1
|
Yadav B, Ravikanth M. Synthesis of anthracene-bridged expanded rosarin. Org Biomol Chem 2024; 22:7607-7611. [PMID: 39196538 DOI: 10.1039/d4ob01283f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The newly synthesized precursor 1,8-di(1H-pyrrol-2-yl)anthracene was condensed with pentafluorobenzaldehyde under acid-catalyzed conditions to afford the first example of a unique anthracenyl-bridged rosarin. The X-ray structure revealed a coil-like arrangement of three dipyrromethene moieties and three anthracenyl units in the rosarin framework, which exhibits a weak fluorescence at 676 nm.
Collapse
Affiliation(s)
- Bharti Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Mangalampalli Ravikanth
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
2
|
Rao Y, Lee J, Chen J, Xu L, Zhou M, Yin B, Kim J, Osuka A, Song J. 5,18-Dimesitylorangarin: a Stable Antiaromatic [20]Pentaphyrin(1.0.1.0.0) Displaying Remarkable Oxidative Self-Coupling Reactions. Angew Chem Int Ed Engl 2024; 63:e202409655. [PMID: 38967990 DOI: 10.1002/anie.202409655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/07/2024]
Abstract
5,18-Dimesitylorangarin and its BF2 complex were synthesized by double SNAr reaction of 3,5-dibromo-BODIPY with 2-pyrrolydipyrrin as the first examples of meso-aryl-substituted orangarin. These orangarins, delineated as [20]pentaphyrin(1.0.1.0.0), are strongly antiaromatic but rather stable. The free base orangarin was coupled by oxidation with MnO2 to give a 11,11'-linked dimer, a cyclooctatetraene(COT)-centered trimer, and a spiro-trimer. Fused COT-centered 3H-orangarin dimer was oxidized to the corresponding 2H-orangarin dimer, which was further coupled to give a triply COT-centered 2H-orangarin tetramer. 3H-Orangarin oligomers are all antiaromatic as evinced by extremely low-field-shifted 1H NMR signals of the inner NH and ill-defined absorption spectra with broad tails. In contrast, COT-centered 2H-orangarin dimer and tetramer show moderately low-field-shifted NH signals and intense NIR absorbance over 900 nm, suggesting effective π-conjugation through the COT bridge and almost non-antiaromatic character. These orangarin oligomers exhibit many reversible redox potentials owing to the intramolecular electronic interactions. Regardless of the different aromatic characters, all the orangarin monomers and oligomers exhibit very rapid excited-state decays.
Collapse
Affiliation(s)
- Yutao Rao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jiyeon Lee
- School of Integrated Technology, College of Computing, Yonsei University, Incheon, 21983, Republic of Korea
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Republic of Korea
- Integrative Biotechnology and Translational Medicine, Graduate School, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jinchao Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Bangshao Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jiwon Kim
- School of Integrated Technology, College of Computing, Yonsei University, Incheon, 21983, Republic of Korea
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Republic of Korea
- Integrative Biotechnology and Translational Medicine, Graduate School, Yonsei University, Incheon, 21983, Republic of Korea
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
3
|
Liu Y, Xu L, Jin X, Yin B, Rao Y, Zhou M, Song J, Osuka A. The unprecedented strong paratropic ring current of a bis-Pd II complex of 5,10,23-trimesityl [28]heptaphyrin(1.1.0.0.1.0.0). Chem Sci 2024; 15:11402-11407. [PMID: 39055025 PMCID: PMC11268459 DOI: 10.1039/d4sc01909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Acid-catalyzed Friedel-Crafts-type cyclization of tetrapyrrolic BF2 complex 1 and α,α'-dibromotripyrrin 2 gave 5,10,23-trimesityl [28]heptaphyrin(1.1.0.0.1.0.0) BF2 complex 3BF2 as a stable and moderate antiaromatic macrocycle. Demetalation of 3BF2 with methanesulfonic acid followed by treatment with HCl gave free-base salt 3HCl that holds a chloride anion at the core. This salt displays a planar structure with an inverted pyrrole and a stronger paratropic ring current. Metalation of neutral free-base 3 with PdCl2 gave bis-PdII complex 3Pd2 as a stable antiaromatic molecule. The 1H NMR spectrum of 3Pd2 displays signals due to pyrrolic β-protons in the range of -1.06 ∼ -1.90 ppm, indicating the unprecedented strong paratropic ring current.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
| | - Xiaorong Jin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
| | - Bangshao Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
| | - Yutao Rao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha 410081 China
| |
Collapse
|
4
|
Salikov RF, Belyy AY, Ilyushchenko MK, Platonov DN, Sokolova AD, Tomilov YV. Antiaromaticity of Cycloheptatrienyl Anions: Structure, Acidity, and Magnetic Properties. Chemistry 2024; 30:e202401041. [PMID: 38785416 DOI: 10.1002/chem.202401041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Investigations of the nature and degree of antiaromaticity of cycloheptatrienyl anion derivatives using both experimental and computational tools are presented. The ground state of cycloheptatrienyl anion in the gas phase is triplet, planar and Baird-aromatic. In DMSO, it assumes a singlet distorted allylic form with a paratropic ring current. The other derivatives in both phases assume either allylic or diallylic conformations depending on the substituent pattern. A combination of experimental and computational methods was used to determine the pKa values of 16 derivatives in DMSO, which ranged from 36 to -10.7. We revealed that the stronger stabilization of the anionic system, which correlates with acidity, does not necessarily imply a lower degree of antiaromaticity in terms of magnetic properties. Conversely, the substitution pattern first affects the geometry of the ring through the bulkiness of the substituents and their better conjugation with a more distorted system. Consequently, the distortion reduces the cyclic conjugation in the π-system and thereby decreases the paratropic current in a magnetic field, which manifests itself as a decrease in the NICS. The triplet-state geometries and magnetic properties are nearly independent on the substitution pattern, which is typical for simple aromatic systems.
Collapse
Affiliation(s)
- Rinat F Salikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
- Department of Chemistry, Higher School of Economics National Research University, Moscow, 101000, Russian Federation
| | - Alexander Y Belyy
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| | - Matvey K Ilyushchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| | - Dmitry N Platonov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| | - Alena D Sokolova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| | - Yury V Tomilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow, 119991, Russian Federation
| |
Collapse
|
5
|
Yang YD, Zhang Q, Khrouz L, Chau CV, Yang J, Wang Y, Bucher C, Henkelman G, Gong HY, Sessler JL. Chemically Mediated Artificial Electron Transport Chain. ACS CENTRAL SCIENCE 2024; 10:1148-1155. [PMID: 38947209 PMCID: PMC11212131 DOI: 10.1021/acscentsci.4c00165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 07/02/2024]
Abstract
Electron transport chains (ETCs) are ubiquitous in nearly all living systems. Replicating the complexity and control inherent in these multicomponent systems using ensembles of small molecules opens up promising avenues for molecular therapeutics, catalyst design, and the development of innovative energy conversion and storage systems. Here, we present a noncovalent, multistep artificial electron transport chains comprising cyclo[8]pyrrole (1), a meso-aryl hexaphyrin(1.0.1.0.1.0) (naphthorosarin 2), and the small molecules I2 and trifluoroacetic acid (TFA). Specifically, we show that 1) electron transfer occurs from 1 to give I3 - upon the addition of I2, 2) proton-coupled electron transfer (PCET) from 1 to give H 3 2 •2+ and H 3 2 + upon the addition of TFA to a dichloromethane mixture of 1 and 2, and 3) that further, stepwise treatment of 1 and 2 with I2 and TFA promotes electron transport from 1 to give first I3 - and then H 3 2 •2+ and H 3 2 + . The present findings are substantiated through UV-vis-NIR, 1H NMR, electron paramagnetic resonance (EPR) spectroscopic analyses, cyclic voltammetry studies, and DFT calculations. Single-crystal structure analyses were used to characterize compounds in varying redox states.
