1
|
Sung TC, Pan ZX, Wang T, Lin HY, Chang CL, Hung LC, Subbiah SK, Renuka RR, Chou SJ, Chiou SH, Joanna I, Lee HHC, Wu GJ, Higuchi A. Material surface conjugated with fibroblast growth factor-2 for pluripotent stem cell culture and differentiation. Regen Biomater 2025; 12:rbaf003. [PMID: 39967781 PMCID: PMC11835233 DOI: 10.1093/rb/rbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 02/20/2025] Open
Abstract
Fibroblast growth factor-2 (FGF-2) is a critical molecule for sustaining the pluripotency of human pluripotent stem (PS) cells. However, FGF-2 is extremely unstable and cannot be stored long periods at room temperature. Therefore, the following FGF-2-conjugated cell culture materials were developed to stabilize FGF-2: FGF-2-conjugated polyvinyl alcohol (PVAI-C-FGF) hydrogels and FGF-2-conjugated carboxymethyl cellulose-coated (CMC-C-FGF) dishes. Human induced pluripotent stem (iPS) cells were proliferated on recombinant vitronectin (rVN)-coated PVAI-C-FGF hydrogels and CMC-C-FGF dishes in medium without FGF-2. Human iPS cells could not be cultivated on rVN-coated PVAI-C-FGF hydrogels for more than two passages but could proliferate on rVN-coated CMC-C-FGF dishes. These results indicated that the amount of immobilized FGF-2 and the base cell materials are important, including the amount of immobilized rVN and the conformation of FGF-2 on the surfaces. When human iPS cells were proliferated on rVN-coated CMC-C-FGF surfaces in medium containing no FGF-2 for 10 passages, their pluripotency and potential to differentiate into cells originating from three germ layers were maintained in vivo and in vitro. Furthermore, the cells could extensively differentiate into cardiomyocytes, which can be used for cardiac infarction treatment in future and retinal pigment epithelium for retinal pigmentosa treatment in future. The FGF-2-immobilized surface could enable human PS cell culture in medium that does not need to contain unstable FGF-2. The amount of FGF-2 immobilization on the rVN-coated CMC-C-5FGF and CMC-C-20FGF dishes was reduced to 93.6 and 52.2 times, respectively, which is less than the conventional amount of FGF-2 used in culture medium for one passage (6 days) of human iPS cell culture. This reduction resulted from the stabilization of unstable FGF-2 by the immobilization of FGF-2, which was achieved by utilizing optimal base materials (CMC), coating materials (rVN) and long-joint segment (PEG4-SPDP) design.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhi-Xian Pan
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hui-Yu Lin
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Chia-Lun Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Ling-Chun Hung
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Suresh Kumar Subbiah
- Centre for Stem Cell Mediated Advanced Research Therapeutics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Remya Rajan Renuka
- Centre for Stem Cell Mediated Advanced Research Therapeutics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Shih-Jie Chou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, ROC
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan, ROC
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, ROC
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC
| | - Idaszek Joanna
- Division of Materials Design, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, Hsinchu 30060, Taiwan, ROC
- Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan, ROC
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, ROC
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan, ROC
| |
Collapse
|
2
|
Morin E, Muzzy E, Carlini AS. Surface Functionalization of Elastomers with Biopolymers. Methods Mol Biol 2025; 2902:197-227. [PMID: 40029605 DOI: 10.1007/978-1-0716-4402-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Biopolymer coatings on elastomeric surfaces have significant impact for advancements in biomedicine as they combine flexible devices with complex biological functionality. Biopolymers offer increased ability for antimicrobial coatings, sensing of relevant biological markers, and controlled drug delivery. The methodologies available to conjugate these important biopolymers to flexible elastomeric substrates are vast and rapidly evolving. This chapter aims to compile methodologies across the application space of biopolymer conjugation to elastomers. We present a guide to the field and methods ranging from surface activation and functionalization, grafting-to and grafting-from of biopolymers, and characterization of the resulting substrates.
Collapse
Affiliation(s)
- Emilie Morin
- Department of Chemistry & Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Elana Muzzy
- Department of Biological Engineering, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Andrea S Carlini
- Department of Chemistry & Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, USA.
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA, USA.
- Interdisciplinary Program in Quantitative Biosciences, University of California at Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
3
|
Zhao H, Guillaud L, Emily MF, Xu X, Moshniaha L, Hanayama H, Kabe R, Terenzio M, Narita A. Nanographene-Based Polymeric Nanoparticles as Near-Infrared Emissive Neuronal Tracers. ACS NANO 2024; 18:34730-34740. [PMID: 39668551 DOI: 10.1021/acsnano.4c10754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Precise tracking of axonal transport is key to deciphering neuronal functions. To achieve long-term imaging at both ultrastructural and macroscopic resolutions, it is critical to develop fluorescent transport tracers with high photostability and biocompatibility. Herein, we report the investigation of nanographene (NG)-based polymeric nanoparticles (NPs) as near-infrared (NIR)-emissive neuronal tracers. Dibenzo[a,m]dinaphtho[3,2,1-ef:1',2',3'-hi]coronene (DBDNC) was employed as the NG, which exhibited a broad NIR emission with a maximum at 711 nm inside the NPs. DBDNC-NPs displayed high photostability and low cytotoxicity, enabling live tracing of retrograde axonal transport in mouse sensory neurons cultured in microfluidic chambers. We also elucidated how DBDNC-NPs undergo retrograde axonal transport following the endolysosomal pathway. This work provides a proof of concept for NIR-emissive, NG-based neuronal tracers with potential for applications in neurobiology.
Collapse
Affiliation(s)
- Hao Zhao
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Maria Fransiska Emily
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Xiushang Xu
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Liliia Moshniaha
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Ryota Kabe
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
4
|
Kohyama K, Kato H, Okada H, Ishihara T, Yasue Y, Kamidani R, Suzuki K, Miyake T, Okuda H, Shibata H, Tomita H, Ogawa T. Concomitant heparin use promotes skin graft donor site healing by basic fibroblast growth factor: A pilot prospective randomized controlled study. Contemp Clin Trials Commun 2024; 42:101375. [PMID: 39398328 PMCID: PMC11470421 DOI: 10.1016/j.conctc.2024.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 10/15/2024] Open
Abstract
Owing to its mitogenic and angiogenic characteristics, the use of basic fibroblast growth factor (bFGF) to promote wound healing has been investigated. However, its clinical efficacy has fallen short of expectations due to its instability. Heparin has been reported to stabilize bFGF. Therefore, we hypothesized that the combination of these agents would more effectively promote wound healing than bFGF alone; a single-center, two-arm parallel, single-blind, and a prospective randomized controlled pilot study was therefore performed involving 12 patients who underwent split-thickness skin graft harvesting. To ensure a feasible clinical treatment model, commercially available agents were used. The patients were randomly assigned to either the control group treated with bFGF (n = 6) or the intervention group treated with bFGF and heparin (n = 6) in a 1:1 ratio. The wound area and the wound area variation was assessed each week postoperatively, as was the number of days required for epithelialization. As a supplementary analysis, the least-squares means were calculated using a linear mixed-effects model. The results of this study indicate that the combination of bFGF and heparin may more effectively promote wound healing than bFGF alone, consistent with our hypothesis. A multicenter trial based on these data is ongoing.
Collapse
Affiliation(s)
- Keishi Kohyama
- Department of Plastic and Reconstructive Surgery, Gifu University Hospital, Gifu, Japan
| | - Hisakazu Kato
- Department of Plastic and Reconstructive Surgery, Gifu University Hospital, Gifu, Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Yuji Yasue
- Department of Plastic and Reconstructive Surgery, Gifu University Hospital, Gifu, Japan
| | - Ryo Kamidani
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kodai Suzuki
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahito Miyake
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroshi Okuda
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirofumi Shibata
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takenori Ogawa
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
5
|
Fan D, Liu X, Chen H. Endothelium-Mimicking Materials: A "Rising Star" for Antithrombosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53343-53371. [PMID: 39344055 DOI: 10.1021/acsami.4c12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The advancement of antithrombotic materials has significantly mitigated the thrombosis issue in clinical applications involving various medical implants. Extensive research has been dedicated over the past few decades to developing blood-contacting materials with complete resistance to thrombosis. However, despite these advancements, the risk of thrombosis and other complications persists when these materials are implanted in the human body. Consequently, the modification and enhancement of antithrombotic materials remain pivotal in 21st-century hemocompatibility studies. Previous research indicates that the healthy endothelial cells (ECs) layer is uniquely compatible with blood. Inspired by bionics, scientists have initiated the development of materials that emulate the hemocompatible properties of ECs by replicating their diverse antithrombotic mechanisms. This review elucidates the antithrombotic mechanisms of ECs and examines the endothelium-mimicking materials developed through single, dual-functional and multifunctional strategies, focusing on nitric oxide release, fibrinolytic function, glycosaminoglycan modification, and surface topography modification. These materials have demonstrated outstanding antithrombotic performance. Finally, the review outlines potential future research directions in this dynamic field, aiming to advance the development of antithrombotic materials.
