1
|
Zhang R, Daglar H, Tang C, Li P, Feng L, Han H, Wu G, Limketkai BN, Wu Y, Yang S, Chen AXY, Stern CL, Malliakas CD, Snurr RQ, Stoddart JF. Balancing volumetric and gravimetric capacity for hydrogen in supramolecular crystals. Nat Chem 2024:10.1038/s41557-024-01622-w. [PMID: 39227421 DOI: 10.1038/s41557-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
The storage of hydrogen is key to its applications. Developing adsorbent materials with high volumetric and gravimetric storage capacities, both of which are essential for the efficient use of hydrogen as a fuel, is challenging. Here we report a controlled catenation strategy in hydrogen-bonded organic frameworks (RP-H100 and RP-H101) that depends on multiple hydrogen bonds to guide catenation in a point-contact manner, resulting in high volumetric and gravimetric surface areas, robustness and ideal pore diameters (~1.2-1.9 nm) for hydrogen storage. This approach involves assembling nine imidazole-annulated triptycene hexaacids into a secondary hexagonal superstructure containing three open channels through which seven of the hexagons interpenetrate to form a seven-fold catenated superstructure. RP-H101 exhibits high deliverable volumetric (53.7 g l-1) and gravimetric (9.3 wt%) capacities for hydrogen under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar). This work illustrates the virtues of supramolecular crystals as promising candidates for hydrogen storage.
Collapse
Affiliation(s)
- Ruihua Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Hilal Daglar
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Chun Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Penghao Li
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Liang Feng
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Han Han
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Guangcheng Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Yong Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Shuliang Yang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Aspen X-Y Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | | | | | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| | - J Fraser Stoddart
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- H2MOF Inc., Irvine, CA, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China.
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
2
|
Saeed M, Marwani HM, Shahzad U, Asiri AM, Hussain I, Rahman MM. Utilizing Nanostructured Materials for Hydrogen Generation, Storage, and Diverse Applications. Chem Asian J 2024; 19:e202300593. [PMID: 37787825 DOI: 10.1002/asia.202300593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/04/2023]
Abstract
The rapid advancement of refined nanostructures and nanotechnologies offers significant potential to boost research activities in hydrogen storage. Recent innovations in hydrogen storage have centered on nanostructured materials, highlighting their effectiveness in molecular hydrogen storage, chemical storage, and as nanoconfined hydride supports. Emphasizing the importance of exploring ultra-high-surface-area nanoporous materials and metals, we advocate for their mechanical stability, rigidity, and high hydride loading capacities to enhance hydrogen storage efficiency. Despite the evident benefits of nanostructured materials in hydrogen storage, we also address the existing challenges and future research directions in this domain. Recent progress in creating intricate nanostructures has had a notable positive impact on the field of hydrogen storage, particularly in the realm of storing molecular hydrogen, where these nanostructured materials are primarily utilized.
Collapse
Affiliation(s)
- Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ijaz Hussain
- Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Liu Y, Li R, Lv Q, Yu B. Embracing heterogeneous photocatalysis: evolution of photocatalysts in annulation of dimethylanilines and maleimides. Chem Commun (Camb) 2024. [PMID: 39078307 DOI: 10.1039/d4cc02516d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Recent advances in visible-light-promoted construction of tetrahydroquinolines from dimethylanilines and maleimides are documented. Homogeneous and heterogeneous photocatalytic systems, as well as the reaction mechanism, are emphasized. The mechanism of this photocatalytic annulation reaction is quite clear, i.e., dimethylanilines and maleimides serve as the radical precursors and radical acceptors, respectively. This annulation reaction could serve as an excellent platform for evaluating novel oxidative heterogeneous photocatalytic systems, which could further inspire chemists in this field to develop more efficient photocatalytic systems. Significant opportunities are expected in the future for heterogeneous photocatalysis strategies.