Collapse
Affiliation(s)
- Yu-Dong Yang
- Department
of Chemistry, The University of Texas at
Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Qian Zhang
- Department
of Chemistry, The University of Texas at
Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Lhoussain Khrouz
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, Laboratoire de Chimie, Lyon 69364, France
| | - Calvin V. Chau
- Department
of Chemistry, The University of Texas at
Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Jian Yang
- Department
of Chemistry, The University of Texas at
Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Yuying Wang
- Department
of Chemistry, The University of Texas at
Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Christophe Bucher
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, Laboratoire de Chimie, Lyon 69364, France
| | - Graeme Henkelman
- Department
of Chemistry, The University of Texas at
Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Han-Yuan Gong
- College
of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian
District, Beijing 100875, P. R. China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
6
|
Queffélec C, Pati PB, Pellegrin Y. Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions. Chem Rev 2024; 124:6700-6902. [PMID: 38747613 DOI: 10.1021/acs.chemrev.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage's Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.
Collapse
Affiliation(s)
| | | | - Yann Pellegrin
- Nantes Université, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
7
|
Xue S, Dong Y, Lv X, Qiu F, Wang Y, Furuta H, Teranishi T, Wu F. Stabilization of the Neutral [25]Hexaphyrin(1.0.1.0.1.0) Radical by Hetero-Bimetal-Coordination. Chemistry 2024; 30:e202400812. [PMID: 38533748 DOI: 10.1002/chem.202400812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Stabilization of hexaphyrin(1.0.1.0.1.0) (named "rosarin") in its 25π radical state is achieved using a hetero-bimetal-coordination strategy. The antiaromatic BF2 complex B-1 was first synthesized, and then rhodium ion was inserted into B-1 to produce the BF2/Rh(CO)2 mixed complex Rh-B-1 as a highly air-stable radical. The structures of B-1 and Rh-B-1 were determined by single-crystal X-ray diffractions, and the antiaromatic or radical character was identified by various spectroscopy evidence and theoretical calculations. Rh-B-1 exhibits excellent redox properties, enabling amphoteric aromatic-antiaromatic conversion to their 24/26π states. Compared to the 24/26π conjugation systems on the same skeleton, Rh-B-1 has the narrowest electrochemical and optical band gaps, with the longest absorption band at 1010 nm. The ring-current analysis reveals intense paratropic currents for B-1 and co-existing diatropic-paratropic currents for Rh-B-1. This hetero-bimetal-coordination system provides a novel platform for organic radical stabilization on porphyrinoids, showing the prospect of modulating ligand oxidation states through rational coordination design.
Collapse
Affiliation(s)
- Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Yuting Dong
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Hiroyuki Furuta
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshiharu Teranishi
- Graduate School of Science and Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Fan Wu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
8
|
Nguyen DD, Labella J, Laforga-Martín J, Folcia CL, Ortega J, Torres T, Sierra T, Sessler JL. Columnar liquid crystals based on antiaromatic expanded porphyrins. Chem Commun (Camb) 2024; 60:3401-3404. [PMID: 38440812 DOI: 10.1039/d3cc05414d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Three naphthorosarins, antiaromatic expanded porphyrins bearing different meso substituents (NRos 1-3), designed to self-assemble into columnar liquid crystalline (LC) structures, were synthesized and characterized using polarized optical microscopy (POM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), as well as supporting computational calculations. The substituents were found to play a crucial role in modulating the LC behaviour.
Collapse
Affiliation(s)
- Duong D Nguyen
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, A5300, Austin, TX, 78712, USA.
| | - Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| | - Juan Laforga-Martín
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
| | - César L Folcia
- Department of Physics, Faculty of Science and Technology, UPV/EHU, Bilbao, Spain
| | - Josu Ortega
- Department of Physics, Faculty of Science and Technology, UPV/EHU, Bilbao, Spain
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- IMDEA-Nanociencia, Campus de Cantoblanco, Madrid 28049, Spain
| | - Teresa Sierra
- Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Química Orgánica, Facultad de Ciencias, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, A5300, Austin, TX, 78712, USA.
| |
Collapse
|
9
|
Edwin A, Krishnan G, Jayaprakash A, Pathiyil Anilkumar S, Sabapathi G. Template Assisted Formation of 32 and 34π Octaphyrins Embedded with Dithienopyrrole Cores: A New Scaffold to Unravel Proton Coupled Redox Switching and (Anti)Aromaticity. Chemistry 2024; 30:e202303326. [PMID: 38126952 DOI: 10.1002/chem.202303326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Herein, we report two distinct octaphyrins obtained by the condensation of new dithieno[3,2-b:2',3'-d]pyrrole based tetrapyrrane under two different acidic conditions. Fourfold meso-substituted octaphyrin was the major product when the reaction was performed in the presence of an aryl aldehyde using trifluoroacetic acid. Whereas, the sixfold meso-substituted octaphyrin was obtained when the precursor was condensed with pentafluorobenzaldehyde using para-toluenesulfonic acid. Such a template effect of aryl aldehydes in oxidative coupling reactions is realized for the first time in literature. Experimental and theoretical studies suggested that the oxidized form of fourfold meso-substituted octaphyrin is 32π antiaromatic and undergoes proton-coupled electron transfer (PCET) to the protonated form of 34π aromatic congener upon treatment with protic acids. Furthermore, small organic molecules such as alcohols and amines were also found to promote chemical reduction. Single crystal X-ray structure revealed that the aromatic counterpart is highly planar and stabilized by several intermolecular H-bonding and F-F interactions, leading to a large 3D supramolecular arrangement and exhibited colorimetric sensing for fluoride and hydroxide anions. On the other hand, sixfold meso-substituted octaphyrin did not show (anti)aromatic features, PCET or anion sensing, but its intriguing absorption features associated with protonation could make it an ideal candidate for pH-dependent bioimaging.
Collapse
Affiliation(s)
- Aathira Edwin
- Department of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Maruthamala P.O., Vithura, Kerala, India -, 695551
| | - Gayathri Krishnan
- Department of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Maruthamala P.O., Vithura, Kerala, India -, 695551
| | - Ajay Jayaprakash
- Department of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Maruthamala P.O., Vithura, Kerala, India -, 695551
| | - Sankeerthana Pathiyil Anilkumar
- Department of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Maruthamala P.O., Vithura, Kerala, India -, 695551
| | - Gokulnath Sabapathi
- Department of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Maruthamala P.O., Vithura, Kerala, India -, 695551
| |
Collapse
|
10
|
Li R, Mak CH, Luo K, Wang F, Liu G, Tan B, Liu G, Xu Y, Yang YD, Wei H, Huang Z, Wu L, Zhao X, Hsu HY, He Q, Sessler JL, Zhang Z. Cyclo[2]pyridine[8]pyrrole: An Expanded Porphyrinoid with Three Closed-Shell Oxidation States. J Am Chem Soc 2024; 146:3585-3590. [PMID: 38316138 DOI: 10.1021/jacs.3c10695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
We report here an expanded porphyrinoid, cyclo[2]pyridine[8]pyrrole, 1, that can exist at three closed-shell oxidation levels. Macrocycle 1 was synthesized via the oxidative coupling of two open chain precursors and fully characterized by means of NMR and UV-vis spectroscopies, MS, and X-ray crystallography. Reduction of the fully oxidized form (1, blue) with NaBH4 produced either the half-oxidized (2, teal) or fully reduced forms (3, pale yellow), depending on the amount of reducing agent used and the presence or absence of air. Reduced products 2 or 3 can be oxidized to 1 by various oxidants (quinones, FeCl3, and AgPF6). Macrocycle 1 also undergoes proton-coupled reductions with I-, Br-, Cl-, SO32-, or S2O32- in the presence of an acid. Certain thiol-containing compounds likewise reduce 1 to 2 or 3. This conversion is accompanied by a readily discernible color change, making cyclo[2]pyridine[8]pyrrole 1 able to differentiate biothiols, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH).
