallidoluysian atrophy. J Biol Chem 2011; 287:2068-78. [PMID: 22134925 DOI: 10.1074/jbc.m111.318915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Preferential accumulation of mutant proteins in the nucleus has been suggested to be the molecular culprit that confers cellular toxicity in the neurodegenerative disorders caused by polyglutamine (polyQ) expansion. Here, we use dynamic imaging approaches, orthogonal cross-seeding, and composition analysis to examine the dynamics and structure of nuclear and cytoplasmic inclusions of atrophin-1, implicated in dentatorubropallidoluysian atrophy, a polyQ-based disease with complex clinical features. Our results reveal a large heterogeneity in the dynamics of the nuclear inclusions compared with the compact and immobile cytoplasmic aggregates. At least two types of inclusions of expanded atrophin-1 with different mobility of the molecular species and ability to exchange with the surrounding monomer pool coexist in the nucleus. Intriguingly, the enrichment of nuclear inclusions with slow dynamics parallels changes in the aggregate core architecture that are dominated by the polyQ stretch. We propose that the observed complexity in the dynamics of the nuclear inclusions provides a molecular explanation for the enhanced cellular toxicity of the nuclear aggregates in polyQ-based neurodegeneration.
Collapse
Affiliation(s)
- Justyna Hinz
- Institute of Biochemistry and Biology, University of Potsdam, 14467 Potsdam, Germany
| | | | | | | | | |
Collapse
|
34
|
Kubota H, Kitamura A, Nagata K. Analyzing the aggregation of polyglutamine-expansion proteins and its modulation by molecular chaperones. Methods 2011; 53:267-74. [DOI: 10.1016/j.ymeth.2010.12.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 01/23/2023] Open
|
35
|
Borwankar T, Röthlein C, Zhang G, Techen A, Dosche C, Ignatova Z. Natural Osmolytes Remodel the Aggregation Pathway of Mutant Huntingtin Exon 1. Biochemistry 2011; 50:2048-60. [DOI: 10.1021/bi1018368] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tejas Borwankar
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Christoph Röthlein
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Gong Zhang
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Anne Techen
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Carsten Dosche
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Zoya Ignatova
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| |
Collapse
|
36
|
Hartig SM, He B, Long W, Buehrer BM, Mancini MA. Homeostatic levels of SRC-2 and SRC-3 promote early human adipogenesis. ACTA ACUST UNITED AC 2011; 192:55-67. [PMID: 21220509 PMCID: PMC3019557 DOI: 10.1083/jcb.201004026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The related coactivators SRC-2 and SRC-3 interact with peroxisome proliferator activated receptor γ (PPARγ) to coordinate transcriptional circuits to promote adipogenesis. To identify potential coactivator redundancy during human adipogenesis at single cell resolution, we used high content analysis to quantify links between PPARγ, SRC-2, SRC-3, and lipogenesis. Because we detected robust increases and significant cell-cell heterogeneity in PPARγ and lipogenesis, without changes in SRC-2 or SRC-3, we hypothesized that permissive coregulator levels comprise a necessary adipogenic equilibrium. We probed this equilibrium by down-regulating SRC-2 and SRC-3 while simultaneously quantifying PPARγ. Individual or joint knockdown equally inhibits lipid accumulation by preventing lipogenic gene engagement, without affecting PPARγ protein levels. Supporting dominant, pro-adipogenic roles for SRC-2 and SRC-3, SRC-1 knockdown does not affect adipogenesis. SRC-2 and SRC-3 knockdown increases the proportion of cells in a PPARγ(hi)/lipid(lo) state while increasing phospho-PPARγ-S114, an inhibitor of PPARγ transcriptional activity and adipogenesis. Together, we demonstrate that SRC-2 and SRC-3 concomitantly promote human adipocyte differentiation by attenuating phospho-PPARγ-S114 and modulating PPARγ cellular heterogeneity.