Collapse
Affiliation(s)
- Duanqi Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
Libby JR, Royce H, Walker SR, Li L. The role of extracellular matrix in angiogenesis: Beyond adhesion and structure. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100097. [PMID: 39129826 PMCID: PMC11315062 DOI: 10.1016/j.bbiosy.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 08/13/2024] Open
Abstract
While the extracellular matrix (ECM) has long been recognized for its structural contributions, anchoring cells for adhesion, providing mechanical support, and maintaining tissue integrity, recent efforts have elucidated its dynamic, reciprocal, and diverse properties on angiogenesis. The ECM modulates angiogenic signaling and mechanical transduction, influences the extent and degree of receptor activation, controls cellular behaviors, and serves as a reservoir for bioactive macromolecules. Collectively, these factors guide the formation, maturation, and stabilization of a functional vascular network. This review aims to shed light on the versatile roles of the ECM in angiogenesis, transcending its traditional functions as a mere structural material. We will explore its engagement and synergy in signaling modulation, interactions with various angiogenic factors, and highlight its importance in both health and disease. By capturing the essence of the ECM's diverse functionalities, we highlight the significance in the broader context of vascular biology, enabling the design of novel biomaterials to engineer vascularized tissues and their potential therapeutic implications.
Collapse
Affiliation(s)
- Jaxson R. Libby
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Haley Royce
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
| | - Sarah R. Walker
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Linqing Li
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, USA
- Department of Chemistry, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
7
|
Liu X, Peng S, Pei Y, Huo Y, Zong Y, Ren J, Zhao J. Facile fabrication of chitosan/hyaluronic acid hydrogel-based wound closure material Co-loaded with gold nanoparticles and fibroblast growth factor to improve anti-microbial and healing efficiency in diabetic wound healing and nursing care. Regen Ther 2024; 26:1018-1029. [PMID: 39553541 PMCID: PMC11565426 DOI: 10.1016/j.reth.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Generally, diabetic wounds heal very slowly and inefficiently with an increasing risk of infections. Recent nanotechnology and biomaterial advances elaborate developed multi-functional hydrogels and nanoparticles offer promising solutions to accelerate wound healing for diabetic patients. This research work demonstrates to use of solvent diffusion method to develop hydrogel nanocomposites composed of chitosan (CS), hyaluronic acid (HA), gold (Au), and fibroblast growth factors (FGF). The biological analysis of nanocomposites exhibited enhanced wound healing efficiency by incorporating bioactive molecules like FGF and bioactive Au nanoparticles. In vitro, cell compatibility analysis (MTT assay) of prepared hydrogel nanocomposites was studied on fibroblast cell lines NIH-3T3-L1 and L929 and exhibited greater cell survival ability (>90 %), cell proliferation and migration ability, which demonstrated the suitability of nanocomposite for wound healing treatment. In vitro, anti-bacterial analyses established that FGF-Au@CS/HA has strong antibacterial effectiveness against gram-positive and gram-negative pathogens. The observation of the present research revealed that prepared FGF-Au@CS/HA hydrogel composites could be a suitable biomaterial for diabetic wound care, potentially improving its antibacterial and healing efficacies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Shengwei Peng
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yongju Pei
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yuanyuan Huo
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yadi Zong
- Department of Pediatric Surgery, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jianwei Ren
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jing Zhao
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| |
Collapse
|
8
|
Chen H, Bian F, Luo Z, Zhao Y. Biomimetic Anticoagulated Porous Particles with Self-Reporting Structural Colors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400189. [PMID: 38520728 PMCID: PMC11165554 DOI: 10.1002/advs.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Anticoagulation is vital to maintain blood fluidic status and physiological functions in the field of clinical blood-related procedures. Here, novel biomimetic anticoagulated porous inverse opal hydrogel particles is presented as anticoagulant bearing dynamic screening capability. The inverse opal hydrogel particles possess abundant sulfonic and carboxyl groups, which serve as binding sites with multiple coagulation factors and inhibit the blood coagulation process. Owing to the variations of refractive index and pore sizes during the binding process, the particles appeared corresponding structure color variations, which can be adopted as sensory index of anticoagulation. Based on these features, a sensor containing these diverse structure color particle units is constructed for pattern recognition of coagulation factors level in clinical plasma samples. By analyzing the sensory information of the unit, the colorimetric "fingerprint" for each target can be obtained and summarized as a database. Besides, a portable test-strip integrating sensory units is developed to distinguish the sample regarding abnormal coagulation factors-derived diseases via multivariate data analysis. It is believed that such biomimetic anticoagulated structural color particles and their derived sensor will open new avenue for clinical detection and disease diagnosis.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Feika Bian
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Shenzhen Research InstituteSoutheast UniversityShenzhen518038China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023China
| |
Collapse
|
9
|
Xu X, Xie M, Luo S, Jia X. Revisiting Protein-Copolymer Binding Mechanisms: Insights beyond the "Lock-and-Key" Model. J Phys Chem Lett 2024; 15:773-781. [PMID: 38227953 DOI: 10.1021/acs.jpclett.3c03200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The "lock-and-key" model that emphasizes the concept of chemical-structural complementary is the key mechanism for explaining the selectivity between small ligands and a larger adsorbent molecule. In this work, concerning the copolymer chain using only the combination of N-isopropylacrylamide (NIPAm) and hydrophobic N-tert-butylacrylamide (TBAm) monomers and by large-scale atomistic molecular dynamics simulations, our results show that the flexible copolymer chain may exhibit strong binding affinity for the biomarker protein epithelial cell adhesion molecule, in the absence of hydrophobic matching and strong structural complementarity. This surprising binding behavior, which cannot be anticipated by the "lock-and-key" model, can be attributed to the preferential interactions established by the copolymer with the protein's hydrophilic exterior. We observe that increasing the fraction of incorporated TBAm monomers leads to a prevalence of interactions with asparagine and glutamine amino acids due to the emerging hydrogen bonding with both NIPAm and TBAm monomers. Our findings suggest the appearance of highly specific and high-affinity binding sites on the protein created by engineering the copolymer composition, which motivates the applications of copolymers as protein affinity reagents.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Menghan Xie
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| | - Shejia Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| | - Xu Jia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| |
Collapse
|
10
|
Wang W, Liu S, Zhang S, Zhang J, Tang Y, Zhang W. Incorporating Anticoagulant and Antiplatelet Dual Functional Groups into Thermosetting Polymer Chain for Enhancing Antithrombogenicity. Adv Healthc Mater 2023; 12:e2300680. [PMID: 37515824 DOI: 10.1002/adhm.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/05/2023] [Indexed: 07/31/2023]
Abstract
In clinical practice, high-effective antithrombosis remains a challenge for blood-contacting medical devices. Inspired by the enhanced antithrombogenicity of anticoagulant and antiplatelet combination therapy, a strategy is proposed to synthesize dual-pathway antithrombotic polymers by incorporating anticoagulant and antiplatelet dual functional groups into a single thermosetting polymer chain. The synthesized polymer shows increased antithrombogenicity in vitro, with prolonged activated partial thromboplastin time (APTT) and decreased platelet adhesion. Additionally, it downregulates the expression of coagulation- and inflammation-related factors in rabbit plasma after ex vivo arteriovenous shunt assay and maintains patency of small vascular grafts for at least 6 months without thrombosis on the luminal surface after in vivo replacement of rabbit carotid artery. This work provides a new approach to producing novel antithrombotic polymers for blood-contacting medical devices.
Collapse
Affiliation(s)
- Weizhong Wang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200240, China
| | - Shaowen Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200240, China
| | - Shan Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200240, China
| | - Jingjing Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200240, China
| | - Yuyi Tang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200240, China
| | - Weijia Zhang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200240, China
- The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200240, China
- Department of Physiology and Pathophysiology, the Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention, School of Basic Medical Sciences, Fudan University, Shanghai, 200240, China
| |
Collapse
|
11
|
Takematsu E, Murphy M, Hou S, Steininger H, Alam A, Ambrosi TH, Chan CKF. Optimizing Delivery of Therapeutic Growth Factors for Bone and Cartilage Regeneration. Gels 2023; 9:gels9050377. [PMID: 37232969 DOI: 10.3390/gels9050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Bone- and cartilage-related diseases, such as osteoporosis and osteoarthritis, affect millions of people worldwide, impairing their quality of life and increasing mortality. Osteoporosis significantly increases the bone fracture risk of the spine, hip, and wrist. For successful fracture treatment and to facilitate proper healing in the most complicated cases, one of the most promising methods is to deliver a therapeutic protein to accelerate bone regeneration. Similarly, in the setting of osteoarthritis, where degraded cartilage does not regenerate, therapeutic proteins hold great promise to promote new cartilage formation. For both osteoporosis and osteoarthritis treatments, targeted delivery of therapeutic growth factors, with the aid of hydrogels, to bone and cartilage is a key to advance the field of regenerative medicine. In this review article, we propose five important aspects of therapeutic growth factor delivery for bone and cartilage regeneration: (1) protection of protein growth factors from physical and enzymatic degradation, (2) targeted growth factor delivery, (3) controlling GF release kinetics, (4) long-term stability of regenerated tissues, and (5) osteoimmunomodulatory effects of therapeutic growth factors and carriers/scaffolds.
