Avinash MB, Sandeepa KV, Govindaraju T. Emergent Behaviors in Kinetically Controlled Dynamic Self-Assembly of Synthetic Molecular Systems.
ACS OMEGA 2016;
1:378-387. [PMID:
31457135 PMCID:
PMC6640818 DOI:
10.1021/acsomega.6b00155]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/05/2016] [Indexed: 05/29/2023]
Abstract
Living systems are categorically a kinetic state of matter that exhibits complex functions and emergent behaviors. By contrast, synthetic systems are relatively simple and are typically controlled by the thermodynamic parameters. To understand this inherent difference between the biological and synthetic systems, novel approaches are of vital importance. In this regard, we have designed a three-component molecular system (a triad) by conjugating an amino acid with two functional molecules (naphthalenediimide and pyrene), which facilitates kinetically controlled self-assemblies. Herein, we describe three different molecular aggregation states of triads (entitled State I, State II, and State III) and also the dynamic pathway complexities associated with their transformations from one state to another. By meticulously employing the triads of different molecular aggregation states and the stereochemical information of the amino acid, we report emergent behaviors termed "supramolecular speciation" and "supramolecular regulation". Further, we present a hitherto unknown emergent property in a self-assembled state under the majority-rules experiment, which has been termed "super-nonlinearity". This work provides novel insights into complex synthetic systems having unprecedented functions and properties. Such emergent behaviors of synthetic triads that involve an interplay among complex interactions may find relevance in the context of prebiotic chemical evolution.
Collapse