Collapse
Affiliation(s)
- Sean M Hartig
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
37
|
Lajoie P, Snapp EL. Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS One 2010; 5:e15245. [PMID: 21209946 PMCID: PMC3011017 DOI: 10.1371/journal.pone.0015245] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/16/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Aggregation and cytotoxicity of mutant proteins containing an expanded number of polyglutamine (polyQ) repeats is a hallmark of several diseases, including Huntington's disease (HD). Within cells, mutant Huntingtin (mHtt) and other polyglutamine expansion mutant proteins exist as monomers, soluble oligomers, and insoluble inclusion bodies (IBs). Determining which of these forms constitute a toxic species has proven difficult. Recent studies support a role for IBs as a cellular coping mechanism to sequester levels of potentially toxic soluble monomeric and oligomeric species of mHtt. METHODOLOGY/PRINCIPAL FINDINGS When fused to a fluorescent reporter (GFP) and expressed in cells, the soluble monomeric and oligomeric polyglutamine species are visually indistinguishable. Here, we describe two complementary biophysical fluorescence microscopy techniques to directly detect soluble polyglutamine oligomers (using Htt exon 1 or Htt(ex1)) and monitor their fates in live cells. Photobleaching analyses revealed a significant reduction in the mobilities of mHtt(ex1) variants consistent with their incorporation into soluble microcomplexes. Similarly, when fused to split-GFP constructs, both wildtype and mHtt(ex1) formed oligomers, as evidenced by the formation of a fluorescent reporter. Only the mHtt(ex1) split-GFP oligomers assembled into IBs. Both FRAP and split-GFP approaches confirmed the ability of mHtt(ex1) to bind and incorporate wildtype Htt into soluble oligomers. We exploited the irreversible binding of split-GFP fragments to forcibly increase levels of soluble oligomeric mHtt(ex1). A corresponding increase in the rate of IBs formation and the number formed was observed. Importantly, higher levels of soluble mHtt(ex1) oligomers significantly correlated with increased mutant cytotoxicity, independent of the presence of IBs. CONCLUSIONS/SIGNIFICANCE Our study describes powerful and sensitive tools for investigating soluble oligomeric forms of expanded polyglutamine proteins, and their impact on cell viability. Moreover, these methods should be applicable for the detection of soluble oligomers of a wide variety of aggregation prone proteins.
Collapse
Affiliation(s)
- Patrick Lajoie
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erik Lee Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
38
|
Assessing mutant huntingtin fragment and polyglutamine aggregation by atomic force microscopy. Methods 2010; 53:275-84. [PMID: 21187152 DOI: 10.1016/j.ymeth.2010.12.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/18/2010] [Accepted: 12/18/2010] [Indexed: 01/01/2023] Open
Abstract
Huntington disease (HD), a neurodegenerative disorder, is caused by an expansion of more than 35-40 polyglutamine (polyQ) repeats located near the N-terminus of the huntingtin (htt) protein. The expansion of the polyQ domain results in the ordered assembly of htt fragments into fibrillar aggregates that are the main constituents of inclusion bodies, which are a hallmark of the disease. This paper describes protocols for studying the aggregation of mutant htt fragments and synthetic polyQ peptides with atomic force microscopy (AFM). Ex situ AFM is used to characterize aggregate formation in protein incubation as a function of time. Methods to quickly and unambiguously distinguish specific aggregate species from complex, heterogeneous aggregation reactions based on simple morphological features are presented. Finally, the application of time lapse atomic force microscopy in solution is presented for studying synthetic model polyQ peptides, which allows for tracking the formation and fate of individual aggregates on surfaces over time. This ability allows for dynamic studies of the aggregation process and direct observation of the interplay between different types of aggregates.
Collapse
|
39
|
Gies E, Wilde I, Winget JM, Brack M, Rotblat B, Novoa CA, Balgi AD, Sorensen PH, Roberge M, Mayor T. Niclosamide prevents the formation of large ubiquitin-containing aggregates caused by proteasome inhibition. PLoS One 2010; 5:e14410. [PMID: 21203451 PMCID: PMC3009716 DOI: 10.1371/journal.pone.0014410] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 12/02/2010] [Indexed: 12/16/2022] Open
Abstract
Background Protein aggregation is a hallmark of many neurodegenerative diseases and has been linked to the failure to degrade misfolded and damaged proteins. In the cell, aberrant proteins are degraded by the ubiquitin proteasome system that mainly targets short-lived proteins, or by the lysosomes that mostly clear long-lived and poorly soluble proteins. Both systems are interconnected and, in some instances, autophagy can redirect proteasome substrates to the lysosomes. Principal Findings To better understand the interplay between these two systems, we established a neuroblastoma cell population stably expressing the GFP-ubiquitin fusion protein. We show that inhibition of the proteasome leads to the formation of large ubiquitin-containing inclusions accompanied by lower solubility of the ubiquitin conjugates. Strikingly, the formation of the ubiquitin-containing aggregates does not require ectopic expression of disease-specific proteins. Moreover, formation of these focused inclusions caused by proteasome inhibition requires the lysine 63 (K63) of ubiquitin. We then assessed selected compounds that stimulate autophagy and found that the antihelmintic chemical niclosamide prevents large aggregate formation induced by proteasome inhibition, while the prototypical mTORC1 inhibitor rapamycin had no apparent effect. Niclosamide also precludes the accumulation of poly-ubiquitinated proteins and of p62 upon proteasome inhibition. Moreover, niclosamide induces a change in lysosome distribution in the cell that, in the absence of proteasome activity, may favor the uptake into lysosomes of ubiquitinated proteins before they form large aggregates. Conclusions Our results indicate that proteasome inhibition provokes the formation of large ubiquitin containing aggregates in tissue culture cells, even in the absence of disease specific proteins. Furthermore our study suggests that the autophagy-inducing compound niclosamide may promote the selective clearance of ubiquitinated proteins in the absence of proteasome activity.