Collapse
Affiliation(s)
- Eri Takematsu
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
| | - Matthew Murphy
- Blond McIndoe Laboratories, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PR, UK
| | - Sophia Hou
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
| | - Holly Steininger
- School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Alina Alam
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, University of California, Davis, CA 95817, USA
| | - Charles K F Chan
- Department of Surgery, Stanford Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Gao X, Liu K, Liu P, Bai X, Li A, Lyu Z, Li Q. Preparation and properties of cellulose acetate graft copolymer‐coated adsorbent resin for hemoperfusion device. J Appl Polym Sci 2023. [DOI: 10.1002/app.53895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
13
|
Liu X, Zheng D, Long Y, Wang L. Highly Robust Nanogels from Thermal-Responsive Nanoparticles with Controlled Swelling for Engineering Deployments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11175-11184. [PMID: 36799692 DOI: 10.1021/acsami.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Regular nanogels have been demonstrated their inefficiency for subterranean oil recovery due to their intrinsic drawbacks of fast swelling within minutes, thermal instability, and salinity vulnerability. Prior deployment of swelling delayed nanogels mainly depended on the reservoirs at a relatively higher temperature. To address the issues encountered during engineering deployment, hereinwe devised an integrative approach to in situ form swelling delayed robust nanogels by introducing radically active monomers with thermally sensitive moieties. The nanoparticles with hydrophobic cores in brine in response to thermal input in situ generated well-dispersed hydrophilic nanogels, which showed a pronounced delayed swelling of a week compared to traditional nanogels showing swelling kinetics within minutes. Furthermore, the formation of swelling-delayed nanogels could occur at ambient temperature. This behavior was radically different from that of temperature-controlled labile cross-linkers containing nanogels, requiring temperatures greater than 50 °C for volume increase thanks to ester hydrolysis. In addition, the in-situ formed nanogels displayed long-term thermal stability and salinity tolerance under hostile media at temperatures up to 130 °C. The release of an acidic proton under aqueous conditions has been demonstrated to control the microenvironment for various scenarios. The nanotechnology of converting hydrophobic nanoparticles to hydrophilic nanogels could be applied in a wide range of practical applications such as plugging materials and foaming stabilizers for in-depth conformance control during water and CO2 flooding.
Collapse
Affiliation(s)
- Xing Liu
- Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences, Wuhan 430074, China
| | - Da Zheng
- PetroChina Oil, Gas & New Energies Company, Beijing 100007, China
| | - Yifu Long
- CNPC Research Institute of Engineering Technology, Beijing 102206, China
| | - Lizhu Wang
- Department of Petroleum Engineering, School of Earth Resources, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
14
|
Barrier-penetrating liposome targeted delivery of basic fibroblast growth factor for spinal cord injury repair. Mater Today Bio 2023; 18:100546. [PMID: 36691606 PMCID: PMC9860515 DOI: 10.1016/j.mtbio.2023.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Nanoparticle technologies offer a non-invasive means to deliver basic fibroblast growth factor (bFGF) for the treatment of spinal cord injury (SCI). However, the inability of bFGF to accumulate at the injury site and inefficient penetration across the blood-spinal cord barrier (BSCB) remain challenges. The present study describes a dual-targeting liposome (bFGF@Lip-Cp&Rp) with injury lesion targeting and BSCB-penetrating capability to deliver bFGF for SCI treatment. The CAQK peptide (Cp) with injury lesion targeting ability and R2KC peptide (Rp) with BSCB-penetrating capability were grafted onto the liposomes for a flexible and non-invasive drug delivery systems preparation. Results exhibit that the dual-targeted liposomes could significantly cross the BSCB and accumulate at the injury site. During the early stage of SCI, bFGF@Lip-Cp&Rp promotes repair of BSCB and facilitates M2-polarization of macrophages. Regular delivery of bFGF@Lip-Cp&Rp increase HUVECs tube formation and angiogenesis, ameliorate the microenvironment of lesion site, suppress the neuronal apoptosis and axonal atrophy in SCI rats. Importantly, continuous treatment of bFGF@Lip-Cp&Rp supports the restoration of limb motor function in SCI rats. In summary, this research implies that the injury site-targeting and BSCB-penetrating liposomes could be a promising therapeutic approach for the treatment of SCI.
Collapse
Key Words
- 1H NMR, 1H Nuclear magnetic resonance
- Arg-1, Arginase 1
- BBB, Basso-Beattie-Bresnahan
- BSCB, Blood-spinal cord barrier
- Basic fibroblast growth factor
- CCK-8, Cell counting kit-8
- CD31, Platelet endothelial cell adhesion molecule-1
- CD86, Cluster of differentiation 86
- CSPGs, Chondroitin sulfate proteoglycans
- Cp, CAQK peptide
- DSPE-PEG2000, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]
- DiI, 1-dioctadecyl-3,3,3,3-tetramethylindocarbocyanine perchlorate
- Drug delivery
- FITC-BSA, Fluorescein isothiocyanate-labeled bovine serum albumin
- GFAP, Glial fibrillary acidic protein
- HUVECs, Human umbilical vein endothelial cells
- IL-10, Interleukin 10
- Liposome
- Mal, Maleimide
- NF-200, Neurofilament-200
- NGF, Nerve growth factor
- NT-3, Neurotrophin-3
- Rp, R2KC peptide
- SCI, Spinal cord injury
- Spinal cord injury
- TGF-β, Transforming growth factor-β
- Target
- VEGF-A, Vascular endothelial growth factor A
- ZO-1, Zonulaoccludens 1
- bFGF, Basic fibroblast growth factor
Collapse
|
15
|
Xu X, Zhang T, Angioletti-Uberti S, Lv Y. Binding of Proteins to Copolymers of Varying Charges and Hydrophobicity: A Molecular Mechanism and Computational Strategies. Biomacromolecules 2022; 23:4118-4129. [PMID: 36166427 DOI: 10.1021/acs.biomac.2c00521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of their ability to selectively bind to a target protein, copolymer nanoparticles (NPs) containing a selected combination of hydrophobic and charged groups have been frequently reported as potent antibody-like analogues. However, due to the intrinsic disorder of the copolymer NP in terms of its random monomer sequence and the cross-linked copolymer matrix, the copolymer NP is indeed strikingly different from a well-folded protein antibody and the complexation between the copolymer NP and a target protein is likely not due to a lock-key type of interaction but possibly due to a novel and unexplored molecular mechanism. Here, we study a key biomarker protein, vimentin, interacting with a set of random copolymer chains using implicit-water explicit-ion coarse-grained (CG) molecular dynamics (MD) simulations along with biolayer interferometry (BLI) analysis. Due to the charge and hydrophobicity anisotropy on the vimentin dimer (VD) surface, a set of bound copolymers are found inhomogenously adsorbed on the VD, with energetic heterogeneity for different binding sites and cooperative effect in the adsorption. Increasing the charge or hydrophobicity of the copolymer may have different consequences on the adsorption. In this study, we found that with more copolymer charges, the protein coverage increases for copolymers of low hydrophobicity and decreases of high hydrophobicity, which is explained by the distribution and size of various functional patches on the VD in loading those copolymers. Employing a coverage-dependent Langmuir model, we propose a simulation protocol to address the full profile of the copolymer binding free energy through the fit to the simulated binding isotherm. The obtained results correlate well with those from the BLI experiment, indicating the significance of this method for the rational design of the copolymer NP with engineered protein binding affinity.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing210094, P. R. China
| | - Tong Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Stefano Angioletti-Uberti
- Department of Materials, Imperial College London, LondonSW7 2AZ, U.K.,Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, LondonSW7 2AZ, U.K
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
16
|
Hoffmann M, Snyder NL, Hartmann L. Polymers Inspired by Heparin and Heparan Sulfate for Viral Targeting. Macromolecules 2022; 55:7957-7973. [PMID: 36186574 PMCID: PMC9520969 DOI: 10.1021/acs.macromol.2c00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam Hoffmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L. Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
17
|
Lian AA, Yamaji Y, Kajiwara K, Takaki K, Mori H, Liew MWO, Kotani E, Maruta R. A Bioengineering Approach for the Development of Fibroblast Growth Factor-7-Functionalized Sericin Biomaterial Applicable for the Cultivation of Keratinocytes. Int J Mol Sci 2022; 23:ijms23179953. [PMID: 36077351 PMCID: PMC9456417 DOI: 10.3390/ijms23179953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Growth factors, including fibroblast growth factor-7 (FGF-7), are a group of proteins that stimulate various cellular processes and are often used with carriers to prevent the rapid loss of their activities. Sericin with great biocompatibility has been investigated as a proteinaceous carrier to enhance the stability of incorporated proteins. The difficulties in obtaining intact sericin from silkworm cocoons and the handling of growth factors with poor stability necessitate an efficient technique to incorporate the protein into a sericin-based biomaterial. Here, we report the generation of a transgenic silkworm line simultaneously expressing and incorporating FGF-7 into cocoon shells containing almost exclusively sericin. Growth-factor-functionalized sericin cocoon shells requiring simple lyophilization and pulverization processes were successfully used to induce the proliferation and migration of keratinocytes. Moreover, FGF-7 incorporated into sericin-cocoon powder exhibited remarkable stability, with more than 70% of bioactivity being retained after being stored as a suspension at 25 °C for 3 months. Transgenic sericin-cocoon powder was used to continuously supply biologically active FGF-7 to generate a three-dimensionally cultured keratinocyte model in vitro. The outcomes of this study propound a feasible approach to producing cytokine-functionalized sericin materials that are ready to use for cell cultivation.