Collapse
Affiliation(s)
- Yan Liu
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou, Henan Province 451191, China
| | - Rui Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore.
| | - Qiyan Lv
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Zhu J, Ke T, Yang L, Bao Z, Zhang Z, Su B, Ren Q, Yang Q. Optimizing Trace Acetylene Removal from Acetylene/Ethylene Mixture in a Flexible Metal-Organic Framework by Crystal Downsizing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22455-22464. [PMID: 38642370 DOI: 10.1021/acsami.4c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Improving the gas separation performance of metal-organic frameworks (MOFs) by crystal downsizing is an important but often overlooked issue. Here, we report three different-sized flexible ZUL-520 MOFs (according to the crystal size from large to small, the three samples are, respectively, named ZUL-520-0, ZUL-520-1, and ZUL-520-2) with the same chemical structure for optimizing trace acetylene (C2H2) removal from acetylene/ethylene (C2H2/C2H4) mixture. The three differently sized activated ZUL-520 (denoted as ZUL-520a) exhibited almost identical C2H2 uptake of 4.8 mmol/g at 100 kPa, while the C2H2 uptake at 1 kPa increased with a downsizing crystal. The C2H2 uptake of activated ZUL-520-2 (denoted as ZUL-520-2a) at 1 kPa was ∼55% higher than that of activated ZUL-520-0 (denoted as ZUL-520-0a). The adsorption isotherms and adsorption kinetics validated that gas adsorptive separation is governed not only by adsorption thermodynamics but also by adsorption kinetics. In addition, all three different-sized ZUL-520a MOFs showed high C2H2/C2H4 selectivity. Grand canonical Monte Carlo (GCMC) simulations and dispersion-corrected density functional theory (DFT-D) computations illustrated a plausible mechanism of C2H2 adsorption in MOFs. Importantly, breakthrough experiments demonstrated that ZUL-520a can effectively separate the C2H2/C2H4 (1/99, v/v) mixture and the C2H4 productivity obtained by ZUL-520-2a was much higher than that by ZUL-520-0a. Our work may provide an easy but powerful strategy for upgrading the performance of gas adsorptive separation in MOFs.
Collapse
Affiliation(s)
- Jianyao Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Tian Ke
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liu Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Baogen Su
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
5
|
Kubo M, Matsumoto T, Shimada M. Enhancement of Hydrogen Adsorption on Spray-Synthesized HKUST-1 via Lithium Doping and Defect Creation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5416. [PMID: 37570125 PMCID: PMC10419904 DOI: 10.3390/ma16155416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
We prepared HKUST-1 (Cu3BTC2; BTC3- = 1,3,5-benzenetricarboxylate) using a spray synthesis method with Li doping and defect created via partial replacement of H3BTC with isophthalic acid (IP) to enhance the H2 adsorption capacity. Li-doping was performed by incorporating LiNO3 in HKUST-1 via spray synthesis and subsequent thermal treatment for decomposing NO3-, which enhances H2 uptake at 77 K and 1 bar per unit mass and per unit area from 2.37 wt% and 4.16 molecules/nm2 for undoped HKUST-1 to 2.47 wt% and 4.33 molecules/nm2, respectively. Defect creation via the replacement of the BTC3- linker with the IP2- linker slightly in HKUST-1 skeleton did not affect H2 uptake. Both Li-doping and defect creation significantly enhanced H2 uptake to 3.03 wt%, which was caused by the coordination of Li ions with free carboxylic groups of the created defects via IP replacement.
Collapse
Affiliation(s)
- Masaru Kubo
- Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima 739-8527, Hiroshima, Japan (M.S.)
| | | | | |
Collapse
|
6
|
Maiti A, Maity DK, Halder A, Ghoshal D. Multidirectional Solvent-Induced Structural Transformation in Designing a Series of Polycatenated Cobalt(II) Coordination Polymers: Impact on Carbon Dioxide and Hydrogen Uptake. Inorg Chem 2023. [PMID: 37490714 DOI: 10.1021/acs.inorgchem.3c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Coordination polymers with external stimuli-responsive structural transformation acquired paramount importance in the advanced material research field due to their eye-catching application to deal with the existing challenging issue, and Co(II) metal complex with d7 electronic configuration is a renowned candidate for kinetic accountability and has the potentiality of structural transformation. Bearing these factors in mind, here, a Co(II) congener of a previously reported high hydrogen-adsorbing Cu(II)-based coordination polymer (CP), {[Cu(4-bpe)(2-ntp)]}n [where 2-ntp2- = 2-nitroterephthalate and 4-bpe = 1,2-bis-(4-pyridyl)ethane], has been synthesized to study the metal change impact on hydrogen adsorption and solvent-induced structural transformation with their impact on hydrogen uptake. This modified framework has a 2D + 2D → 3D inclined polycatenated framework as comparable to our previously published Cu(II) framework. Here, on the variation of different solvents, the labile Co(II)-containing framework exhibits a structural change through single-crystal to single-crystal (SC-SC) structural transformation and results in three new framework structures. All four frameworks are structurally characterized by elemental analysis, IR, PXRD, TGA, and single-crystal X-ray diffraction. The desolvated parent framework with exposed metal centers exhibits excellent results of H2 adsorption of 1.3 wt % (145 cc/g) at 77 K and pressure of 1 bar with structural sustainability and CO2 uptake of 130 cc/g at 195 K and 1 bar. For the other three solvent-mediated structural derivatives, H2 and CO2 adsorption have been studied, and the results are correlated with their structure.