Collapse
Affiliation(s)
- Ruiquan Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Chun-Hong Mak
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Ke Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, China
| | - Fei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, China
| | - Guopeng Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Bingbin Tan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Gen Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yajie Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yu-Dong Yang
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-Stop A5300, Austin, Texas 78712-1224, United States
| | - Huiqi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Zhengxi Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Lamei Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xinyun Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, No. 2 Lushan Road (S), Yuelu District, Changsha 410082, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street-Stop A5300, Austin, Texas 78712-1224, United States
| | - Zhan Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
11
|
Liu Y, Xu L, Rao Y, Kim J, Yin B, Zhou M, Oh J, Kim D, Song J, Osuka A. Stable Antiaromatic [24]Hexaphyrin(1.1.0.0.1.0) and Its Metal Complexes. Org Lett 2023; 25:8121-8126. [PMID: 37930089 DOI: 10.1021/acs.orglett.3c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
5,10,23-Trimesityl-substituted [24]hexaphyrin(1.1.0.0.1.0) was synthesized as a stable antiaromatic molecule by base-catalyzed twofold SNAr reaction and was reduced to the corresponding [26]hexaphyrin, which was an unstable aromatic molecule because it easily oxidized to the [24]hexaphyrin. The [24]hexaphyrin served as a ligand to give the bis-PdII complex and tris-RhI complex with unique structures. The former complex has two square-planar-coordinated PdII ions bridged by an acetate anion and shows a strong paratropic ring current, while the latter complex has three RhI ions coordinated with two pyrrolic nitrogen atoms and two carbonyl groups, but one carbonyl group is shared with two RhI ions in a unique manner.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yutao Rao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Jinseok Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul03722, Korea
| | - Bangshao Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan 31538, Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul03722, Korea
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
12
|
Chen H, Lei Y, Xu Y, Shao M, Duan Z, Lei C. Phenanthrene-Incorporated Isoamethyrin: A Near-Planar Macrocycle That Display Enhanced Aromaticity via Protonation-Triggered Conformation Changes. J Org Chem 2023; 88:11352-11357. [PMID: 37458445 DOI: 10.1021/acs.joc.3c01098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Controlling the aromaticity in expanded porphyrins is a forefront research topic, and the strategy of using protonation-triggered conformational changes to fine-tune electronic properties and aromaticity has yet to be generalized in rigid and planar expanded porphyrins. Here, we synthesized phenanthrene-incorporated isoamethyrins that possess near-planar conformations and nonaromatic characters. However, when methanesulfonic acid (MSA) was added, geometric deformations occurred to minimize the unfavorable strain, resulting in macrocycles that were weakly aromatic as a whole.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P.R. China
| | - Yajuan Lei
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P.R. China
| | - Yan Xu
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P.R. China
| | - Min Shao
- Laboratory for Microstructures, Instrumental Analysis and Research Center of Shanghai University, Shanghai University, Shanghai 200444, P.R. China
| | - Zhiming Duan
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P.R. China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, P.R. China
| |
Collapse
|
13
|
Sahoo SS, Panda PK. Bis(naphthobipyrrolyl)methene-derived hexapyrrolic BODIPY as a single-molecule helicate with near-infrared emission. Chem Commun (Camb) 2023. [PMID: 37465935 DOI: 10.1039/d3cc02336b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Helically twisted bis(naphthobipyrrolyl)methene-derived open-chain hexapyrroles have been synthesized as HCl salts and the corresponding BODIPY. Their solid-state structures elucidated by single-crystal X-ray diffraction analysis clearly showed the presence of intramolecular hydrogen bonds, which were concluded to play a pivotal role in stabilizing the twisted conformation. Both molecules were observed to be NIR active, with the BODIPY moiety emission extending beyond 800 nm.
Collapse
Affiliation(s)
| | - Pradeepta K Panda
- School of Chemistry University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
14
|
Lv X, Gao H, Wu F, Liu N, Ueno S, Yang X, Zhang T, Aratani N, Yamada H, Qiu F, Shen Z, Xue S. Highly Robust and Antiaromatic Rhenium(I) Rosarin. Inorg Chem 2023; 62:4747-4751. [PMID: 36920034 DOI: 10.1021/acs.inorgchem.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
1ReH•Cl, a highly robust and antiaromatic rhenium(I) complex of triarylrosarin, is synthesized. The 1H NMR spectrum of 1ReH•Cl shows upfield-shifted pyrrole protons and highly downfield-shifted inner protons that confirm its antiaromatic nature, with density functional theory calculations strongly supporting this interpretation. Antiaromatic 1ReH•Cl absorbs from the UV to near-IR region of the optical spectrum; cyclic voltammetry, thin-layer UV-vis spectroelectrochemistry, and spin-density distributions clearly reveal that the rosarin backbone of 1ReH•Cl undergoes redox chemistry. The X-ray structure of 1ReH•Cl shows a fully coordinated and protonated inner cavity that effectively prevents proton-coupled electron transfer when treated with an acid. A remarkably negative NICS(0) value, clockwise anisotropy of the induced current density ring current, and the aromatic shielded inner cavity in the 2D ICSS(0) map reveal that the T1 state of 1ReH•Cl is aromatic based on Baird's rule.
Collapse
Affiliation(s)
- Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - So Ueno
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Xiaoliang Yang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
15
|
Sakurai T, Hiraoka Y, Tanaka H, Miyake Y, Fukui N, Shinokubo H. Easily Switchable 18π-, 19π-, and 20π-Conjugation of Diazaporphyrin Double-Pincer Bispalladium Complexes. Angew Chem Int Ed Engl 2023; 62:e202300437. [PMID: 36723446 DOI: 10.1002/anie.202300437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/02/2023]
Abstract
NiII 3,7,13,17-tetrapyridyl-5,15-diazaporphyrin serves as a double tridentate ligand to PdII ions to provide a pincer-type bispalladium complex. Electrochemical analysis revealed that the bispalladium complex shows excellent ability to accept electrons and reversible redox properties due to the coordination of the two cationic PdII centers to the meso-nitrogen atoms. We isolated and characterized one- and two-electron reduction species of the bispalladium complex. The 20π antiaromatic nature of the two-electron reduction species was confirmed by 1 H NMR spectroscopy, UV/Vis-near-IR (NIR) absorption spectra, and density functional theory (DFT) calculations. X-ray diffraction revealed highly twisted structures for the bispalladium complexes regardless of the oxidation state.
Collapse
Affiliation(s)
- Takahiro Sakurai
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yuya Hiraoka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hisaaki Tanaka
- Department of Applied Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yoshihiro Miyake
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
16
|
Samala S, Lee JH, Park Y, Hong SJ, Jo H, Hwang H, Jung YM, Ok KM, Sessler JL, Lee CH. One Carbon Ring Expansion of Bipyrrole to Bipyridine Enables Access to a π-Extended, Non-innocent, Corrole-like Ligand. Chemistry 2023; 29:e202203009. [PMID: 36464650 DOI: 10.1002/chem.202203009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
A π-extended, diaza-triphenylene embedded, mono-anionic corrole analogue and its NiII complex were synthesized from a diaza-triphenylene precursor, which was obtained from a double one-carbon insertion into a naphthobipyrrole diester. Following conversion to the corresponding activated diol and acid-catalyzed condensation with pyrrole, subsequent reaction with pentafluorobenzaldehyde afforded mono-anionic, π-extended bipyricorrole-like macrocycle. Attempted NiII insertion with Ni(OAc)2 ⋅ 4H2 O resulted an ESR active, NiII bipyricorrole radical complex, which was converted to a stable cationic NiII complex upon treatment with [(Et3 O)+ (SbCl6 )- ]. Both complexes were characterized by 1 H and 13 C NMR, UV/Vis spectroscopy and single crystal X-ray diffraction analysis. The NiII bipyricorrole radical complex is converted to a cationic NiII complex by single-electron reduction using cobaltocene. Both the cationic NiII complex and the radical NiII complex exhibited ligand-centered redox behavior, whereas the NiII remains in the +2 oxidation state.