Collapse
Affiliation(s)
- Ai Ai Lian
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuka Yamaji
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kazuki Kajiwara
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keiko Takaki
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hajime Mori
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mervyn Wing On Liew
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Eiji Kotani
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (E.K.); (R.M.); Tel.: +81-75-724-7774 (E.K. & R.M.)
| | - Rina Maruta
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Correspondence: (E.K.); (R.M.); Tel.: +81-75-724-7774 (E.K. & R.M.)
| |
Collapse
|
18
|
Koda Y. Unnatural biopolymers of saccharides and proteins conjugated with poly(2-oxazoline) and methacrylate-based polymers: from polymer design to bioapplication. Polym J 2022. [DOI: 10.1038/s41428-022-00695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Hoffmann M, Snyder NL, Hartmann L. Glycosaminoglycan Mimetic Precision Glycomacromolecules with Sequence-Defined Sulfation and Rigidity Patterns. Biomacromolecules 2022; 23:4004-4014. [PMID: 35959886 DOI: 10.1021/acs.biomac.2c00829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sulfated glycosaminoglycans (sGAGs) such as heparan sulfate (HS) are structurally diverse linear polysaccharides that are involved in many biological processes and have gained interest as antiviral compounds. Their recognition is driven by a complex orchestra of structural parameters that are still under intense investigation. One distinct characteristic is the incorporation of sulfation patterns including highly sulfated and non-sulfated sequences that provide variations in flexibility and conformation, which in turn impact the biological function of sGAGs. However, these distinct features have not yet been fully realized in the synthetic preparation of sGAG mimetics. Here, we present the synthesis of three groups of sulfated glycomacromolecules as sGAG mimetics: (i) globally sulfated glycooligomers, (ii) glycooligomers with sequence-defined sulfation patterns, and (iii) a globally sulfated glycooligomer-oligo-L-proline hybrid structure. The complete synthesis, including chemical sulfation, was conducted on solid support, enabled by the introduction of a commercially available photocleavable linker allowing for the preservation of sensitive sulfates during cleavage of the products. Structures were obtained in good purity and with high degrees of sulfation demonstrating the wide applicability of this methodology to prepare tailor-made sulfated glycomacromolecules and similar sGAG mimetics. Structures were tested for their anticoagulant properties showing activity similar to their natural HS counterpart and significantly lower than HP.
Collapse
Affiliation(s)
- Miriam Hoffmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Zhang B, Qin Y, Yang L, Wan H, Yuan L, Wang Y. An organic selenium and VEGF-conjugated bioinspired coating promotes vascular healing. Biomaterials 2022; 287:121654. [PMID: 35842980 DOI: 10.1016/j.biomaterials.2022.121654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The introduction of drug-eluting stents (DESs) have yield a significant reduction in the incidence of re-stenosis, however, challenges remain including incomplete healing of the endothelium, inflammatory response and thrombogenesis at the site of vascular wall injury. Here, we developed a novel stent with polyphenol-polyamine surface combining the biological functions of nitric oxide gas and VEGF, selectively promoting the proliferation and migration of endothelial cells while suppressing smooth muscle cells. Compared with bare PLLA stents and traditional DESs, the functionalized stents enhanced vascular healing through remarkable inhibiting intimal hyperplasia and occurrence of thrombosis, accelerating the in-situ endothelium repair. Moreover, it showed a down-regulation of injury vascular inflammation response and reduction of the vessel wall injury in New Zealand Rabbits after 1- and 3-month implantation.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Lu Yuan
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China.
| |
Collapse
|
21
|
Yasunaga M, Kobayashi F, Sogo Y, Murotomi K, Hirose M, Hara Y, Yamazaki M, Ito A. The enhancing effects of heparin on the biological activity of FGF-2 in heparin-FGF-2-calcium phosphate composite layers. Acta Biomater 2022; 148:345-354. [PMID: 35697197 DOI: 10.1016/j.actbio.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Orthopedic and dental implants coated with fibroblast growth factor-2 (FGF-2)-calcium phosphate composite layers promote dermis formation, bone formation, and angiogenesis because of the biological activity of FGF-2. Enhancing the biological activity of FGF-2 in the composite layers is important for its wider application in orthopedics and dentistry. This study incorporated low-molecular-weight heparin (LMWH) into the FGF-2-calcium phosphate composite layers and clarified the enhancing effects of LMWH on the biological activity of FGF-2 in the composite layers in vitro. LMWH-FGF-2-calcium phosphate composite layers were successfully formed on zirconia in supersaturated calcium phosphate solutions. The composite layers comprised continuous and macroscopically homogeneous layers and particles smaller than 500 nm in size composed of amorphous calcium phosphate. The amounts of Ca and P deposited on zirconia remained almost unchanged with the addition of LMWH under the presence of FGF-2 in the supersaturated calcium phosphate solution. The LMWH in the supersaturated calcium phosphate solution increased the stability of FGF-2 in the solution and the amount of FGF-2 in the composite layers. The LMWH in the composite layers increased the mitogenic and endothelial tube-forming activities of FGF-2, and FGF-2 activity of inducing osteogenic differentiation gene expression pattern in the composite layers. Our results indicate that the enhanced biological activity of FGF-2 in the LMWH-FGF-2-calcium phosphate composite layers is attributed to an LMWH-mediated increase in the amount of FGF-2, which maintains its biological activity in the supersaturated calcium phosphate solution and the composite layers. The LMWH-FGF-2-calcium phosphate composite layer is a promising coating for orthopedic and dental implants. STATEMENT OF SIGNIFICANCE: Orthopedic and dental implants coated with fibroblast growth factor-2 (FGF-2)-calcium phosphate composite layers promote dermis formation, bone formation, and angiogenesis because of the biological activity of FGF-2. Enhancing the biological activity of FGF-2 in the layers is important for wider its application in orthopedics and dentistry. This study demonstrates the enhancing effects of low-molecular-weight heparin (LMWH) contained within LMWH-FGF-2-calcium phosphate composite layers on the biological activity of FGF-2 in vitro. Our results indicate that the enhanced biological activity of FGF-2 within the composite layers arises from an LMWH-mediated increase in the amount of FGF-2, which maintains its biological activity in the LMWH-FGF-2-calcium phosphate composite layers and supersaturated calcium phosphate solutions used for coating the composite layers.
Collapse
Affiliation(s)
- Mayu Yasunaga
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Fumiko Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Sogo
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Motohiro Hirose
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuki Hara
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsuo Ito
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
22
|
Yu X, Su Q, Chang X, Chen K, Yuan P, Liu T, Tian R, Bai Y, Zhang Y, Chen X. Multimodal obstruction of tumorigenic energy supply via bionic nanocarriers for effective tumor therapy. Biomaterials 2021; 278:121181. [PMID: 34653932 DOI: 10.1016/j.biomaterials.2021.121181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/05/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Sufficient energy generation based on effective transport of nutrient via abundant blood vessels in tumor tissue and subsequent oxidative metabolism in mitochondria is critical for growth, proliferation and migration of tumor. Thus the strategy to cut off this transport pathway (blood vessels) and simultaneously close the power house (mitochondria) is highly desired for tumor treatment. Herein, we fabricated a bionic nanocarrier with core-shell-corona structure to give selective and effective tumor therapy via stepwise destruction of existed tumor vessel, inhibition of tumor angiogenesis and dysfunction of tumor mitochondria. The core of this bionic nanocarrier consists of combretastatin A4 phosphate (CA4P) and vitamin K2 (VK2) co-loaded mesoporous silica nanoparticle (MSNs), which is in charge of the vasculature destruction and mitochondrial dysfunction after cargos release. The N-tert-butylacrylamide (TBAM) and tri-sulfated N-acetylglucosamine (TSAG) shell served as artificial affinity reagent against vascular endothelial growth factor (VEGF) for angiogenesis inhibition. As to guarantee that these actions only happened in tumor, the hyaluronic acid (HA) corona was introduced to endow the nanocarrier with tumor targeting property and stimuli-responsiveness for accurate therapy. Both in vitro and in vivo results indicated that the CA4P/VK2-MSNs-TBAM/TSAG-HA (CVMMGH for short) nanocarrier combined well-controllable manipulation of tumor vasculature and tumor mitochondria to effectivly cut off the tumorigenic energy supply, which performed significant inhibition of tumor growth, demonstrating the great candidate of our strategy for effective tumor therapy.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kun Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Pingyun Yuan
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ran Tian
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yongkang Bai
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
23
|
Gelb MB, Maynard HD. Effect of Poly(trehalose methacrylate) Molecular Weight and Concentration on the Stability and Viscosity of Insulin. MACROMOLECULAR MATERIALS AND ENGINEERING 2021; 306:2100197. [PMID: 35591895 PMCID: PMC9113406 DOI: 10.1002/mame.202100197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 05/23/2023]
Abstract
Instability to storage and shipping conditions and injection administration remain major challenges in treating chronic conditions with biopharmaceuticals. Herein, formulations of poly(trehalose methacrylate) (pTrMA) were successfully optimized to stabilize insulin without appreciably increasing viscosity. Polymers were synthesized (2,400 - 29,200 Da), and added to insulin at different concentrations. pTrMA maintained >95% intact insulin against 250 rpm at 37 °C for 3 hours with at least 10 mol. eq. of 5.0 kDa, 7.5 mol. eq. of 9.4 kDa, 5 mol. eq. of 12.8 kDa, 1 mol. eq. of 19.8 kDa, and 0.5 mol. eq. of 29.2 kDa polymers, compared to 13.1% of insulin alone. The lowest pTrMA concentration formulations were more viscous than insulin alone, but the highest viscosity, U-600 with 10 mol. eq. of 5 kDa pTrMA, was only 1.43 cP at 25 °C. This data demonstrates that pTrMA is a promising low viscosity additive to stabilize the diabetes therapeutic insulin.