Collapse
Affiliation(s)
- Anupam Maiti
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Dilip Kumar Maity
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Arijit Halder
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Debajyoti Ghoshal
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
7
|
Dutta S, More YD, Fajal S, Mandal W, Dam GK, Ghosh SK. Ionic metal-organic frameworks (iMOFs): progress and prospects as ionic functional materials. Chem Commun (Camb) 2022; 58:13676-13698. [PMID: 36421063 DOI: 10.1039/d2cc05131a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Metal-organic frameworks (MOFs) have been a research hotspot for the last two decades, witnessing an extraordinary upsurge across various domains in materials chemistry. Ionic MOFs (both anionic and cationic MOFs) have emerged as next-generation ionic functional materials and are an important subclass of MOFs owing to their ability to generate strong electrostatic interactions between their charged framework and guest molecules. Furthermore, the presence of extra-framework counter-ions in their confined nanospaces can serve as additional functionality in these materials, which endows them a significant advantage in specific host-guest interactions and ion-exchange-based applications. In the present review, we summarize the progress and future prospects of iMOFs both in terms of fundamental developments and potential applications. Furthermore, the design principles of ionic MOFs and their state-of-the-art ion exchange performances are discussed in detail and the future perspectives of these promising ionic materials are proposed.
Collapse
Affiliation(s)
- Subhajit Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Yogeshwar D More
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Gourab K Dam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Centre for Water Research, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
8
|
Metalloporphyrin Metal–Organic Frameworks: Eminent Synthetic Strategies and Recent Practical Exploitations. Molecules 2022; 27:molecules27154917. [PMID: 35956867 PMCID: PMC9369971 DOI: 10.3390/molecules27154917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
The emergence of metal–organic frameworks (MOFs) in recent years has stimulated the interest of scientists working in this area as one of the most applicable archetypes of three-dimensional structures that can be used as promising materials in several applications including but not limited to (photo-)catalysis, sensing, separation, adsorption, biological and electrochemical efficiencies and so on. Not only do MOFs have their own specific versatile structures, tunable cavities, and remarkably high surface areas, but they also present many alternative procedures to overcome emerging obstacles. Since the discovery of such highly effective materials, they have been employed for multiple uses; additionally, the efforts towards the synthesis of MOFs with specific properties based on planned (template) synthesis have led to the construction of several promising types of MOFs possessing large biological or bioinspired ligands. Specifically, metalloporphyrin-based MOFs have been created where the porphyrin moieties are either incorporated as struts within the framework to form porphyrinic MOFs or encapsulated inside the cavities to construct porphyrin@MOFs which can combine the peerless properties of porphyrins and porous MOFs simultaneously. In this context, the main aim of this review was to highlight their structure, characteristics, and some of their prominent present-day applications.