Collapse
Affiliation(s)
- Srinivas Samala
- Department of Chemistry, Kangwon National University, Chun-chon, 24341, Korea
| | - Ji Hye Lee
- Department of Chemistry, Kangwon National University, Chun-chon, 24341, Korea
| | - Yeonju Park
- Kangwon Radiation Convergence Research Support Center of Korea Basic Science Institute (KBSI)
| | - Seong-Jin Hong
- Department of Chemistry, Kangwon National University, Chun-chon, 24341, Korea
| | - Hongil Jo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Hyonseok Hwang
- Department of Chemistry, Kangwon National University, Chun-chon, 24341, Korea
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chun-chon, 24341, Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Korea
| | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Chang-Hee Lee
- Department of Chemistry, Kangwon National University, Chun-chon, 24341, Korea
| |
Collapse
|
17
|
Li Q, Ishida M, Wang Y, Li C, Baryshnikov G, Zhu B, Sha F, Wu X, Ågren H, Furuta H, Xie Y. Antiaromatic Sapphyrin Isomer: Transformation into Contracted Porphyrinoids with Variable Aromaticity. Angew Chem Int Ed Engl 2023; 62:e202212174. [PMID: 36342501 DOI: 10.1002/anie.202212174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Sapphyrin is a pentapyrrolic expanded porphyrin with a 22π aromatic character. Herein, we report the synthesis of a 20π antiaromatic sapphyrin isomer 1 by oxidative cyclization of a pentapyrrane precursor P5 with a terminal β-linked pyrrole. The resulting isomer 1, containing a mis-linked bipyrrole unit in the skeleton, exhibits a reactivity for further oxidation due to the distinct antiaromatic electronic structure, affording a fused macrocycle 2, possessing a spiro-carbon-containing [5.6.5.6]-tetracyclic structure. Subsequent treatment with an acid afforded a weakly aromatic pyrrolone-appended N-confused corrole 3, and thermal fusion gave a [5.6.5.7]-tetracyclic-ring-embedded 14π aromatic triphyrin(2.1.1) analog 4. The cyclization at the mis-linked pyrrole moiety of P5 played a crucial role in synthesizing the antiaromatic porphyrinoid susceptible to facile transformation to novel porphyrinoids with variable aromaticity.
Collapse
Affiliation(s)
- Qizhao Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Yunyun Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, 60174, Norrköping, Sweden
| | - Bin Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden
| | - Hiroyuki Furuta
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
18
|
Fan Z, Sun W, Yang Y, Guo J, Dou C, Wang Y. Organoborane cyclophanes with flexible linkers: Dynamic coordination and photo-responsive fluorescence. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Wu Q, Xia R, Wen H, Sun T, Xie Z. Nanoscale porphyrin assemblies based on charge-transfer strategy with enhanced red-shifted absorption. J Colloid Interface Sci 2022; 627:554-561. [PMID: 35870407 DOI: 10.1016/j.jcis.2022.07.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 07/13/2022] [Indexed: 01/10/2023]
Abstract
Charge-transfer assemblies (CTAs) represent a new class of functional material due to their excellent optical properties, and show great promise in the biomedical field. Porphyrins are widely used photosensitizers, but the short absorption wavelengths may restrict their practical applications. To obtain porphyrin phototherapeutic agents with red-shifted absorption, charge-transfer nanoscale assemblies (TAPP-TCNQ NPs) of 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) and 7,7,8,8‑tetracyanoquinodimethane (TCNQ) were prepared via optimizing the stoichiometric ratios of donor-acceptor. The as-prepared TAPP-TCNQ NPs exhibit red-shifted absorption to the near-infrared (NIR) region and enhanced absorbance because of the charge-transfer interactions. In especial, TAPP-TCNQ NPs possess the capacity of both photodynamic and photothermal therapy, thus effectively killing the bacteria upon 808 nm laser irradiation. This modular assembly method provides an alternative strategy to enhance the application of the phototherapeutic agents.
Collapse
Affiliation(s)
- Qihang Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Rui Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Hui Wen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
20
|
Shetti VS. Conformationally rigid, π-extended annulated porphyrinoids derived from the naphthobipyrrole motif. Org Biomol Chem 2022; 20:4452-4470. [PMID: 35579080 DOI: 10.1039/d2ob00566b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
π-Extension in porphyrinoids can be achieved by fusing additional aromatic rings onto the macrocycle's periphery and such porphyrinoids are referred to as annulated porphyrinoids. Annulated porphyrinoids display contrasting properties in comparison with their non-annulated congeners. While an annulation strategy can create π-extended systems, the simultaneous incorporation of conformational rigidity in such porphyrinoids can ensure that they adopt a planar structure, and the advantages associated with the extended π-network can be leveraged. Hence, while synthesizing such porphyrinoids, judicial selection of the precursor becomes important. The ease of synthesis and the presence of a β-β'-linked o-phenylene bridge qualify 3,8-1,10-dihydrobenzo[e]pyrrolo[3,2-g]indole, commonly known as naphthobipyrrole, to be one such precursor suitable for the synthesis of conformationally rigid annulated porphyrinoids. This field of study has started to bloom only in the last decade and the examples reported so far are confined to the naphtho-versions of porphycenes (isomeric porphyrin), a few members of the aromatic/antiaromatic expanded porphyrinoids, and calix[n]bipyrroles. In view of this, the current review article aims to summarize the up-to-date developments in this area and discusses the synthesis, structure, and properties of the reported naphthobipyrrole-derived annulated porphyrinoids.
Collapse
Affiliation(s)
- Vijayendra S Shetti
- Department of Chemistry, National Institute of Technology Karnataka, Surathkal 575025, India.
| |
Collapse
|
21
|
Li S, Sun Y, Li X, Smaga O, Koniarz S, Stępień M, Chmielewski PJ. 1,3-Dipolar cycloaddition of polycyclic azomethine ylide to norcorroles: towards dibenzoullazine-fused derivatives. Chem Commun (Camb) 2022; 58:6510-6513. [PMID: 35575428 DOI: 10.1039/d2cc02071h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 1,3-cycloaddition reaction of 2-(tert-butyl)-8H-isoquinolino[4,3,2-de]phenanthridin-9-ium chloride to NiII norcorrole in the presence of base is shown to produce a family of chiral derivatives of polycyclic system(s) fused with pyrrole subunit(s) of the macrocycle. Dehydrogenation of the cycloaddition products gave rise to dibenzoullazine ortho-fused antiaromatic porphyrinoids.
Collapse
Affiliation(s)
- Sha Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan, Hunan 411201, China.
| | - Yahan Sun
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan, Hunan 411201, China.
| | - Xiaofang Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan, Hunan 411201, China.
| | - Oskar Smaga
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50 383 Wrocław, Poland.
| | - Sebastian Koniarz
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50 383 Wrocław, Poland.
| | - Marcin Stępień
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50 383 Wrocław, Poland.
| | - Piotr J Chmielewski
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50 383 Wrocław, Poland.
| |
Collapse
|
22
|
Liu N, Morimoto H, Wu F, Lv X, Xiao B, Kuzuhara D, Pan J, Qiu F, Aratani N, Shen Z, Yamada H, Xue S. Synthesis of Planar meso-Aryl Rosarins: A Reversible Antiaromatic/Aromatic Interconversion. Org Lett 2022; 24:3609-3613. [DOI: 10.1021/acs.orglett.2c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hirofumi Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Bentian Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
23
|
Gao H, Wu F, Zhao Y, Zhi X, Sun Y, Shen Z. Highly Stable Neutral Corrole Radical: Amphoteric Aromatic-Antiaromatic Switching and Efficient Photothermal Conversion. J Am Chem Soc 2022; 144:3458-3467. [PMID: 35170957 DOI: 10.1021/jacs.1c11716] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The preparation of novel stable radical systems that survive and may be manipulated under harsh conditions is essential for their practical applications, such as energy storage and conversion materials. Here, we present a facile synthesis of an electrically neutral benzo-fused nickel corrole radical that shows remarkable photo- and thermal stability. The carbon-based organic radical character was confirmed using electron spin resonance and spin population analyses. This radical may be reversibly converted to its aromatic or antiaromatic ion via a one-electron redox process, as indicated by nuclear magnetic resonance chemical shifts and theoretical calculations. Notably, the antiaromatic state is stable, showing intense ring currents with complex pathways. The spectroscopic characteristics and calculated molecular orbitals of the corrole radical exhibit a combination of aromatic and antiaromatic features. On the basis of the aromatic light-harvesting property and antiaromatic emission-free character, the corrole radical exhibits highly robust, efficient photothermal energy conversion in water after encapsulation within nanoparticles, with the unpaired spin simultaneously retained. These results provide a fundamental understanding of the relationship between the (anti)aromaticity and photophysical properties of a porphyrinoid radical and a promising platform for the design of radical-based functional materials.