Collapse
Affiliation(s)
- Madeline B Gelb
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
| |
Collapse
|
24
|
Kim S, Fan J, Lee CS, Chen C, Lee M. Sulfonate Hydrogel-siRNA Conjugate Facilitates Osteogenic Differentiation of Mesenchymal Stem Cells by Controlled Gene Silencing and Activation of BMP Signaling. ACS APPLIED BIO MATERIALS 2021; 4:5189-5200. [PMID: 34661086 DOI: 10.1021/acsabm.1c00369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels have been widely used in bone tissue engineering due to their tunable characteristics that allow facile modifications with various biochemical properties to support cell growth and guide proper cell functions. Herein, we report a design of hydrogel-siRNA conjugate that facilitates osteogenesis via gene silencing and activation of bone morphogenetic protein (BMP) signaling. A sulfonate hydrogel is prepared by modifying chitosan with sulfoacetic acid to mimic a natural sulfated polysaccharide and to provide a hydrogel surface that enables BMP binding. Then, siRNA targeting noggin, an endogenous extracellular antagonist of BMP signaling, is covalently conjugated to the sulfonate hydrogel by visible blue light crosslinking. The sulfonate hydrogel-siRNA conjugate is efficient to bind BMPs and also successfully prolongs the release of siRNA for sustained noggin suppression, thereby resulting in significantly increased osteogenic differentiation. Lastly, demineralized bone matrix (DBM) is incorporated into the sulfonate hydrogel-siRNA conjugate, wherein the DBM incorporation induces noggin expression via a negative feedback mechanism that regulates BMP signaling in DBM. However, simultaneous delivery of siRNA downregulates noggin thus facilitating endogenous BMP activity and enhancing the osteogenic efficacy of DBM. These findings support a promising hydrogel RNA silencing platform for bone tissue engineering applications.
Collapse
Affiliation(s)
- Soyon Kim
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Jiabing Fan
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Chung-Sung Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Chen Chen
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA.,Department of Bioengineering, University of California, Los Angeles, USA
| |
Collapse
|
25
|
Kim H, Jeong JH, Fendereski M, Lee HS, Kang DY, Hur SS, Amirian J, Kim Y, Pham NT, Suh N, Hwang NSY, Ryu S, Yoon JK, Hwang Y. Heparin-Mimicking Polymer-Based In Vitro Platform Recapitulates In Vivo Muscle Atrophy Phenotypes. Int J Mol Sci 2021; 22:ijms22052488. [PMID: 33801235 PMCID: PMC7957884 DOI: 10.3390/ijms22052488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The cell–cell/cell–matrix interactions between myoblasts and their extracellular microenvironment have been shown to play a crucial role in the regulation of in vitro myogenic differentiation and in vivo skeletal muscle regeneration. In this study, by harnessing the heparin-mimicking polymer, poly(sodium-4-styrenesulfonate) (PSS), which has a negatively charged surface, we engineered an in vitro cell culture platform for the purpose of recapitulating in vivo muscle atrophy-like phenotypes. Our initial findings showed that heparin-mimicking moieties inhibited the fusion of mononucleated myoblasts into multinucleated myotubes, as indicated by the decreased gene and protein expression levels of myogenic factors, myotube fusion-related markers, and focal adhesion kinase (FAK). We further elucidated the underlying molecular mechanism via transcriptome analyses, observing that the insulin/PI3K/mTOR and Wnt signaling pathways were significantly downregulated by heparin-mimicking moieties through the inhibition of FAK/Cav3. Taken together, the easy-to-adapt heparin-mimicking polymer-based in vitro cell culture platform could be an attractive platform for potential applications in drug screening, providing clear readouts of changes in insulin/PI3K/mTOR and Wnt signaling pathways.
Collapse
Affiliation(s)
- Hyunbum Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea;
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Mona Fendereski
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Hyo-Shin Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Da Yeon Kang
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan-si 31538, Korea; (D.Y.K.); (N.S.)
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
| | - Jhaleh Amirian
- Institute of Tissue Regeneration, Soonchunhyang University, Asan-si 31538, Korea;
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Nghia Thi Pham
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Nayoung Suh
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan-si 31538, Korea; (D.Y.K.); (N.S.)
| | - Nathaniel Suk-Yeon Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea;
| | - Seongho Ryu
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
- Correspondence: (J.K.Y.); (Y.H.); Tel.: +82-41-413-5016 (J.K.Y.); +82-41-413-5017 (Y.H.)
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Korea; (H.K.); (J.H.J.); (M.F.); (H.-S.L.); (S.S.H.); (Y.K.); (N.T.P.); (S.R.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si 31538, Korea
- Correspondence: (J.K.Y.); (Y.H.); Tel.: +82-41-413-5016 (J.K.Y.); +82-41-413-5017 (Y.H.)
| |
Collapse
|
26
|
Molecular simulation of zwitterionic polypeptides on protecting glucagon-like peptide-1 (GLP-1). Int J Biol Macromol 2021; 174:519-526. [PMID: 33539961 DOI: 10.1016/j.ijbiomac.2021.01.207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 11/23/2022]
Abstract
Owing to their anti-fouling properties, zwitterionic polypeptides demonstrate great advantage on protecting protein drugs. When conjugated to glucagon-like peptide-1 (GLP-1), a drug for type-II diabetes, zwitterionic polypeptides confer better pharmacokinetics than uncharged counterparts. However, its microscopic mechanism is still unclear due to the complicated conformational space. To address this challenge, this work explored the interaction modes of GLP-1 with the unconnected repeat units, instead of the full-length polypeptides. The three repeat units are two zwitterionic pentapeptides VPKEG and VPREG, and one uncharged control VPGAG. Our molecular simulations revealed that the helical conformation of GLP-1 was stabilized by adding 40 polypeptides. Both VPGAG and VPREG formed dense packing shells around GLP-1, but the driving forces were hydrophobic and electrostatic interactions, respectively. In contrast, the packing shell composed of VPKEG was most loose, while could still stabilize GLP-1. The moderate electrostatic interactions endowed VPKEG an anti-fouling property, thereby avoiding non-specific interaction with other amino acids. The strong electrostatic interactions exerted by arginine promoted atomic contacts between VPREG and other residues, making it as "hydrophobic" as VPGAG. In summary, the combination of hydrophobic and moderate electrostatic interactions in VPKEG brings about a subtle balance between stabilizing GLP-1 and avoiding non-specific interaction.
Collapse
|
27
|
Wu J, Zhu J, Wu Q, An Y, Wang K, Xuan T, Zhang J, Song W, He H, Song L, Zheng J, Xiao J. Mussel-Inspired Surface Immobilization of Heparin on Magnetic Nanoparticles for Enhanced Wound Repair via Sustained Release of a Growth Factor and M2 Macrophage Polarization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2230-2244. [PMID: 33403850 DOI: 10.1021/acsami.0c18388] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient reconstruction of a fully functional skin after wounds requires multiple functionalities of wound dressing due to the complexity of healing. In these regards, topical administration of functionalized nanoparticles capable of sustainably releasing bioactive agents to the wound site may significantly accelerate wound repair. Among the various nanoparticles, superparamagnetic iron oxide (Fe3O4) nanoparticles gain increasing attractiveness due to their intrinsic response to an external magnetic field (eMF). Herein, based on the Fe3O4 nanoparticle, we developed a fibroblast growth factor (bFGF)-loaded Fe3O4 nanoparticle using a simple mussel-inspired surface immobilization method. This nanoparticle, named as bFGF-HDC@Fe3O4, could stabilize bFGF in various conditions and exhibited sustained release of bFGF. In addition, an in vitro study discovered that bFGF-HDC@Fe3O4 could promote macrophage polarization toward an anti-inflammatory (pro-healing) M2 phenotype especially under eMF. Further, in vivo full-thickness wound animal models demonstrated that bFGF-HDC@Fe3O4 could significantly accelerate wound healing through M2 macrophage polarization and increased cell proliferation. Therefore, this approach of realizing sustained the release of the growth factor with magnetically macrophage regulating behavior through modification of Fe3O4 nanoparticles offers promising potential to tissue-regenerative applications.
Collapse
Affiliation(s)
- Jiang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Junyi Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, P.R. China
| | - Qiuji Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ying An
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Kangning Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Tengxiao Xuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Junwen Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Wenxiang Song
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Liwan Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
28
|
Theodorou A, Mandriotis P, Anastasaki A, Velonia K. Oxygen tolerant, photoinduced controlled radical polymerization approach for the synthesis of giant amphiphiles. Polym Chem 2021. [DOI: 10.1039/d0py01608j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
New families of amphiphilic protein–polymer bioconjugates readily synthesized via an oxygen tolerant, photoinduced RDRP approach.