Collapse
|
9
|
Hong AN, Kusumoputro E, Wang Y, Yang H, Chen Y, Bu X, Feng P. Simultaneous Control of Pore-Space Partition and Charge Distribution in Multi-Modular Metal-Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202116064. [PMID: 35098623 DOI: 10.1002/anie.202116064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 01/30/2023]
Abstract
We report here a strategy for making anionic pacs type porous materials by combining pore space partition with charge reallocation. The method uses the first negatively charged pore partition ligand (2,5,8-tri-(4-pyridyl)-1,3,4,6,7,9-hexaazaphenalene, H-tph) that simultaneously enables pore partition and charge reallocation. Over two dozen anionic pacs materials have been made to demonstrate their excellent chemical stability and a high degree of tunability. Notably, Ni3 -bdt-tph (bdt=1,4-benzeneditetrazolate) exhibits month-long water stability, while CoV-bdt-tph sets a new benchmark for C2 H2 storage capacity under ambient conditions for ionic MOFs. In addition to tunable in-framework modules, we show feasibility to tune the type and concentration of extra-framework counter cations and their influence on both stability and capability to separate industrial C3 H8 /C3 H6 and C6 H6 /C6 H12 mixtures.
Collapse
Affiliation(s)
- Anh N Hong
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Emily Kusumoputro
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Yanxiang Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Huajun Yang
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Akintola O, Gerlach P, Plass CT, Balducci A, Plass W. Enhancing Capacity and Stability of Anionic MOFs as Electrode Material by Cation Exchange. Front Chem 2022; 10:836325. [PMID: 35340418 PMCID: PMC8942763 DOI: 10.3389/fchem.2022.836325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
In this study we report on the characterization and use of the anionic metal-organic framework (MOF) JUMP-1, [(Me2NH2)2[Co3(ntb)2(bdc)]] n , alongside with its alkali-metal ion-exchanged analogs JUMP-1(Li) and JUMP-1(Na), as electrode materials for lithium and sodium batteries. Composite electrodes containing these anionic-MOFs were prepared and tested in 1 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in propylene carbonate (PC) and/or 1 M sodium TFSI (NaTFSI) in PC. We showed that the ion-exchanged materials JUMP-1(Li) and JUMP-1(Na) display higher capacities in comparison with the original as-prepared compound JUMP-1 (490 mA∙h∙g-1 vs. 164 mA∙h∙g-1 and 83 mA∙h∙g-1 vs. 73 mA∙h∙g-1 in Li and Na based electrolytes, respectively). Additionally, we showed that the stability of the electrodes containing the ion-exchanged materials is higher than that of JUMP-1, suggesting a form of chemical pre-alkalation works to stabilize them prior to cycling. The results of these studies indicate that the use of designed anionic-MOFs represents a promising strategy for the realization of high performance electrodes suitable for energy storage devices.
Collapse
Affiliation(s)
- Oluseun Akintola
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Patrick Gerlach
- Institut für Technische Chemie und Umweltchemie, Friedrich-Schiller-Universität Jena, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Jena, Germany
| | - Christian T. Plass
- Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Andrea Balducci
- Institut für Technische Chemie und Umweltchemie, Friedrich-Schiller-Universität Jena, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
11
|
Hong AN, Kusumoputro E, Wang Y, Yang H, Chen Y, Bu X, Feng P. Simultaneous Control of Pore‐Space Partition and Charge Distribution in Multi‐Modular Metal–Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anh N. Hong
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Emily Kusumoputro
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Yanxiang Wang
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Huajun Yang
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Yichong Chen
- Department of Chemistry University of California Riverside CA 92521 USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry California State University Long Beach 1250 Bellflower Boulevard Long Beach CA 90840 USA
| | - Pingyun Feng
- Department of Chemistry University of California Riverside CA 92521 USA
| |
Collapse
|
12
|
Zhang X, Sun Y, Ma S, Kong Z, Duana X. Rapid adsorption and selective capture of methylene blue by anionic In‐based MOF with carboxyl‐decorated pore surface. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaofei Zhang
- Center of Advanced Optoelectronic Materials and Devices Key Laboratory of Novel Materials for Sensor of Zhejiang Province College of materials & environmental engineering Hangzhou Dianzi University Hangzhou 310018 China
| | - Yuan Sun
- Center of Advanced Optoelectronic Materials and Devices Key Laboratory of Novel Materials for Sensor of Zhejiang Province College of materials & environmental engineering Hangzhou Dianzi University Hangzhou 310018 China
| | - Shiyu Ma
- Center of Advanced Optoelectronic Materials and Devices Key Laboratory of Novel Materials for Sensor of Zhejiang Province College of materials & environmental engineering Hangzhou Dianzi University Hangzhou 310018 China
| | - Zhe Kong
- Center of Advanced Optoelectronic Materials and Devices Key Laboratory of Novel Materials for Sensor of Zhejiang Province College of materials & environmental engineering Hangzhou Dianzi University Hangzhou 310018 China
| | - Xing Duana
