1
|
Guengerich FP, Child SA, Barckhausen IR, Goldfarb MH. Kinetic Evidence for an Induced Fit Mechanism in the Binding of the Substrate Camphor by Cytochrome P450 cam. ACS Catal 2021; 11:639-649. [PMID: 34327042 PMCID: PMC8318206 DOI: 10.1021/acscatal.0c04455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial cytochrome P450 (P450) 101A1 (P450cam) has served as a prototype among the P450 enzymes and has high catalytic activity towards its cognate substrate, camphor. X-ray crystallography and NMR and IR spectroscopy have demonstrated the existence of multiple conformations of many P450s, including P450cam. Kinetic studies have indicated that substrate binding to several P450s is dominated by a conformational selection process, in which the substrate binds an individual conformer(s) of the unliganded enzyme. P450cam was found to differ in that binding of the substrate camphor is dominated by an induced fit mechanism, in which the enzyme binds camphor and then changes conformation, as evidenced by the equivalence of binding eigenvalues observed when varying both camphor and P450cam concentrations. The accessory protein putidaredoxin had no effect on substrate binding. Estimation of the rate of dissociation of the P450cam·camphor complex (15 s-1) and fitting of the data yield a minimal kinetic mechanism in which camphor binds (1.5 × 107 M-1 s-1) and the initial P450cam•camphor complex undergoes a reversible equilibrium (k forward 112 s-1, k reverse 28 s-1) to a final complex. This induced fit mechanism differs from those reported for several mammalian P450s and bacterial P450BM-3, indicative of the diversity of how P450s recognize multiple substrates. However, similar behavior was not observed with the alternate substrates (+)-α-pinene and 2-adamantanone, which probably utilize a conformational selection process.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Stella A Child
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Ian R Barckhausen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Margo H Goldfarb
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
2
|
Li A, Acevedo‐Rocha CG, D'Amore L, Chen J, Peng Y, Garcia‐Borràs M, Gao C, Zhu J, Rickerby H, Osuna S, Zhou J, Reetz MT. Regio- and Stereoselective Steroid Hydroxylation at C7 by Cytochrome P450 Monooxygenase Mutants. Angew Chem Int Ed Engl 2020; 59:12499-12505. [PMID: 32243054 PMCID: PMC7384163 DOI: 10.1002/anie.202003139] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Steroidal C7β alcohols and their respective esters have shown significant promise as neuroprotective and anti-inflammatory agents to treat chronic neuronal damage like stroke, brain trauma, and cerebral ischemia. Since C7 is spatially far away from any functional groups that could direct C-H activation, these transformations are not readily accessible using modern synthetic organic techniques. Reported here are P450-BM3 mutants that catalyze the oxidative hydroxylation of six different steroids with pronounced C7 regioselectivities and β stereoselectivities, as well as high activities. These challenging transformations were achieved by a focused mutagenesis strategy and application of a novel technology for protein library construction based on DNA assembly and USER (Uracil-Specific Excision Reagent) cloning. Upscaling reactions enabled the purification of the respective steroidal alcohols in moderate to excellent yields. The high-resolution X-ray structure and molecular dynamics simulations of the best mutant unveil the origin of regio- and stereoselectivity.