Collapse
Affiliation(s)
- Alexis Theodorou
- Laboratory of Synthetic Biomaterials
- Department of Materials Science and Technology
- University of Crete
- 70013 Heraklion
- Greece
| | - Petros Mandriotis
- Laboratory of Synthetic Biomaterials
- Department of Materials Science and Technology
- University of Crete
- 70013 Heraklion
- Greece
| | - Athina Anastasaki
- Laboratory of Polymeric Materials
- Department of Materials
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Kelly Velonia
- Laboratory of Synthetic Biomaterials
- Department of Materials Science and Technology
- University of Crete
- 70013 Heraklion
- Greece
| |
Collapse
|
29
|
Lee H, An YH, Kim TK, Ryu J, Park GK, Park MJ, Ko J, Kim H, Choi HS, Hwang NS, Park TH. Enhancement of Wound Healing Efficacy by Increasing the Stability and Skin-Penetrating Property of bFGF Using 30Kc19α-Based Fusion Protein. Adv Biol (Weinh) 2021; 5:e2000176. [PMID: 33724733 PMCID: PMC7996635 DOI: 10.1002/adbi.202000176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/17/2020] [Indexed: 12/19/2022]
Abstract
The instability of recombinant basic fibroblast growth factor (bFGF) is a major disadvantage for its therapeutic use and means frequent applications to cells or tissues are required for sustained effects. Originating from silkworm hemolymph, 30Kc19α is a cell-penetrating protein that also has protein stabilization properties. Herein, it is investigated whether fusing 30Kc19α to bFGF can enhance the stability and skin penetration properties of bFGF, which may consequently increase its therapeutic efficacy. The fusion of 30Kc19α to bFGF protein increases protein stability, as confirmed by ELISA. 30Kc19α-bFGF also retains the biological activity of bFGF as it facilitates the migration and proliferation of fibroblasts and angiogenesis of endothelial cells. It is discovered that 30Kc19α can improve the transdermal delivery of a small molecular fluorophore through the skin of hairless mice. Importantly, it increases the accumulation of bFGF and further facilitates its translocation into the skin through follicular routes. Finally, when applied to a skin wound model in vivo, 30Kc19α-bFGF penetrates the dermis layer effectively, which promotes cell proliferation, tissue granulation, angiogenesis, and tissue remodeling. Consequently, the findings suggest that 30Kc19α improves the therapeutic functionalities of bFGF, and would be useful as a protein stabilizer and/or a delivery vehicle in therapeutic applications.
Collapse
Affiliation(s)
- Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae Keun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jina Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - G Kate Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Mihn Jeong Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyunbum Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
30
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Actomyosin and the MRTF-SRF pathway downregulate FGFR1 in mesenchymal stromal cells. Commun Biol 2020; 3:576. [PMID: 33067523 PMCID: PMC7567845 DOI: 10.1038/s42003-020-01309-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Both biological and mechanical signals are known to influence cell proliferation. However, biological signals are mostly studied in two-dimensions (2D) and the interplay between these different pathways is largely unstudied. Here, we investigated the influence of the cell culture environment on the response to bFGF, a widely studied and important proliferation growth factor. We observed that human mesenchymal stromal cells (hMSCs), but not fibroblasts, lose the ability to respond to soluble or covalently bound bFGF when cultured on microfibrillar substrates. This behavior correlated with a downregulation of FGF receptor 1 (FGFR1) expression of hMSCs on microfibrillar substrates. Inhibition of actomyosin or the MRTF/SRF pathway decreased FGFR1 expression in hMSCs, fibroblasts and MG63 cells. To our knowledge, this is the first time FGFR1 expression is shown to be regulated through a mechanosensitive pathway in hMSCs. These results add to the sparse literature on FGFR1 regulation and potentially aid designing tissue engineering constructs that better control cell proliferation.
Collapse
|
32
|
Chan KK, Lei Q, Tang J, Sun XL. Synthesis of aryl azide chain-end functionalized N-linked glycan polymers and their photo-labelling of specific protein. RSC Adv 2020; 10:38561-38565. [PMID: 35517525 PMCID: PMC9057295 DOI: 10.1039/d0ra08400j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
We report a straightforward synthesis of aryl azide chain-end functionalized N-linked glycan polymers and its application for affinity-assisted photo-labelling of specific protein. The aryl azide chain-end functionalized N-glycan polymers, including N-galactosyl, N-glucosyl, and N-lactosyl polymer, were synthesized from free glycan via glycosylamine intermediates followed by acrylation and polymerization via cyanoxyl-mediated free radical polymerization (CMFRP) in a one-pot fashion. The aryl azide chain-end functionalized N-glycan polymers were characterized by 1H NMR and IR spectroscopy. The affinity-assisted photo-labeling capabilities of the aryl azide N-glycan polymers were demonstrated with aryl azide N-lactosyl polymer as a ligand for β-galactose-specific lectin from Arachis hypogaea (PNA) after UV irradiation and confirmed by SDS-PAGE with silver staining. Overall, the aryl azide chain-end functionalized N-linked glycan polymers will be useful multivalent ligands for specific protein labelling and functionality studies.
Collapse
Affiliation(s)
- Ka Keung Chan
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University 2121 Euclid Avenue Cleveland Ohio 44115 USA
| | - Qiaoshi Lei
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University West 601, Huangpu Avenue Guangzhou People's Republic of China
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University West 601, Huangpu Avenue Guangzhou People's Republic of China
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering, Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University 2121 Euclid Avenue Cleveland Ohio 44115 USA
| |
Collapse
|
33
|
Sun W, Jin S, Zhang A, Huang J, Li Y, Liu X, Chen H. Vascular cell responses to silicone surfaces grafted with heparin-like polymers: surface chemical composition vs. topographic patterning. J Mater Chem B 2020; 8:9151-9161. [PMID: 32945818 DOI: 10.1039/d0tb01000f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Heparin-like polymers are promising synthetic materials with biological functionalities, such as anticoagulant ability, growth factor binding to regulate cellular functions, and inflammation mediation, similar to heparin. The biocompatibility of heparin-like polymers with well-defined chemical structures has inspired many researchers to design heparin-like surfaces to explore their biological applications. The concept of the recombination of functional heparin structural units (sulfonate- and glyco-containing units) was proven to be successful in designing heparin-mimicking surfaces. However, besides surface structural units, topographic patterning is also an important contributor to the biological activity of the surfaces modified with heparin-like polymers. In this work, both surface structural units and topographic patterning were taken into account to investigate the vascular cell behaviors on the silicone surfaces. A facile method for the production of patterned bromine-containing polydimethylsiloxane surface (PDMS-Br) was developed from a one-step multicomponent thermocuring procedure and replica molding using a nanohole-arrayed silicon template. Different structural units of heparin-like polymers, i.e. homopolymer of sulfonate-containing sodium 4-vinylbenzenesulfonate (pSS), homopolymer of glyco-containing 2-(methacrylamido)glucopyranose (pMAG), and copolymers of MAG and SS (pSG), were then introduced on the flat and patterned PDMS-Br surface using visible light-induced graft polymerization. For the flat surfaces, compared with the PDMS-Br surface, pSS-grafted and pSG-grafted surfaces significantly increased cell densities of both human umbilical vein endothelial cells (HUVECs) and human umbilical vein smooth muscle cells (HUVSMCs), indicating that they are "vascular cell-friendly". In contrast, the pMAG-grafted surface showed decreased cell attachment of both HUVECs and HUVSMCs, indicating that the pMAG-grafted surface is "vascular cell-resistant". Moreover, surface topographic patterning enhanced the cell responses to the corresponding flat surfaces. That is to say, surface patterning can make the "vascular cell-friendly" surface still friendly, and the "vascular cell-resistant" surface much more resistant. The combination of surface structural units and topographic patterning shows promise in the preparation of new heparin-like surfaces with improved cell compatibility that is suitable for blood-compatible biomaterials.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Jialei Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Yuepeng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| |
Collapse
|
34
|
Sun J, Wu J, Jin H, Ying T, Jin W, Fan M, Zhou J, Chen H, Jin L, Zhou J. Structure-guided design, generation, and biofunction of PEGylated fibroblast growth factor 2 variants for wound healing. NANOSCALE 2020; 12:18200-18213. [PMID: 32856665 DOI: 10.1039/d0nr05999d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fibroblast growth factor 2 (FGF2) plays an important role in multiple physiological functions such as tissue repair. However, FGF2 has a short half-life in vivo due to protease degradation, thus limiting its clinical application. Traditional PEGylation has typically focused on the N-terminal α-amino group of FGF2. These modifications do not consider potential effects on protein function or structure, and sometimes lead to decreased bioactivity. In this study, we generated three PEGylated FGF2 variants based on the structure of the FGF2-FGFR-heparin ternary complex via gene mutation and PEGylation, and investigated the effects of these PEGylated sites on protein stability and bioactivity. Compared with native FGF2, all PEG-FGF2 conjugates exhibited significantly improved stability. Conjugates PEGylated at a site separated from both binding regions more effectively promoted proliferation, migration and angiogenesis than FGF2 in vitro, and exhibited excellent wound healing activity in vivo, making these conjugates potential therapeutic candidates for wound healing. Computer-assisted modification based on structure reveals the detailed structural characteristics of proteins, allowing efficient protein modification for improved stability and activity. This structure-guided PEGylation offers a more reliable modification strategy and should be applied for the rational design of protein-based therapeutics.
Collapse
Affiliation(s)
- Jian Sun
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jiamin Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hui Jin
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Te Ying
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wei Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Miaojuan Fan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jianhui Zhou
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Hui Chen
- Department of neurology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China.