- Center of Advanced Optoelectronic Materials and Devices Key Laboratory of Novel Materials for Sensor of Zhejiang Province College of materials & environmental engineering Hangzhou Dianzi University Hangzhou 310018 China
| |
Collapse
|
13
|
Sharma P, Han J, Park J, Kim DY, Lee J, Oh D, Kim N, Seo DH, Kim Y, Kang SJ, Hwang SM, Jang JW. Alkali-Metal-Mediated Reversible Chemical Hydrogen Storage Using Seawater. JACS AU 2021; 1:2339-2348. [PMID: 34977902 PMCID: PMC8715542 DOI: 10.1021/jacsau.1c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 06/14/2023]
Abstract
The economic viability and systemic sustainability of a green hydrogen economy are primarily dependent on its storage. However, none of the current hydrogen storage methods meet all the targets set by the US Department of Energy (DoE) for mobile hydrogen storage. One of the most promising routes is through the chemical reaction of alkali metals with water; however, this method has not received much attention owing to its irreversible nature. Herein, we present a reconditioned seawater battery-assisted hydrogen storage system that can provide a solution to the irreversible nature of alkali-metal-based hydrogen storage. We show that this system can also be applied to relatively lighter alkali metals such as lithium as well as sodium, which increases the possibility of fulfilling the DoE target. Furthermore, we found that small (1.75 cm2) and scaled-up (70 cm2) systems showed high Faradaic efficiencies of over 94%, even in the presence of oxygen, which enhances their viability.
Collapse
Affiliation(s)
- Pankaj Sharma
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
| | - Jinhyup Han
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
| | - Jaehyun Park
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
| | - Dong Yeon Kim
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
| | - Jinho Lee
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
| | - Dongrak Oh
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
| | - Namsu Kim
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
| | - Dong-Hwa Seo
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
| | - Youngsik Kim
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
| | - Seok Ju Kang
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
| | - Soo Min Hwang
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji-Wook Jang
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic
of Korea
- Emergent
Hydrogen Technology R&D Center, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
14
|
|
15
|
C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213998] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Shi X, Zu Y, Jiang S, Sun F. An Anionic Indium–Organic Framework with Spirobifluorene-Based Ligand for Selective Adsorption of Organic Dyes. Inorg Chem 2021; 60:1571-1578. [DOI: 10.1021/acs.inorgchem.0c02962] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xinli Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Yucong Zu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Shuangshuang Jiang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
| |
Collapse
|
17
|
Shu C, Wu M, Hong M. Synthesis, structure, magnetic property and selective dye absorption of a coordination polymer with intrinsic positive charged sites. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Luo YH, Xie AD, Hu MG, Wu J, Zhang DE, Lan YQ. Assembly of Two Mesoporous Anionic Metal–Organic Frameworks for Fluorescent Sensing of Metal Ions and Organic Dyes Separation. Inorg Chem 2020; 60:167-174. [DOI: 10.1021/acs.inorgchem.0c02760] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yu-Hui Luo
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, Jiangsu Province, People’s Republic of China
| | - A-Di Xie
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, Jiangsu Province, People’s Republic of China
| | - Ming-Gai Hu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, Jiangsu Province, People’s Republic of China
| | - Ji Wu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, Jiangsu Province, People’s Republic of China
| | - Dong-En Zhang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222000, Jiangsu Province, People’s Republic of China
| | - Ya-Qian Lan
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu Province, People’s Republic of China
| |
Collapse
|
19
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
20
|
Wang JY, Mangano E, Brandani S, Ruthven DM. A review of common practices in gravimetric and volumetric adsorption kinetic experiments. ADSORPTION 2020. [DOI: 10.1007/s10450-020-00276-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractThe availability of commercial gravimetric and volumetric systems for the measurement of adsorption equilibrium has seen also a growth of the use of these instruments to measure adsorption kinetics. A review of publications from the past 20 years has been used to assess common practice in 180 cases. There are worrying trends observed, such as lack of information on the actual conditions used in the experiment and the fact that the analysis of the data is often based on models that do not apply to the experimental systems used. To provide guidance to users of these techniques this contribution is divided into two parts: a discussion of the appropriate models to describe diffusion in porous materials is presented for different gravimetric and volumetric systems, followed by a structured discussion of the main trends in common practice uncovered reviewing a large number of recent publications. We conclude with recommendations for best practice to avoid incorrect interpretation of these experiments.