Collapse
Affiliation(s)
- Esther Gies
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Inga Wilde
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason M. Winget
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria Brack
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Barak Rotblat
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Arias Novoa
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aruna D. Balgi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
40
|
Mallik M, Lakhotia SC. Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models. J Genet 2010; 89:497-526. [DOI: 10.1007/s12041-010-0072-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Hands SL, Wyttenbach A. Neurotoxic protein oligomerisation associated with polyglutamine diseases. Acta Neuropathol 2010; 120:419-37. [PMID: 20514488 DOI: 10.1007/s00401-010-0703-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/20/2010] [Accepted: 05/23/2010] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are associated with a CAG/polyQ expansion mutation in unrelated proteins. Upon elongation of the glutamine tract, disease proteins aggregate within cells, mainly in the central nervous system (CNS) and this aggregation process is associated with neurotoxicity. However, it remains unclear to what extent and how this aggregation causes neuronal dysfunction in the CNS. Aiming at preventing neuronal dysfunction, it will be crucial to determine the links between aggregation and cellular dysfunction, understand the folding pathway of polyQ proteins and discover the relative neurotoxicity of polyQ protein species formed along the aggregation pathway. Here, we review what is known about conformations of polyQ peptides and proteins in their monomeric state from experimental and modelling data, how conformational changes of polyQ proteins relate to their oligomerisation and morphology of aggregates and which cellular function are impaired by oligomers, in vitro and in vivo. We also summarise the key modulatory cellular mechanisms and co-factors, which could affect the folding pathway and kinetics of polyQ aggregation. Although many studies have investigated the relationship between polyQ aggregation and toxicity, these have mainly focussed on investigating changes in the formation of the classical hallmark of polyQ diseases, i.e. microscopically visible inclusion bodies. However, recent studies in which oligomeric species have been considered start to shed light on the identity of neurotoxic oligomeric species. Initial evidence suggests that conformational changes induced by polyQ expansions and their surrounding sequence lead to the formation of particular oligomeric intermediates that may differentially affect neurotoxicity.
Collapse
Affiliation(s)
- Sarah L Hands
- Southampton Neuroscience Group, School of Biological Sciences, University of Southampton, Southampton SO16 7PX, UK
| | | |
Collapse
|
42
|
Salomons FA, Acs K, Dantuma NP. Illuminating the ubiquitin/proteasome system. Exp Cell Res 2010; 316:1289-95. [PMID: 20149791 DOI: 10.1016/j.yexcr.2010.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/01/2010] [Indexed: 12/01/2022]
Abstract
The ubiquitin/proteasome system (UPS) is responsible for the regulated processive degradation of proteins residing in the cytosol, nucleus, and endoplasmic reticulum. The two central players are ubiquitin, a small protein that is conjugated to substrates, and the proteasome, a large multi-subunit proteolytic complex that executes degradation of ubiquitylated proteins. Ubiquitylation and proteasomal degradation are highly dynamic processes. During the last decade, many researchers have started taking advantage of fluorescent proteins, which allow studying the dynamic nature of this system in the context of its natural environment: the living cell. In this review, we will summarize studies that have implemented this approach to examine the UPS and discuss novel insights in the dynamic organization of the UPS.