Collapse
Affiliation(s)
- Aitao Li
- School of life scienceHubei UniversityState Key Laboratory of Biocatalysis and Enzyme Engineering#368 Youyi RoadWuhan430062P.R. China
| | | | - Lorenzo D'Amore
- Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de GironaCarrer Maria Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Jinfeng Chen
- State Key Laboratory of Bio-organic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesShanghai200032P. R. China
| | - Yaqin Peng
- School of life scienceHubei UniversityState Key Laboratory of Biocatalysis and Enzyme Engineering#368 Youyi RoadWuhan430062P.R. China
| | - Marc Garcia‐Borràs
- Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de GironaCarrer Maria Aurèlia Capmany 6917003GironaCataloniaSpain
| | - Chenghua Gao
- School of life scienceHubei UniversityState Key Laboratory of Biocatalysis and Enzyme Engineering#368 Youyi RoadWuhan430062P.R. China
| | - Jinmei Zhu
- School of life scienceHubei UniversityState Key Laboratory of Biocatalysis and Enzyme Engineering#368 Youyi RoadWuhan430062P.R. China
| | - Harry Rickerby
- LabGeniusG.01-06 Cocoa Studios100 Drummond RdLondonSE16 4DGUK
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de QuímicaUniversitat de GironaCarrer Maria Aurèlia Capmany 6917003GironaCataloniaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesShanghai200032P. R. China
| | - Manfred T. Reetz
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470MuelheimGermany
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308P. R. China
| |
Collapse
|
3
|
Li A, Acevedo‐Rocha CG, D'Amore L, Chen J, Peng Y, Garcia‐Borràs M, Gao C, Zhu J, Rickerby H, Osuna S, Zhou J, Reetz MT. Regio‐ and Stereoselective Steroid Hydroxylation at C7 by Cytochrome P450 Monooxygenase Mutants. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Aitao Li
- School of life science Hubei University State Key Laboratory of Biocatalysis and Enzyme Engineering #368 Youyi Road Wuhan 430062 P.R. China
| | | | - Lorenzo D'Amore
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona Carrer Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Jinfeng Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Yaqin Peng
- School of life science Hubei University State Key Laboratory of Biocatalysis and Enzyme Engineering #368 Youyi Road Wuhan 430062 P.R. China
| | - Marc Garcia‐Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona Carrer Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
| | - Chenghua Gao
- School of life science Hubei University State Key Laboratory of Biocatalysis and Enzyme Engineering #368 Youyi Road Wuhan 430062 P.R. China
| | - Jinmei Zhu
- School of life science Hubei University State Key Laboratory of Biocatalysis and Enzyme Engineering #368 Youyi Road Wuhan 430062 P.R. China
| | - Harry Rickerby
- LabGenius G.01-06 Cocoa Studios 100 Drummond Rd London SE16 4DG UK
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona Carrer Maria Aurèlia Capmany 69 17003 Girona Catalonia Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Muelheim Germany
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue Tianjin 300308 P. R. China
| |
Collapse
|
4
|
Zhang P, Wang S, Ma S, Xiao FS, Sun Q. Exploration of advanced porous organic polymers as a platform for biomimetic catalysis and molecular recognition. Chem Commun (Camb) 2020; 56:10631-10641. [DOI: 10.1039/d0cc04351f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This Feature article summarizes our progress in the design of biomimetic POPs for catalysis and molecular recognition with enhanced performance.
Collapse
Affiliation(s)
- Pengcheng Zhang
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Sai Wang
- Key Lab of Applied Chemistry of Zhejiang Province
- Zhejiang University
- Hangzhou
- China
- Department of Chemistry
| | - Shengqian Ma
- Department of Chemistry
- University of North Texas
- USA
| | - Feng-Shou Xiao
- Key Lab of Applied Chemistry of Zhejiang Province
- Zhejiang University
- Hangzhou
- China
| | - Qi Sun
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
5
|
Xu J, Peng Y, Wang Z, Hu Y, Fan J, Zheng H, Lin X, Wu Q. Exploiting Cofactor Versatility to Convert a FAD‐Dependent Baeyer–Villiger Monooxygenase into a Ketoreductase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Xu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Zhiguo Wang
- Institute of Aging Research School of Medicine Hangzhou Normal University Hangzhou 311121 China
| | - Yujing Hu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jiajie Fan
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - He Zheng
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Xianfu Lin
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
6
|
Xu J, Peng Y, Wang Z, Hu Y, Fan J, Zheng H, Lin X, Wu Q. Exploiting Cofactor Versatility to Convert a FAD-Dependent Baeyer-Villiger Monooxygenase into a Ketoreductase. Angew Chem Int Ed Engl 2019; 58:14499-14503. [PMID: 31423719 DOI: 10.1002/anie.201907606] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Indexed: 12/21/2022]
Abstract
Cyclohexanone monooxygenases (CHMOs) show very high catalytic specificity for natural Baeyer-Villiger (BV) reactions and promiscuous reduction reactions have not been reported to date. Wild-type CHMO from Acinetobacter sp. NCIMB 9871 was found to possess an innate, promiscuous ability to reduce an aromatic α-keto ester, but with poor yield and stereoselectivity. Structure-guided, site-directed mutagenesis drastically improved the catalytic carbonyl-reduction activity (yield up to 99 %) and stereoselectivity (ee up to 99 %), thereby converting this CHMO into a ketoreductase, which can reduce a range of differently substituted aromatic α-keto esters. The improved, promiscuous reduction activity of the mutant enzyme in comparison to the wild-type enzyme results from a decrease in the distance between the carbonyl moiety of the substrate and the hydrogen atom on N5 of the reduced flavin adenine dinucleotide (FAD) cofactor, as confirmed using docking and molecular dynamics simulations.