Collapse
Affiliation(s)
- Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu Zhi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yufen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
25
|
Takase M, Ueno A, Oki K, Matsumoto H, Mori S, Okujima T, Uno H. Tropo(thio)ne-Embedded HomoHPHACs: Does the Tropylium Cation Induce Global Antiaromaticity in Expanded Hexapyrrolohexaazacoronene? Chem Commun (Camb) 2022; 58:3366-3369. [DOI: 10.1039/d1cc07152a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tropo(thio)ne-embedded homoHPHACs and their dications were synthesised by an electrophilic annulation of secoHPHAC and successive oxidation. 13C NMR spectra of the dications represented global 22π homoaromaticity via homoconjugation, while alkylation...
Collapse
|
26
|
Kim J, Oh J, Osuka A, Kim D. Porphyrinoids, a unique platform for exploring excited-state aromaticity. Chem Soc Rev 2021; 51:268-292. [PMID: 34879124 DOI: 10.1039/d1cs00742d] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, Baird (anti)aromaticity has been referred to as a description of excited-state (anti)aromaticity. With the term of Baird's rule, recent studies have intensively verified that the Hückel aromatic [4n + 2]π (or antiaromatic [4n]π) molecules in the ground state are reversed to give Baird aromatic [4n]π (or Baird antiaromatic [4n + 2]π) molecules in the excited states. Since the Hückel (anti)aromaticity has great influence on the molecular properties and reaction mechanisms, the Baird (anti)aromaticity has been expected to act as a dominant factor in governing excited-state properties and processes, which has attracted intensive scientific investigations for the verification of the concept of reversed aromaticity in the excited states. In this scientific endeavor, porphyrinoids have recently played leading roles in the demonstration of the aromaticity reversal in the excited states and its conceptual development. The distinct structural and electronic nature of porphyhrinoids depending on their (anti)aromaticity allow the direct observation of excited-state aromaticity reversal, Baird's rule. The explicit experimental demonstration with porphyrinoids has contributed greatly to its conceptual development and application in novel functional organic materials. Based on the significant role of porphyrinoids in the field of excited-state aromaticity, this review provides an overview of the experimental verification of the reversal concept of excited-state aromaticity by porphyrinoids and the recent progress on its conceptual application in novel functional molecules.
Collapse
Affiliation(s)
- Jinseok Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan-si 31538, Korea.
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
27
|
Chen J, Sedgwick AC, Sen S, Ren Y, Sun Q, Chau C, Arambula JF, Sarma T, Song L, Sessler JL, Liu C. Expanded porphyrins: functional photoacoustic imaging agents that operate in the NIR-II region. Chem Sci 2021; 12:9916-9921. [PMID: 34377389 PMCID: PMC8317656 DOI: 10.1039/d1sc01591e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
Photoacoustic imaging (PAI) relies on the use of contrast agents with high molar absorptivity in the NIR-I/NIR-II region. Expanded porphyrins, synthetic analogues of natural tetrapyrrolic pigments (e.g. heme and chlorophyll), constitute as potentially attractive platforms due to their NIR-II absorptivity and their ability to respond to stimuli. Here, we evaluate two expanded porphyrins, naphthorosarin (1) and octaphyrin (4), as stimuli responsive PA contrast agents for functional PAI. Both undergo proton-coupled electron transfer to produce species that absorb well in the NIR-II region. Octaphyrin (4) was successfully encapsulated into 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG2000) nanoparticles to afford OctaNPs. In combination with PAI, OctaNPs allowed changes in the acidic environment of the stomach to be visualized and cancerous versus healthy tissues to be discriminated.
Collapse
Affiliation(s)
- Jingqin Chen
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| | - Adam C. Sedgwick
- Department of Chemistry, University of Texas at Austin105 East 24th Street A5300AustinTexas 78712-1224USA
| | - Sajal Sen
- Department of Chemistry, University of Texas at Austin 105 East 24th Street A5300 Austin Texas 78712-1224 USA
| | - Yaguang Ren
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| | - Qinchao Sun
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| | - Calvin Chau
- Department of Chemistry, University of Texas at Austin 105 East 24th Street A5300 Austin Texas 78712-1224 USA
| | - Jonathan F. Arambula
- Department of Chemistry, University of Texas at Austin105 East 24th Street A5300AustinTexas 78712-1224USA
| | - Tridib Sarma
- Department of Chemistry, University of Texas at Austin 105 East 24th Street A5300 Austin Texas 78712-1224 USA
| | - Liang Song
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| | - Jonathan L. Sessler
- Department of Chemistry, University of Texas at Austin105 East 24th Street A5300AustinTexas 78712-1224USA
| | - Chengbo Liu
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Institute of Advanced Technology, CAS Key Laboratory of Health Informatics, Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
28
|
Kim T, Kim J, Ke XS, Brewster JT, Oh J, Sessler JL, Kim D. Magnetic-Field-Induced Modulation of Charge-Recombination Dynamics in a Rosarin-Fullerene Complex. Angew Chem Int Ed Engl 2021; 60:9379-9383. [PMID: 33590640 DOI: 10.1002/anie.202017332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 11/10/2022]
Abstract
Charge-recombination processes are critical for photovoltaic applications and should be suppressed for efficient charge transport. Here, we report that an applied magnetic field (0-1 T) can be used control the charge-recombination dynamics in an expanded rosarin-C60 complex. In the low magnetic field regime (<100 mT), the charge-recombination rate slows down due to hyperfine coupling, as inferred from transient absorption spectroscopic analyses. In contrast, in the high field regime, i.e., over 500 mT, the charge-recombination rate recovers and increases because the Δg mechanism facilitates spin conversion to a triplet charge-separated state (S to T0 ) that undergoes rapid charge-recombination to a localized rosarin triplet state. Therefore, we highlight the charge-recombination rate and the localized triplet state population can be modulated by the magnetic field in charge donor/acceptor non-covalent complexes.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Republic of Korea.,Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, United States
| | - Juno Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Xian-Sheng Ke
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - James T Brewster
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Juwon Oh
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Republic of Korea.,Department of Chemistry, Soonchunhyang University, Chungnam, 31538, Republic of Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Dongho Kim
- Department of Chemistry, Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
29
|
Kim T, Kim J, Ke X, Brewster JT, Oh J, Sessler JL, Kim D. Magnetic‐Field‐Induced Modulation of Charge‐Recombination Dynamics in a Rosarin‐Fullerene Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University Seoul 03722 Republic of Korea
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern Northwestern University Evanston, Illinois 60208-3113 United States
| | - Juno Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University Seoul 03722 Republic of Korea
| | - Xian‐Sheng Ke
- Department of Chemistry The University of Texas at Austin Austin TX 78712-1224 USA
| | - James T. Brewster
- Department of Chemistry The University of Texas at Austin Austin TX 78712-1224 USA
| | - Juwon Oh
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University Seoul 03722 Republic of Korea
- Department of Chemistry Soonchunhyang University Chungnam 31538 Republic of Korea
| | - Jonathan L. Sessler
- Department of Chemistry The University of Texas at Austin Austin TX 78712-1224 USA
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
30
|
Xu K, Zhang X, Liu G, Ma W, Yin Y, Yin Y, Chen X, Zhao X, Sessler JL, Zhang Z. Pyridazine-bridged expanded rosarin and semi-rosarinogen. Chem Commun (Camb) 2021; 57:1486-1489. [PMID: 33443247 DOI: 10.1039/d0cc07433k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of the pyridazine-bridged expanded rosarin 1 and a reduced precursor, semi-rosarinogen 2, is reported. A single crystal X-ray diffraction analysis of 1 and theoretical calculations show that both 1 and 2 have distorted structures. Expanded rosarin 1 and its precursor 2 can differentiate various thiols in organic solvents by means of species-specific colour changes and reaction times.