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jie Zhou
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
35
|
Cheng K, Zhu Y, Wang D, Li Y, Xu X, Cai H, Chu H, Li J, Zhang D. Biomimetic synthesis of chondroitin sulfate-analogue hydrogels for regulating osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111368. [PMID: 32919697 DOI: 10.1016/j.msec.2020.111368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
As a typical representative of crucial glycosaminoglycans (GAGs), chondroitin sulfate (CS) with sulfonated polysaccharide in structures extensively exists in the extracellular matrix (ECM) and exhibits peculiar bioactivity on the regulation of cells behaviors and fates (e.g. proliferation and differentiation) in organisms. Nevertheless, some intrinsic disadvantages of natural CS mainly ascribe to the intricate structure and inhomogeneous composition (especially the uncontrollable sulfonate degrees), resulting in overt restrictions on its physiological functions and applications. Although recent bionic synthesis of artificial GAGs analogues at the molecular level have already provides an efficient strategy to reconstruct GAG for regulating the cellular behaviors and fates, it still remains great challenges to rationally design and synthesize GAGs analogues with special composition and structure for precisely mimicking ECM. Simultaneously, the relevant regulation process of GAG analogues on cell fate needs to be further studied as well. Herein, chondroitin sulfate-analogue (CS-analogue) hydrogels with diverse contents of saccharide and sulfonate units in the networks were fabricated through photo-polymerization and then characterized by Fourier transform infrared (FT-IR) spectroscopy, zeta potential and scanning electron microscope (SEM). Additionally, CS-analogue hydrogels with proper mechanical properties exhibited favorable swelling, degradation performance and prominent cytocompatibility. According to cell cultivation results, CS-analogue hydrogel with a certain proportion of saccharide and sulfonate units presented preferable promotion on the adhesion, spreading, proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs), shedding light on the significance of saccharide and sulfonate units in regulating cell behaviors. Furthermore, BMSCs cultivated with CS-analogue hydrogels under different culture conditions were also systematically investigated, revealing that with the help of cultivation environment CS-analogue hydrogels owned the remarkable capacity of directing either chondrogenic or osteogenic differentiation of BMSCs. Therefore, it is envisioned that versatile CS-analogue hydrogels would have promising application prospects in the biomedical and clinical fields.
Collapse
Affiliation(s)
- Kai Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yalin Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dingqian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yichen Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huijuan Cai
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hetao Chu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
36
|
Pelegri-O'Day EM, Bhattacharya A, Theopold N, Ko JH, Maynard HD. Synthesis of Zwitterionic and Trehalose Polymers with Variable Degradation Rates and Stabilization of Insulin. Biomacromolecules 2020; 21:2147-2154. [PMID: 32369347 PMCID: PMC8259896 DOI: 10.1021/acs.biomac.0c00133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymers that stabilize biomolecules are important as excipients in protein formulation. Herein, we describe a class of degradable polymers that have tunable degradation rates depending on the polymer backbone and can stabilize proteins to aggregation. Specifically, zwitterion- and trehalose-substituted polycaprolactone, polyvalerolactone, polycarbonate, and polylactide were prepared and characterized with regards to their hydrolytic degradation and ability to stabilize insulin to mechanical agitation during heat. Ring-opening polymerization (ROP) of allyl-substituted monomers was performed by using organocatalysis, resulting in well-defined alkene-substituted polymers with good control over molecular weight and dispersity. The polymers were then modified by using photocatalyzed thiol-ene reactions to install protein-stabilizing carboxybetaine and trehalose side chains. The resulting polymers were water-soluble and exhibited a wide range of half-lives, from 12 h to more than 3 months. The polymers maintained the ability to stabilize the therapeutic protein insulin from activity loss due to aggregation, demonstrating their potential as degradable excipients for protein formulation.
Collapse
Affiliation(s)
- Emma M Pelegri-O'Day
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Arvind Bhattacharya
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Nik Theopold
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
37
|
Benington L, Rajan G, Locher C, Lim LY. Fibroblast Growth Factor 2-A Review of Stabilisation Approaches for Clinical Applications. Pharmaceutics 2020; 12:E508. [PMID: 32498439 PMCID: PMC7356611 DOI: 10.3390/pharmaceutics12060508] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
Basic fibroblast growth factor (FGF)-2 has been shown to regulate many cellular functions including cell proliferation, migration, and differentiation, as well as angiogenesis in a variety of tissues, including skin, blood vessel, muscle, adipose, tendon/ligament, cartilage, bone, tooth, and nerve. These multiple functions make FGF-2 an attractive component for wound healing and tissue engineering constructs; however, the stability of FGF-2 is widely accepted to be a major concern for the development of useful medicinal products. Many approaches have been reported in the literature for preserving the biological activity of FGF-2 in aqueous solutions. Most of these efforts were directed at sustaining FGF-2 activity for cell culture research, with a smaller number of studies seeking to develop sustained release formulations of FGF-2 for tissue engineering applications. The stabilisation approaches may be classified into the broad classes of ionic interaction modification with excipients, chemical modification, and physical adsorption and encapsulation with carrier materials. This review discusses the underlying causes of FGF-2 instability and provides an overview of the approaches reported in the literature for stabilising FGF-2 that may be relevant for clinical applications. Although efforts have been made to stabilise FGF-2 for both in vitro and in vivo applications with varying degrees of success, the lack of comprehensive published stability data for the final FGF-2 products represents a substantial gap in the current knowledge, which has to be addressed before viable products for wider tissue engineering applications can be developed to meet regulatory authorisation.
Collapse
Affiliation(s)
- Leah Benington
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (L.B.); (C.L.)
| | - Gunesh Rajan
- Division of Surgery, School of Medicine, University of Western Australia, Crawley 6009, Australia;
- Department of Otolaryngology, Head & Neck Surgery, Luzerner Kantonsspital, 6000 Luzern, Switzerland
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (L.B.); (C.L.)
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley 6009, Australia; (L.B.); (C.L.)
| |
Collapse
|
38
|
|
39
|
Yu F, Cheng S, Lei J, Hang Y, Liu Q, Wang H, Yuan L. Heparin mimics and fibroblast growth factor-2 fabricated nanogold composite in promoting neural differentiation of mouse embryonic stem cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1623-1647. [PMID: 32460635 DOI: 10.1080/09205063.2020.1767375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The replacement therapy or transplantation using neural cells, which differentiated from stem cells, has emerged as a promising strategy for repairing damaged neural tissues and helping functional recovery in the treatment of neural system diseases. The challenge, however, is how to control embryonic stem cell fate so that neural differentiation can be efficiently directed to enrich a neuron cell population, and meanwhile to maintain their bioactivities. This is a key question and has a very significant impact in regenerative medicine. Here we proposed a new neural-differentiation inductive nanocomposite, containing gold nanoparticles (AuNPs), poly(2-methacrylamido glucopyranose-co-3-sulfopropyl acrylate) (PMS), and basic fibroblast growth factor (FGF2), for the high efficient directional neural-specific differentiation of mouse embryonic stem cells (mESCs). In this AuNP-PMS/FGF2 composite, PMS, playing as the high-active mimic of heparin/heparan sulfate (HS), is covalently anchored to AuNPs and bound with FGF2 on the surface of nanoparticles, forming a HS/FGF2 complex nanomimics to facilitate its binding to FGF receptor (FGFR) and promote high neural-inductive activity of mESCs. The stability, bioactivity and biocompatibility of the composite are investigated in this study. The results showed that the AuNP-PMS/FGF2 composite could maintain a long-term stability at room temperature for at least 8 days, and greatly promote the neural differentiation of mESCs. Compared with the other materials, the AuNP-PMS/FGF2 composite could significantly stimulate the expression of the specific neural differentiation markers (nestin and β3-tubulin), while obviously down-regulate the mRNA production of pluripotency marker Oct-4 in mESCs. Moreover, the promotion effect of the composite on neuronal maturation marker β3-tubulin expression achieved maximally at the low concentration of FGF2 (4 ng/mL), which suggested the high efficiency of AuNP-PMS/FGF2 composite in neural differentiation of mESCs. Meanwhile, both mESCs and L929 cells showed desirable growth during the incubation with AuNP-PMS/FGF2 composite. The AuNP-PMS/FGF2 system presents a new way to achieve HS/FGF2 complex nanomimics efficiently for the neural differentiation of mESCs.
Collapse
Affiliation(s)
- Fei Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| | - Shaoyu Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| | - Jiehua Lei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| | - Yingjie Hang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| | - Qi Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| | - Hongwei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| | - Lin Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
40
|
Ma C, Malessa A, Boersma AJ, Liu K, Herrmann A. Supercharged Proteins and Polypeptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905309. [PMID: 31943419 DOI: 10.1002/adma.201905309] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Electrostatic interactions play a vital role in nature. Biomacromolecules such as proteins are orchestrated by electrostatics, among other intermolecular forces, to assemble and organize biochemistry. Natural proteins with a high net charge exist in a folded state or are unstructured and can be an inspiration for scientists to artificially supercharge other protein entities. Recent findings show that supercharging proteins allows for control of their properties such as temperature resistance and catalytic activity. One elegant method to transfer the favorable properties of supercharged proteins to other proteins is the fabrication of fusions. Genetically engineered, supercharged unstructured polypeptides (SUPs) are just one promising fusion tool. SUPs can also be complexed with artificial entities to yield thermotropic and lyotropic liquid crystals and liquids. These architectures represent novel bulk materials that are sensitive to external stimuli. Interestingly, SUPs undergo fluid-fluid phase separation to form coacervates. These coacervates can even be directly generated in living cells or can be combined with dissipative fiber assemblies that induce life-like features. Supercharged proteins and SUPs are developed into exciting classes of materials. Their synthesis, structures, and properties are summarized. Moreover, potential applications are highlighted and challenges are discussed.