Collapse
Affiliation(s)
- Jian Xu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yongzhen Peng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhiguo Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yujing Hu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jiajie Fan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - He Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Shen C, Liu H, Dai W, Liu X, Liu J, Yu B. Specific N-demethylation of verapamil by cytochrome P450 from Streptomyces griseus ATCC 13273. Eng Life Sci 2019; 19:292-301. [PMID: 32625009 DOI: 10.1002/elsc.201800116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/07/2019] [Accepted: 02/13/2019] [Indexed: 11/05/2022] Open
Abstract
Norverapamil, the N-demethylated derivative of verapamil, is a novel promising leading compound for attenuating multidrug resistance with less side effects compared with verapamil. However, the efficient synthetic method for norverapamil is absent. In this study, an innovative biotechnological method based on enzymatic catalysis was presented for the high-efficient production of norverapamil. CYP105D1, a cytochrome P450 from Streptomyces griseus ATCC 13273, was identified to carry out a one-step specific N-demethylation of verapamil along with putidaredoxin reductase (Pdr) and putidaredoxin (Pdx) as the redox partner. Docking calculations rationalized the specific N-demethylation observed in experiment and identified important amino acid residues for verapamil binding. Furthermore, a CYP105D1-based whole-cell system in E. coli BL21(DE3) was established and optimized for highly efficient N-demethylation of verapamil. The bioconversion rate of verapamil by the whole cell system came up to 60.16% within 24 hours under the optimized conditions. These results demonstrated the high potential of CYP105D1-based biocatalytic system for norverapamil production.
Collapse
Affiliation(s)
- Chen Shen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing Jiangsu P. R. China
| | - Hanqing Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing Jiangsu P. R. China
| | - Wenling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing Jiangsu P. R. China
| | - Xiufeng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing Jiangsu P. R. China
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing Jiangsu P. R. China.,State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing Jiangsu P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing Jiangsu P. R. China.,State Key Laboratory of Natural Medicines China Pharmaceutical University Nanjing Jiangsu P. R. China
| |
Collapse
|
8
|
Abstract
Enzymes are complex biological catalysts and are critical to life. Most oxidations of chemicals are catalyzed by cytochrome P450 (P450, CYP) enzymes, which generally utilize mixed-function oxidase stoichiometry, utilizing pyridine nucleotides as electron donors: NAD(P)H + O2 + R → NAD(P)+ + RO + H2O (where R is a carbon substrate and RO is an oxidized product). The catalysis of oxidations is largely understood in the context of the heme iron-oxygen complex generally referred to as Compound I, formally FeO3+, whose basis was in peroxidase chemistry. Many X-ray crystal structures of P450s are now available (≥ 822 structures from ≥146 different P450s) and have helped in understanding catalytic specificity. In addition to hydroxylations, P450s catalyze more complex oxidations, including C-C bond formation and cleavage. Enzymes derived from P450s by directed evolution can even catalyze more unusual reactions, e.g. cyclopropanation. Current P450 questions under investigation include the potential role of the intermediate Compound 0 (formally FeIII-O2 -) in catalysis of some reactions, the roles of high- and low-spin forms of Compound I, the mechanism of desaturation, the roles of open and closed structures of P450s in catalysis, the extent of processivity in multi-step oxidations, and the role of the accessory protein cytochrome b 5. More global questions include exactly how structure drives function, prediction of catalysis, and roles of multiple protein conformations.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
9
|