Collapse
Affiliation(s)
- Kui Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| | - Xiaoshuai Zhang
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Guopeng Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| | - Wanzun Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| | - Yu Yin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| | - Ying Yin
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xi Chen
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| | - Xinyun Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Texas 78712-1224, USA.
| | - Zhan Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationality, Wuhan, Hubei 430074, China.
| |
Collapse
|
31
|
Dutta R, Chandra B, Hong SJ, Park Y, Jung YM, Lee CH. Post Synthetic Modification of Planar Antiaromatic Hexaphyrin (1.0.1.0.1.0) by Regio-Selective, Sequential S NAr. Molecules 2021; 26:molecules26041025. [PMID: 33672044 PMCID: PMC7919474 DOI: 10.3390/molecules26041025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022] Open
Abstract
In spite of unique structural, spectroscopic and redox properties, the synthetic variants of the planar, antiaromatic hexaphyrin (1.0.1.0.1.0) derivatives 2, has been limited due to the low yields and difficulty in access to the starting material. A chemical modification of the meso-substituents could be good alternative overcoming the synthetic barrier. Herein, we report a regio-selective nucleophilic aromatic substitution (SNAr) of meso-pentafluorophenyl group in rosarrin 2 with catechol. The reaction afforded benzodioxane fused rosarrin 3 as single product with high yield. The intrinsic antiaromatic character of the starting rosarrin 2 retained throughout the reactions. Clean, two electron reduction was achieved by treatment of 3 with SnCl2•2H2O affording 26π-electron aromatic rosarrin 4. The synthesized compounds exhibited noticeable changes in photophysical and redox properties compared with starting rosarrin 2.
Collapse
Affiliation(s)
- Ranjan Dutta
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea; (R.D.); (B.C.); (S.-J.H.); (Y.M.J.)
| | - Brijesh Chandra
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea; (R.D.); (B.C.); (S.-J.H.); (Y.M.J.)
| | - Seong-Jin Hong
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea; (R.D.); (B.C.); (S.-J.H.); (Y.M.J.)
| | - Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea;
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea; (R.D.); (B.C.); (S.-J.H.); (Y.M.J.)
| | - Chang-Hee Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea; (R.D.); (B.C.); (S.-J.H.); (Y.M.J.)
- Correspondence: ; Tel.: +82-33-250-8490
| |
Collapse
|
32
|
Urbańska K, Farinone M, Pawlicki M. Changes in porphyrin’s conjugation based on synthetic and post-synthetic modifications. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2019-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Porphyrins or more broadly defined porphyrinoids are the structures where the extended π-cloud can be significantly modified by several factors. The broad range of introduced structural motifs has shown a possibility of modification of conjugation by a controlled synthetic approach, leading to expected optical or magnetic behaviour, and also by post-synthetic modifications (i.e. redox or protonation/deprotonation), Both approaches lead to noticeab changes in observed properties but also open a potential for further utilization. Thus, this already constituted big family of macrocyclic structures with specific highly extended π-delocalization shows a significant contribution in several fields from fundamental studies, leading to understanding behaviour of skeletons like that with a substantial influence on biological studies and material science. The presented material focuses on the most significant examples of modifications of porphyrinoids skeleton leading to drastic changes in optical response and magnetic properties. Through the presentation, the focus will be placed on the changes leading to the most red-shifted transition as the parameter indicating extending the π-delocalization. Significantly different magnetic character will be also discussed based on the switching between aromatic/antiaromatic character assigned to macrocyclic structures that will be included.
Collapse
Affiliation(s)
- Karolina Urbańska
- Wydział Chemii , Uniwersytet Wrocławski , F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Marco Farinone
- Wydział Chemii , Uniwersytet Wrocławski , F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Miłosz Pawlicki
- Wydział Chemii , Uniwersytet Wrocławski , F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| |
Collapse
|
33
|
Kim G, Dutta R, Cha WY, Hong SJ, Oh J, Firmansyah D, Jo H, Ok KM, Lee CH, Kim D. Noncovalent Intermolecular Interaction in Cofacially Stacked 24π Antiaromatic Hexaphyrin Dimer. Chemistry 2020; 26:16434-16440. [PMID: 32557895 DOI: 10.1002/chem.202002884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 01/07/2023]
Abstract
π-π Stacking is omnipresent not only in nature but in a wide variety of practical fields applied to our lives. Because of its importance in a performance of natural and artificial systems, such as light harvesting system and working layer in device, many researchers have put intensive effort into identifying its underlying nature. However, for the case of π-π stacked systems composed of antiaromatic units, the understanding of the fundamental mechanisms is still unclear. Herein, we synthesized a new type of planar β,β'-phenylene-bridged hexaphyrin (1.0.1.0.1.0), referred as naphthorosarin which possesses the 24π-electron conjugated pathway. Especially, the corresponding antiaromatic porphyrinoid shows the unique property to form dimeric species adopting the face-to-face geometry which is unprecedented in cases of known annulated naphthorosarins. In order to elucidate the intriguing properties derived from the stacked dimer, the current study focuses on the experimental support to rationalize the observed π-π interactions between the two subunits.
Collapse
Affiliation(s)
- Gakhyun Kim
- Department of Chemistry and Spectroscopy Laboratory for, Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Ranjan Dutta
- Department of Chemistry, Kangwon National University, Chun-chon, 200-701, Korea
| | - Won-Young Cha
- Department of Chemistry and Spectroscopy Laboratory for, Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea.,Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Seong-Jin Hong
- Department of Chemistry, Kangwon National University, Chun-chon, 200-701, Korea
| | - Juwon Oh
- Department of Chemistry and Spectroscopy Laboratory for, Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| | - Dikhi Firmansyah
- Department of Chemistry, Kangwon National University, Chun-chon, 200-701, Korea
| | - Hongil Jo
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul, 04107, Korea
| | - Chang-Hee Lee
- Department of Chemistry, Kangwon National University, Chun-chon, 200-701, Korea
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for, Functional π-Electronic Systems, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
34
|
Sulfikarali T, Ajay J, Suresh CH, Bijina PV, Gokulnath S. Synthesis, Structure, and Optical Properties of Di- m-benzihexaphyrins (1.1.0.0.0.0) and Di- m-benziheptaphyrins (1.0.1.0.0.0.0): Blackening of m-Phenylene-Linked Dicarbaporphyrinoids by Simple π-Expansion. J Org Chem 2020; 85:8021-8028. [PMID: 32390421 DOI: 10.1021/acs.joc.0c00754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acid-catalyzed condensation of a newly prepared di-m-benzipentapyrrane with appropriate mono- and diheterocyclic dialcohols selectively produced stable di-m-benzihexaphyrins and di-m-benziheptaphyrins with only two meso-carbon bridges. Single-crystal X-ray diffraction analyses reveal planar conformation with slight distortion of bridged phenylene rings. Despite the presence of m-phenylene units interrupting the global delocalization, the presence of bithiophene units in di-m-benziheptaphyrins 3a-b exhibits altered optical features covering the entire visible region (ca. 250-720 nm), exhibiting a black dye property as a "metal-free" porphyrinoid.