Collapse
Affiliation(s)
- Florian A Salomons
- Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | |
Collapse
|
43
|
|
44
|
Nucleolar disruption impairs Kaposi's sarcoma-associated herpesvirus ORF57-mediated nuclear export of intronless viral mRNAs. FEBS Lett 2009; 583:3549-56. [DOI: 10.1016/j.febslet.2009.10.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/25/2009] [Accepted: 10/12/2009] [Indexed: 11/17/2022]
|
45
|
Virus-Induced Chaperone-Enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS Pathog 2009; 5:e1000619. [PMID: 19816571 PMCID: PMC2752995 DOI: 10.1371/journal.ppat.1000619] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/14/2009] [Indexed: 12/11/2022] Open
Abstract
Virus-Induced Chaperone-Enriched (VICE) domains form adjacent to nuclear viral replication compartments (RC) during the early stages of HSV-1 infection. Between 2 and 3 hours post infection at a MOI of 10, host protein quality control machinery such as molecular chaperones (e.g. Hsc70), the 20S proteasome and ubiquitin are reorganized from a diffuse nuclear distribution pattern to sequestration in VICE domains. The observation that VICE domains contain putative misfolded proteins suggests that they may be similar to nuclear inclusion bodies that form under conditions in which the protein quality control machinery is overwhelmed by the presence of misfolded proteins. The detection of Hsc70 in VICE domains, but not in nuclear inclusion bodies, indicates that Hsc70 is specifically reorganized by HSV-1 infection. We hypothesize that HSV-1 infection induces the formation of nuclear protein quality control centers to remodel or degrade aberrant nuclear proteins that would otherwise interfere with productive infection. Detection of proteolytic activity in VICE domains suggests that substrates may be degraded by the 20S proteasome in VICE domains. FRAP analysis reveals that GFP-Hsc70 is dynamically associated with VICE domains, suggesting a role for Hsc70 in scanning the infected nucleus for misfolded proteins. During 42°C heat shock, Hsc70 is redistributed from VICE domains into RC perhaps to remodel viral replication and regulatory proteins that have become insoluble in these compartments. The experiments presented in this paper suggest that VICE domains are nuclear protein quality control centers that are modified by HSV-1 to promote productive infection. Protein quality control is a protective cellular mechanism by which damaged proteins are refolded or degraded so that they cannot interfere with essential cellular processes. In the event that protein quality control machinery cannot refold or degrade damaged proteins, sequestration of misfolded protein is an alternative protective mechanism for reducing the toxic effects of misfolded protein. Several neurological diseases result from the accumulation of toxic misfolded proteins that cannot be efficiently refolded or degraded. In neurons from patients afflicted with Huntington's disease, misfolded huntingtin protein is sequestered in large aggregates in the nucleus called inclusion bodies. Inclusion bodies also contain protein quality control machinery including molecular chaperones, the proteasome and ubiquitin. Here we report that analogous structures called Virus-Induced Chaperone-Enriched (VICE) domains form in the nucleus of cells infected with Herpes Simplex Virus type 1 (HSV-1). VICE domains contain misfolded protein, chaperones and protein degradation activity. VICE domain formation is efficient in infected cells taxed with high levels of viral protein production. We hypothesize that misfolded proteins that arise in HSV-1-infected cells are sequestered in VICE domains to promote remodeling of misfolded proteins.
Collapse
|
46
|
Jung J, Xu K, Lessing D, Bonini NM. Preventing Ataxin-3 protein cleavage mitigates degeneration in a Drosophila model of SCA3. Hum Mol Genet 2009; 18:4843-52. [PMID: 19783548 PMCID: PMC2778376 DOI: 10.1093/hmg/ddp456] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein cleavage is a common feature in human neurodegenerative disease. Ataxin-3 protein with an expanded polyglutamine (polyQ) repeat causes spinocerebellar ataxia type-3 (SCA3), also called Machado–Joseph disease, and is cleaved in mammalian cells, transgenic mice and SCA3 patient brain tissue. However, the pathological significance of Ataxin-3 cleavage has not been carefully examined. To gain insight into the significance of Ataxin-3 cleavage, we developed a Drosophila SL2 cell-based model as well as transgenic fly models. Our data indicate that Ataxin-3 protein cleavage is conserved in the fly and may be caspase-dependent as reported previously. Importantly, comparison of flies expressing either wild-type or caspase-site mutant proteins indicates that Ataxin-3 cleavage enhances neuronal loss in vivo. This genetic in vivo confirmation of the pathological role of Ataxin-3 cleavage indicates that therapies targeting Ataxin-3 cleavage might slow disease progression in SCA3 patients.