Shen C, Shan T, Zhao W, Ou C, Li L, Liu X, Liu J, Yu B. Regio- and enantioselective O-demethylation of tetrahydroprotoberberines by cytochrome P450 enzyme system from Streptomyces griseus ATCC 13273. Appl Microbiol Biotechnol 2018; 103:761-776. [PMID: 30368581 DOI: 10.1007/s00253-018-9416-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 11/27/2022]
Abstract
Tetrahydroprotoberberines (THPBs), a class of naturally occurring isoquinoline alkaloids, contain substituent methoxyl or hydroxyl groups which play a significant role in the pharmacological properties of these molecules. In this study, we report a biocatalytic strategy for selective O-demethylation of THPBs. CYP105D1, a cytochrome P450 from Streptomyces griseus ATCC 13273, exhibited markedly regioselective demethylation of nonhydroxyl-THPBs and monohydroxyl-THPBs on the D-ring. A possible binding mode of THPBs with CYP105D1 was investigated by docking analysis, and the results revealed that the D-rings of THPBs were with the minimum distance to the heme iron. Tetrahydropalmatine was used as a model substrate and enantioselective demethylation was demonstrated. (S)-Tetrahydropalmatine was only demethylated at C-10, while (R)-tetrahydropalmatine was first demethylated at C-10 and then subsequently demethylated at C-9. The kcat/Km value for demethylation of (R)-tetrahydropalmatine by CYP105D1 was 3.7 times greater than that for demethylation of (S)-tetrahydropalmatine. Furthermore, selective demethylation of (S)-tetrahydropalmatine by the CYP105D1-based whole-cell system was demonstrated for the highly efficient production of (S)-corydalmine which has distinct pharmacological applications, such as providing relief from bone cancer pain and reducing morphine tolerance. Moreover, a homologous redox partner was identified to enhance the catalytic efficiency of the CYP105D1-based whole-cell system. This is the first enzymatic characterization of a cytochrome P450 that has regio- and enantioselective demethylation activity of THPBs for application purpose. The cytochrome P450 system could be a promising strategy for selective demethylation in the pharmaceutical industry.
Collapse
Affiliation(s)
- Chen Shen
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Tianyue Shan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Wanli Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Chenhui Ou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Li Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Xiufeng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
10
|
Affiliation(s)
- Mahesh D. Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Andreas Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
11
|
Acevedo-Rocha CG, Gamble CG, Lonsdale R, Li A, Nett N, Hoebenreich S, Lingnau JB, Wirtz C, Fares C, Hinrichs H, Deege A, Mulholland AJ, Nov Y, Leys D, McLean KJ, Munro AW, Reetz MT. P450-Catalyzed Regio- and Diastereoselective Steroid Hydroxylation: Efficient Directed Evolution Enabled by Mutability Landscaping. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00389] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carlos G. Acevedo-Rocha
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Charles G. Gamble
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Aitao Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University 368 Youyi Road, Wuchang Wuhan 430062, China
| | - Nathalie Nett
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Sabrina Hoebenreich
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Julia B. Lingnau
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Cornelia Wirtz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Christophe Fares
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Heike Hinrichs
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Alfred Deege
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Yuval Nov
- Department of Statistics, University of Haifa, Haifa 31905, Israel
| | - David Leys
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Kirsty J. McLean
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Andrew W. Munro
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Muelheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|