Collapse
Affiliation(s)
- Thondikkal Sulfikarali
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Jayaprakash Ajay
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Cherumuttathu H Suresh
- Inorganic and Theoretical Chemistry Section, Chemical Science and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Trivandrum, Kerala 695019, India
| | - Padinjare V Bijina
- Inorganic and Theoretical Chemistry Section, Chemical Science and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Trivandrum, Kerala 695019, India
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
35
|
Kim T, Duan Z, Talukdar S, Lei C, Kim D, Sessler JL, Sarma T. Excitonically Coupled Cyclic BF
2
Arrays of Calix[8]‐ and Calix[16]phyrin as Near‐IR‐Chromophores. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University Seoul 03722 Korea
| | - Zhiming Duan
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry College of Science Shanghai University Shanghai 200444 P. R. China
| | - Sangita Talukdar
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry College of Science Shanghai University Shanghai 200444 P. R. China
- Department of Physics College of Science Shanghai University 99 Shang-Da Road Shanghai 200444 P. R. China
| | - Chuanhu Lei
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry College of Science Shanghai University Shanghai 200444 P. R. China
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University Seoul 03722 Korea
| | - Jonathan L. Sessler
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry College of Science Shanghai University Shanghai 200444 P. R. China
- Department of Chemistry The University of Texas at Austin 105 East 24th Street, Stop A5300 Austin TX 78712-1224 USA
| | - Tridib Sarma
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry College of Science Shanghai University Shanghai 200444 P. R. China
- School of Materials Science and Engineering Shanghai University Shanghai 200444 China
- Department of Chemistry The University of Texas at Austin 105 East 24th Street, Stop A5300 Austin TX 78712-1224 USA
| |
Collapse
|
36
|
Excitonically Coupled Cyclic BF
2
Arrays of Calix[8]‐ and Calix[16]phyrin as Near‐IR‐Chromophores. Angew Chem Int Ed Engl 2020; 59:13063-13070. [DOI: 10.1002/anie.202004867] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 01/23/2023]
|
37
|
Liu SY, Kawashima H, Fukui N, Shinokubo H. A 2-to-2' 18-to-18' doubly linked Ni(ii) norcorrole dimer: an effectively conjugated antiaromatic dyad. Chem Commun (Camb) 2020; 56:6846-6849. [PMID: 32432636 DOI: 10.1039/d0cc02543g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and properties of a 2-to-2' 18-to-18' doubly linked Ni(ii) norcorrole dimer are described. It adopts a highly planar structure, resulting in effective electronic interactions between the constituent norcorrole units. Nevertheless, each norcorrole unit exhibits substantial antiaromaticity, which stands in sharp contrast to stacked norcorrole dimers.
Collapse
Affiliation(s)
- Si-Yu Liu
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | | | | | | |
Collapse
|
38
|
Qi D, Jiang J. An Overall Comprehension of Anti‐Aromatic Porphyrinoids Using 3D‐Graphical Chemical Shielding Description. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dongdong Qi
- Beijing Key Lab for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Key Lab for Science and Application of Functional Molecular and Crystalline Materials Department of Chemistry University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
39
|
Yadav P, Fridman N, Mizrahi A, Gross Z. Rhenium(i) sapphyrins: remarkable difference between the C6F5 and CF3-substituted derivatives. Chem Commun (Camb) 2020; 56:980-983. [DOI: 10.1039/c9cc08877f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhenium chelation by sapphyrins alters the structural, photophysical and electrochemical properties of the macrocycle differently for CF3- and C6F5-substituted derivatives.
Collapse
Affiliation(s)
- Pinky Yadav
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa-320000
- Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa-320000
- Israel
| | - Amir Mizrahi
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa-320000
- Israel
- Chemistry Department
| | - Zeev Gross
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa-320000
- Israel
| |
Collapse
|
40
|
Samala S, Dutta R, He Q, Park Y, Chandra B, Lynch VM, Jung YM, Sessler JL, Lee CH. A robust bis-rhodium(i) complex of π-extended planar, anti-aromatic hexaphyrin[1.0.1.0.1.0]. Chem Commun (Camb) 2019; 56:758-761. [PMID: 31845684 DOI: 10.1039/c9cc09221h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β,β'-Phenylene bridged hexaphyrin[1.0.1.0.1.0] (naphthorosarin), an expanded porphyrin possessing C3v-symmetry, has been shown to possess unique electronic features. We now report a bimetallic Rh(i)-complex of naphthorosarin retaining 24 π-antiaromatic characteristics. The two Rh(i) cations reside on opposite sides of the macrocyclic π-system and are separated at a distance consistent with a possible Rh(i)-Rh(i) metallic bond interaction.
Collapse
Affiliation(s)
- Srinivas Samala
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea.
| | - Ranjan Dutta
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea.
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yeonju Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea.
| | - Brijesh Chandra
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea.
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas, Austin, TX 78712-1224, USA.
| | - Young Mee Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas, Austin, TX 78712-1224, USA.
| | - Chang-Hee Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
41
|
Shafie SA, Kawashima H, Miyake Y, Shinokubo H. Regioselective Oxidative Ring Cleavage of Antiaromatic Nickel(II) Norcorrole to Dialkoxybis(dipyrrin)s. Chempluschem 2019; 84:623-626. [DOI: 10.1002/cplu.201900068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/05/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Siham A. Shafie
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroyuki Kawashima
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Yoshihiro Miyake
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
42
|
Ajay J, Shirisha S, Ishida M, Ito K, Mori S, Furuta H, Gokulnath S. Planar Antiaromatic Core-Modified 24π Hexaphyrin(1.0.1.0.1.0) and 32π Octaphyrin(1.0.1.0.1.0.1.0) Bearing Alternate Hybrid Diheterole Units. Chemistry 2019; 25:2859-2867. [PMID: 30589136 DOI: 10.1002/chem.201805861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Indexed: 11/09/2022]
Abstract
The Lewis acid catalyzed self-condensation of hybrid diheterole (furan-pyrrole and thiophene-pyrrole) precursors has afforded novel Hückel antiaromatic 24π hexaphyrin(1.0.1.0.1.0) and 32π octaphyrin(1.0.1.0.1.0.1.0) structures without β-annulated bridges. Single-crystal X-ray diffraction analysis of the hybrid porphyrinoids (S3 N3 -ox and O4 N4 -ox) revealed a nearly planar conformation and the 1 H NMR spectra suggest the presence of paratropic ring currents. These antiaromatic macrocycles show characteristic optical features and underwent reversible two-electron reduction to Hückel aromatic 26π- and 34π-electron species, respectively, as is evident from the results of spectroscopic and theoretical studies (nucleus-independent chemical shift (NICS) and anisotropy of the current-induced density (ACID) calculations). The incorporation of hybrid diheteroles alternately into expanded porphyrin skeletons provides a novel approach to the fine-tuning of the electronic structures of planar antiaromatic macrocycles.
Collapse
Affiliation(s)
- Jayaprakash Ajay
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695016, India
| | - Sriram Shirisha
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, 500007, Telangana, India
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kosuke Ito
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Sabapathi Gokulnath
- Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695016, India
| |
Collapse
|
43
|
Hong SJ, Dutta R, Kumar R, He Q, Lynch VM, Sessler JL, Lee CH. meso-Alkylidenyl dibenzihexaphyrins: synthesis and protonation studies. Chem Commun (Camb) 2019; 55:9693-9696. [DOI: 10.1039/c9cc04607k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The synthesis and characterization of the alkylidenyl-dibenzihexaphyrins bearing four indanedionyl groups at themeso-positions linkedviafourmeso-exocyclic double bonds is reported.
Collapse
Affiliation(s)
- Seong-Jin Hong
- Department of Chemistry
- Kangwon National University
- Chun Cheon
- Korea
| | - Ranjan Dutta
- Department of Chemistry
- Kangwon National University
- Chun Cheon
- Korea
| | - Ravi Kumar
- Department of Chemistry
- Kangwon National University
- Chun Cheon
- Korea
| | - Qing He
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Vincent M. Lynch
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | | - Chang-Hee Lee
- Department of Chemistry
- Kangwon National University
- Chun Cheon
- Korea
| |
Collapse
|
44
|
Kishore MVN, Panda PK. Revisiting the intense NIR active bronzaphyrin, a 26-π aromatic expanded porphyrin: synthesis and structural analysis. Chem Commun (Camb) 2018; 54:13135-13138. [PMID: 30402647 DOI: 10.1039/c8cc07752e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dithiabronzaphyrin, with intense absorption and fluorescence in the NIR region, was synthesized as its β-octaethyl analogue via a thiophene bridged terpyrrole. Solid state structural characterization obtained for the first time revealed inversion of the thiophene rings. Studies showed that there is no effect from protonation or temperature on the structural rigidity of the macrocycle. Crystal packing revealed four open dimeric trifluoroacetate [(CF3COO)2H]- moieties binding to the macrocycle in the protonated form via H bonding.