Collapse
Affiliation(s)
- Joonil Jung
- Department of Biology and University of Pennsylvania
| | - Kexiang Xu
- Department of Biology and University of Pennsylvania
| | - Derek Lessing
- Department of Biology and University of Pennsylvania
- Howard Hughes Medical Institute, Philadelphila, PA 19104-6018, USA
| | - Nancy M. Bonini
- Department of Biology and University of Pennsylvania
- Howard Hughes Medical Institute, Philadelphila, PA 19104-6018, USA
- To whom correspondence should be addressed at: Department of Biology, University of Pennsylvania, Howard Hughes Medical Institute, Philadelphia, PA 19104-6018, USA. Tel: +1 2155739267; Fax: +1 2155735754;
| |
Collapse
|
47
|
Bauer PO, Nukina N. The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 2009; 110:1737-65. [PMID: 19650870 DOI: 10.1111/j.1471-4159.2009.06302.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Expansion of CAG trinucleotide repeat within the coding region of several genes results in the production of proteins with expanded polyglutamine (PolyQ) stretch. The expression of these pathogenic proteins leads to PolyQ diseases, such as Huntington's disease or several types of spinocerebellar ataxias. This family of neurodegenerative disorders is characterized by constant progression of the symptoms and molecularly, by the accumulation of mutant proteins inside neurons causing their dysfunction and eventually death. So far, no effective therapy actually preventing the physical and/or mental decline has been developed. Experimental therapeutic strategies either target the levels or processing of mutant proteins in an attempt to prevent cellular deterioration, or they are aimed at the downstream pathologic effects to reverse or ameliorate the caused damages. Certain pathomechanistic aspects of PolyQ disorders are discussed here. Relevance of disease models and recent knowledge of therapeutic possibilities is reviewed and updated.
Collapse
Affiliation(s)
- Peter O Bauer
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan
| | | |
Collapse
|
48
|
Montie HL, Cho MS, Holder L, Liu Y, Tsvetkov AS, Finkbeiner S, Merry DE. Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 2009; 18:1937-50. [PMID: 19279159 PMCID: PMC2678926 DOI: 10.1093/hmg/ddp115] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/19/2009] [Accepted: 03/09/2009] [Indexed: 01/03/2023] Open
Abstract
The nucleus is the primary site of protein aggregation in many polyglutamine diseases, suggesting a central role in pathogenesis. In SBMA, the nucleus is further implicated by the critical role for disease of androgens, which promote the nuclear translocation of the mutant androgen receptor (AR). To clarify the importance of the nucleus in SBMA, we genetically manipulated the nuclear localization signal of the polyglutamine-expanded AR. Transgenic mice expressing this mutant AR displayed inefficient nuclear translocation and substantially improved motor function compared with SBMA mice. While we found that nuclear localization of polyglutamine-expanded AR is required for SBMA, we also discovered, using cell models of SBMA, that it is insufficient for both aggregation and toxicity and requires androgens for these disease features. Through our studies of cultured motor neurons, we further found that the autophagic pathway was able to degrade cytoplasmically retained expanded AR and represents an endogenous neuroprotective mechanism. Moreover, pharmacologic induction of autophagy rescued motor neurons from the toxic effects of even nuclear-residing mutant AR, suggesting a therapeutic role for autophagy in this nucleus-centric disease. Thus, our studies firmly establish that polyglutamine-expanded AR must reside within nuclei in the presence of its ligand to cause SBMA. They also highlight a mechanistic basis for the requirement for nuclear localization in SBMA neurotoxicity, namely the lack of mutant AR removal by the autophagic protein degradation pathway.
Collapse
Affiliation(s)
- Heather L. Montie
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria S. Cho
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Latia Holder
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yuhong Liu
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Taube-Koret Center for Huntington's Disease Research, San Francisco, CA, USA
- Department of Neurology
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Diane E. Merry
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
49
|
Genetics and Pathogenesis of Inherited Ataxias and Spastic Paraplegias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:263-96. [DOI: 10.1007/978-90-481-2813-6_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Mitra S, Tsvetkov AS, Finkbeiner S. Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in huntington disease. J Biol Chem 2008; 284:4398-403. [PMID: 19074152 DOI: 10.1074/jbc.m806269200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accumulation of mutant protein in intracellular aggregates is a common feature of neurodegenerative disease. In Huntington disease, mutant huntingtin leads to inclusion body (IB) formation and neuronal toxicity. Impairment of the ubiquitin-proteasome system (UPS) has been implicated in IB formation and Huntington disease pathogenesis. However, IBs form asynchronously in only a subset of cells with mutant huntingtin, and the relationship between IB formation and UPS function has been difficult to elucidate. Here, we applied single-cell longitudinal acquisition and analysis to monitor mutant huntingtin IB formation, UPS function, and neuronal toxicity. We found that proteasome inhibition is toxic to striatal neurons in a dose-dependent fashion. Before IB formation, the UPS is more impaired in neurons that go on to form IBs than in those that do not. After forming IBs, impairment is lower in neurons with IBs than in those without. These findings suggest IBs are a protective cellular response to mutant protein mediated in part by improving intracellular protein degradation.
Collapse
Affiliation(s)
- Siddhartha Mitra
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA
| | | | | |
Collapse
|