Collapse
Affiliation(s)
- Chao Ma
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Anke Malessa
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Arnold J Boersma
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
41
|
Zhang D, Xu X, Long X, Cheng K, Li J. Advances in biomolecule inspired polymeric material decorated interfaces for biological applications. Biomater Sci 2020; 7:3984-3999. [PMID: 31429424 DOI: 10.1039/c9bm00746f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With the development of surface modification technology, interface properties have great effects on the interaction between biomedical materials and cells and biomolecules, which significantly affects the biocompatibility and functionality of materials. As an orderly and perfect system, biological organisms in nature effectively integrate all kinds of bio-interfaces with physiological functions, which shed light on the importance of biomolecules in organisms. It gives birth to a bio-inspiration strategy to design and fabricate smart materials with specific functionalities, e.g. osteogenic and chondrocytic induced materials inspired by bone sialoprotein and chondroitin sulfate. Through this mimicking approach, various functional materials were utilized to decorate the interfaces and further optimize the performance of biomedical materials, which would widely expand their applications. In this review, followed by a summary and brief introduction of surface modification methods, we highlight recent advances in the fabrication of functional polymeric materials inspired by a range of biomolecules for decorating interfaces. Then, the other applications of biomolecule inspired materials including tissue engineering, diagnosis and treatment of diseases and physiological function regulation are presented and the future outlook is discussed as well.
Collapse
Affiliation(s)
- Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | | | | | | | | |
Collapse
|
42
|
Surface characterization of amphiphilic block copolymers possessing polyisoprene and poly[tri(ethylene glycol) methacrylate] segments and the effect of side chain ω-function on surface energy. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Neves MI, Araújo M, Moroni L, da Silva RM, Barrias CC. Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks. Molecules 2020; 25:E978. [PMID: 32098281 PMCID: PMC7070556 DOI: 10.3390/molecules25040978] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosaminoglycans (GAG) are long, linear polysaccharides that display a wide range of relevant biological roles. Particularly, in the extracellular matrix (ECM) GAG specifically interact with other biological molecules, such as growth factors, protecting them from proteolysis or inhibiting factors. Additionally, ECM GAG are partially responsible for the mechanical stability of tissues due to their capacity to retain high amounts of water, enabling hydration of the ECM and rendering it resistant to compressive forces. In this review, the use of GAG for developing hydrogel networks with improved biological activity and/or mechanical properties is discussed. Greater focus is given to strategies involving the production of hydrogels that are composed of GAG alone or in combination with other materials. Additionally, approaches used to introduce GAG-inspired features in biomaterials of different sources will also be presented.
Collapse
Affiliation(s)
- Mariana I. Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Marco Araújo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands;
| | - Ricardo M.P. da Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cristina C. Barrias
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
44
|
Nishiguchi A, Taguchi T. A Thixotropic, Cell-Infiltrative Nanocellulose Hydrogel That Promotes in Vivo Tissue Remodeling. ACS Biomater Sci Eng 2020; 6:946-958. [PMID: 33464861 DOI: 10.1021/acsbiomaterials.9b01549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Injectable gels have been used in minimally invasive surgery for tissue regeneration and treatment of inflammatory diseases. However, polymeric hydrogels often fail in cell infiltration, because of the presence of dense, cross-linked molecular networks and a lack of bioactivity, which causes delayed tissue remodeling. Here, we report a thixotropic, cell-infiltrative hydrogel of biofunctionalized nanocellulose that topologically enhances cell infiltration and biochemically upregulates cellular activity for the promotion of tissue remodeling. Biodegradable, sulfonated nanocellulose forms a nanofibrous hydrogel, mimicking cellular microenvironments through cross-linking between nanocellulose and gelatin. Resulting nanocellulose hydrogels showed thixotropy, allowing for single syringe injection. Nanofiber-based hydrogels possess high molecular permeability, which is due to nanoporous structures. Sulfonate groups on nanocellulose increase protein adsorption and induce cellular extension in vitro. Highly sulfonated nanocellulose hydrogels enhanced cell infiltration and vascularization upon implantation into rats. Macrophage polarization to M2 was observed in nanocellulose hydrogels, which may be involved in tissue remodeling. Injectable, biofunctionalized nanocellulose gels have enormous potential as artificial biomatrices to heal inflammatory diseases through manipulation of the immune system and promotion of tissue remodeling.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
45
|
Bao C, Xu X, Chen J, Zhang Q. Synthesis of biodegradable protein–poly(ε-caprolactone) conjugates via enzymatic ring opening polymerization. Polym Chem 2020. [DOI: 10.1039/c9py01464k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lipase–poly(HEAA) conjugates act as initiators and catalysts simultaneously for the eROP of ε-CL, forming biodegradable conjugates with amphiphilic graft copolymers.
Collapse
Affiliation(s)
- Chunyang Bao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Xiaoling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Jing Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| |
Collapse
|
46
|
Improved cellular bioactivity by heparin immobilization on polycarbonate film via an aminolysis modification for potential tendon repair. Int J Biol Macromol 2020; 142:835-845. [DOI: 10.1016/j.ijbiomac.2019.09.136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022]
|
47
|
Yang C, Gao L, Shao M, Cai C, Wang L, Chen Y, Li J, Fan F, Han Y, Liu M, Linhardt RJ, Yu G. End-functionalised glycopolymers as glycosaminoglycan mimetics inhibit HeLa cell proliferation. Polym Chem 2020. [DOI: 10.1039/d0py00384k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel glycopeptide mimetic, prepared by end-functionalised conjugation of iRGD peptide on a glycopolymer, could effectively enter HeLa cells and inhibit signalling pathways involved in tumour cell proliferation.
Collapse
|
48
|
Miura Y. Controlled polymerization for the development of bioconjugate polymers and materials. J Mater Chem B 2020; 8:2010-2019. [DOI: 10.1039/c9tb02418b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugates of various biopolymers with synthetic polymers were preparedvialiving radical polymerization. The conjugates have precise structures and potential for novel biofunctional materials.
Collapse
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
49
|
Gu Y, Liu B, Liu Q, Hang Y, Wang L, Brash JL, Chen G, Chen H. Modular Polymers as a Platform for Cell Surface Engineering: Promoting Neural Differentiation and Enhancing the Immune Response. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47720-47729. [PMID: 31793283 DOI: 10.1021/acsami.9b16882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Regulating cell behavior and cell fate are of great significance for basic biological research and cell therapy. Carbohydrates, as the key biomacromolecules, play a crucial role in regulating cell behavior. Herein, "modular" glycopolymers were synthesized by reversible addition-fragmentation chain transfer polymerization. These glycopolymers contain sugar units (glucose), anchoring units (cholesterol), "guest" units (adamantane) for host-guest interaction, and fluorescent labeling units (fluorescein). It was demonstrated that these glycopolymers can insert into cell membranes with high efficiency and their residence time on the membranes can be regulated by controlling their cholesterol content. Furthermore, the behavior of the engineered cells can be controlled by modifying with different functional β-cyclodextrins (CD-X) via host-guest interactions with the adamantane units. Host-guest interactions with the modular polymers were demonstrated using CD-RBITC (X = a rhodamine B isothiocyanate). The glycopolymers were modified with CD-S (X = seven sulfonate groups) and CD-M (X = seven mannose groups) and were then attached, respectively, to the surfaces of mouse embryonic stem cells for the promotion of neural differentiation and to the surfaces of cancer cells for the enhancement of the immune response. The combination of multiple anchors and host-guest interactions provides a widely applicable cell membrane modification platform for a variety of applications.
Collapse
Affiliation(s)
- Yan Gu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology , Soochow University , Suzhou 215006 , P. R. China
| | - Bing Liu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
| | - Qi Liu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology , Soochow University , Suzhou 215006 , P. R. China
| | - Yingjie Hang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
| | - Lei Wang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
| | - John L Brash
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
- School of Biomedical Engineering and Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S4L7 , Canada
| | - Gaojian Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology , Soochow University , Suzhou 215006 , P. R. China
| | - Hong Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren-Ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
50
|
Li S, Tang Q, Xu H, Huang Q, Wen Z, Liu Y, Peng C. Improved stability of KGF by conjugation with gold nanoparticles for diabetic wound therapy. Nanomedicine (Lond) 2019; 14:2909-2923. [PMID: 31791171 DOI: 10.2217/nnm-2018-0487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Diabetic wound healing is seriously interrupted, and administration of KGF for wound treatment is restricted by its inherent instability. We aim to develop an ideal way toward KGF stabilization, thus improving diabetic wound healing. Materials & methods: We conjugated KGF with gold nanoparticles (GNPs) and determined the stability and binding affinity. Biological effects of conjugates (KGF-GNPs) were evaluated in vitro and in an animal model. Results: KGF-GNPs revealed high stability under hostile circumstances because of the preserved secondary structure and possessed elevated binding affinity to KGF receptor. Moreover, application of KGF-GNPs contributed to accelerated wound recovery in diabetic rats, including re-epithelialization and contraction. Conclusion: KGF-GNPs were promising for future clinical application for diabetic wound therapy.
Collapse
Affiliation(s)
- Shuaihua Li
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, PR China.,Department of Cosmetic & Plastic Surgery, The First People's Hospital of Chenzhou, Chenzhou 423000, Hunan, PR China
| | - Qiyu Tang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, PR China.,Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, PR China
| | - Hongbo Xu
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, PR China
| | - Qiangru Huang
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, PR China
| | - Zi Wen
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, PR China
| | - Yawei Liu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, PR China
| | - Cheng Peng
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan, PR China
| |
Collapse
|