Collapse
Affiliation(s)
- M V Nanda Kishore
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| | | |
Collapse
|
45
|
Gregolińska H, Majewski M, Chmielewski PJ, Gregoliński J, Chien A, Zhou J, Wu YL, Bae YJ, Wasielewski MR, Zimmerman PM, Stępień M. Fully Conjugated [4]Chrysaorene. Redox-Coupled Anion Binding in a Tetraradicaloid Macrocycle. J Am Chem Soc 2018; 140:14474-14480. [PMID: 30289699 DOI: 10.1021/jacs.8b09385] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[4]Chrysaorene, a fully conjugated carbocyclic coronoid, is shown to be a low-bandgap π-conjugated system with a distinct open-shell character. The system shows good chemical stability and can be oxidized to well-defined radical cation and dication states. The cavity of [4]chrysaorene acts as an anion receptor toward halide ions with a particular selectivity toward iodides ( Ka = 207 ± 6 M-1). The interplay between anion binding and redox chemistry is demonstrated using a 1H NMR analysis in solution. In particular, a well-resolved, paramagnetically shifted spectrum of the [4]chrysaorene radical cation is observed, providing evidence for the inner binding of the iodide. The radical cation-iodide adduct can be generated in thin solid films of [4] chrysaorene by simple exposure to diiodine vapor.
Collapse
Affiliation(s)
- Hanna Gregolińska
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Marcin Majewski
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Piotr J Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Janusz Gregoliński
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| | - Alan Chien
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Jiawang Zhou
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Yi-Lin Wu
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Youn Jue Bae
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Paul M Zimmerman
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski , ul. F. Joliot-Curie 14 , 50-383 Wrocław , Poland
| |
Collapse
|
46
|
Sarma T, Kim G, Sen S, Cha WY, Duan Z, Moore MD, Lynch VM, Zhang Z, Kim D, Sessler JL. Proton-Coupled Redox Switching in an Annulated π-Extended Core-Modified Octaphyrin. J Am Chem Soc 2018; 140:12111-12119. [PMID: 30180553 DOI: 10.1021/jacs.8b06938] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proton-coupled electron transfer (PCET) is an important chemical and biological phenomenon. It is attractive as an on-off switching mechanism for redox-active synthetic systems but has not been extensively exploited for this purpose. Here we report a core-modified planar weakly antiaromatic/nonaromatic octaphyrin, namely, a [32]octaphyrin(1.0.1.0.1.0.1.0) (1) derived from rigid naphthobipyrrole and dithienothiophene (DTT) precursors, that undergoes proton-coupled two-electron reduction to produce its aromatic congener in the presence of HCl and other hydrogen halides. Evidence for the production of a [4 n + 1] π-electron intermediate radical state is seen in the presence of trifluoroacetic acid. Electrochemical analyses provide support for the notion that protonation causes a dramatic anodic shift in the reduction potentials of octaphyrin 1, thereby facilitating electron transfer from halide anions (viz. I-, Br-, and, Cl-). Electron-rich molecules, such as tetrathiafulvene (TTF), phenothiazine (PTZ), and catechol, were also found to induce PCET in the case of 1. Both the oxidized and two-electron reduced forms of 1 were characterized by X-ray diffraction analyses in the solid state and in solution via spectroscopic means.
Collapse
Affiliation(s)
- Tridib Sarma
- Center for Supramolecular Chemistry & Catalysis , Shanghai University , Shanghai 200444 , China.,Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Gakhyun Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Sajal Sen
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Won-Young Cha
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Zhiming Duan
- Center for Supramolecular Chemistry & Catalysis , Shanghai University , Shanghai 200444 , China
| | - Matthew D Moore
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Vincent M Lynch
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| | - Zhan Zhang
- Center for Supramolecular Chemistry & Catalysis , Shanghai University , Shanghai 200444 , China
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems , Yonsei University , Seoul 03722 , Korea
| | - Jonathan L Sessler
- Center for Supramolecular Chemistry & Catalysis , Shanghai University , Shanghai 200444 , China.,Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712-1224 , United States
| |
Collapse
|
47
|
Valiev RR, Fliegl H, Sundholm D. Bicycloaromaticity and Baird-type bicycloaromaticity of dithienothiophene-bridged [34]octaphyrins. Phys Chem Chem Phys 2018; 20:17705-17713. [PMID: 29942971 DOI: 10.1039/c8cp03112f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aromatic properties of two recently synthesized dithienothiophene-bridged (DTT) [34]octaphyrins have been investigated by calculating magnetically induced current densities and vertical excitation energies. These intriguing molecules have been proposed to be the first synthesized neutral bicycloaromatic compounds. The triplet state of their dications was even suggested to be Baird-type bicycloaromatic rendering them very interesting as a new prototype of molecules possessing simultaneously the two rare types of aromaticity. Here, we investigate computationally the aromatic properties of the neutral as well as the singly and doubly charged DTT-bridged [34]octaphyrins. Our study provides unambiguous information about changes in the aromatic properties of the DTT-bridged [34]octaphyrins upon oxidation. The calculations identify two independent diatropic ring currents in the neutral DTT-bridged [34]octaphyrins, showing that they are indeed bicycloaromatic. The current-density flow of the two independent ring currents of the bicycloaromatic compounds are visualized and individual aromatic pathways are quantified by performing numerical integration. The calculations show that two independent diatropic ring currents can indeed be sustained by molecules consisting of two aromatic rings that share a common set of π electrons. The current density calculations on the singly charged DTT-bridged [34]octaphyrins show that they are weakly antiaromatic, which does not agree with the suggested aromatic character deduced from spectroscopical studies. The triplet state of the two DTT-bridged [34]octaphyrin cations with very similar molecular structures have unexpectedly different aromatic character. One of them is Baird-type bicycloaromatic, whereas the triplet state of the other dication has one aromatic and one nonaromatic ring, which could not be resolved from available spectroscopical data. Calculations of excitation energies reveal that a simple model cannot be employed for interpreting the electronic excitation spectra of the present molecules, because more than 20 excited states contribute to the spectra above 2.5 eV (500 nm) showing the importance of computations. The present work illustrates how detailed information about molecular aromaticity can nowadays be obtained by scrutinizing calculated current densities.
Collapse
Affiliation(s)
- Rashid R Valiev
- Department of Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki, Finland.
| | | | | |
Collapse
|
48
|
Ishida SI, Kim J, Shimizu D, Kim D, Osuka A. Synthesis of (bis)Silicon Complexes of [38], [37], and [36]Octaphyrins: Aromaticity Switch and Stable Radical Cation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shin-ichiro Ishida
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Jinseok Kim
- Spectroscopy Laboratory of Functional π-Electronic Systems and Department of Chemistry; Yonsei University; 50, Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| | - Daiki Shimizu
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Dongho Kim
- Spectroscopy Laboratory of Functional π-Electronic Systems and Department of Chemistry; Yonsei University; 50, Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| | - Atsuhiro Osuka
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
49
|
Ishida SI, Kim J, Shimizu D, Kim D, Osuka A. Synthesis of (bis)Silicon Complexes of [38], [37], and [36]Octaphyrins: Aromaticity Switch and Stable Radical Cation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/anie.201801986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shin-ichiro Ishida
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Jinseok Kim
- Spectroscopy Laboratory of Functional π-Electronic Systems and Department of Chemistry; Yonsei University; 50, Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| | - Daiki Shimizu
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| | - Dongho Kim
- Spectroscopy Laboratory of Functional π-Electronic Systems and Department of Chemistry; Yonsei University; 50, Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| | - Atsuhiro Osuka
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwake-cho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
50
|
Anguera G, Cha WY, Moore MD, Lee J, Guo S, Lynch VM, Kim D, Sessler JL. Hexadecaphyrin-(1.0.0.0.1.1.0.1.1.0.0.0.1.1.0.1): A Dual Site Ligand That Supports Thermal Conformational Changes. J Am Chem Soc 2018; 140:4028-4034. [DOI: 10.1021/jacs.7b13024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gonzalo Anguera
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Won-Young Cha
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Matthew D. Moore
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Juhoon Lee
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Shenyi Guo
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Vincent M. Lynch
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|