Collapse
|
21
|
Li J, Bhatt PM, Li J, Eddaoudi M, Liu Y. Recent Progress on Microfine Design of Metal-Organic Frameworks: Structure Regulation and Gas Sorption and Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002563. [PMID: 32671894 DOI: 10.1002/adma.202002563] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Indexed: 05/18/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as an important and unique class of functional crystalline hybrid porous materials in the past two decades. Due to their modular structures and adjustable pore system, such distinctive materials have exhibited remarkable prospects in key applications pertaining to adsorption such as gas storage, gas and liquid separations, and trace impurity removal. Evidently, gaining a better understanding of the structure-property relationship offers great potential for the enhancement of a given associated MOF property either by structural adjustments via isoreticular chemistry or by the design and construction of new MOF structures via the practice of reticular chemistry. Correspondingly, the application of isoreticular chemistry paves the way for the microfine design and structure regulation of presented MOFs. Explicitly, the microfine tuning is mainly based on known MOF platforms, focusing on the modification and/or functionalization of a precise part of the MOF structure or pore system, thus providing an effective approach to produce richer pore systems with enhanced performances from a limited number of MOF platforms. Here, the latest progress in this field is highlighted by emphasizing the differences and connections between various methods. Finally, the challenges together with prospects are also discussed.
Collapse
Affiliation(s)
- Jiantang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Functional Materials Design, Discovery & Development (FMD3), Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Prashant M Bhatt
- Functional Materials Design, Discovery & Development (FMD3), Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery & Development (FMD3), Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
22
|
Qin L, Tobiason JE, Huang H. Water and humic acid transport in graphene-derived membrane: Mechanisms and implications to functional membrane design. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Mudsainiyan RK, Chander K. Structural transformation from 1D to 3D in [K(µ5-L1).H2O]n (L1 = 2,4-dinitrobenzoate) by nitro group coordination: Comparison with theoretical and Hirshfeld surface calculations. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1817454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Hui YY, Bai C, Hu HM, Lv B, Wang X. The effects of the coordination orientation and steric hindrance of ligands on the structural diversity of Pb(II) coordination polymers. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Das P, Mandal SK. Unprecedented High Temperature CO 2 Selectivity and Effective Chemical Fixation by a Copper-Based Undulated Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37137-37146. [PMID: 32686423 DOI: 10.1021/acsami.0c09024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Post- and precombustion CO2 capture and separation are the vital challenges from industrial viewpoint, as the accessible technologies are not cost-effective and cumbersome. Thus, the development of functional metal-organic frameworks (MOFs) that are found to be promising materials for selective CO2 capture, separation, and conversion is gaining an importance in the scientific world. Based on the strategic design, a new functionalized triazine-based undulated paddle-wheel Cu-MOF (1), {[Cu(MTABA)(H2O)]·4H2O·2EtOH·DMF}n (where, H2MTABA = 4,4'-((6-methoxy-1,3,5-triazine-2,4-diyl)bis(azanediyl))dibenzoic acid), has been synthesized under solvothermal conditions and fully characterized. MOF 1 contains a one-dimensional channel along the a-axis with pore walls decorated with open metal sites, and multifunctional groups (amine, triazine, and methoxy). Unlike other porous materials, activated 1 (1') possesses exceptional increment in CO2/N2 and CO2/CH4 selectivity with increased temperature calculated by the ideal adsorbed solution theory. With an increase in temperature from 298 to 313 K, the selectivity of CO2 rises from 350.3 to 909.5 at zero coverage, which is unprecedented till date. Moreover, 1' behaves as a bifunctional heterogeneous catalyst through Lewis acid (open metal) and Brönsted acid sites to facilitate the chemical fixation of CO2 to cyclic carbonates under ambient conditions. The high selectivity for CO2 by 1' even at higher temperature was further corroborated with configurational bias Monte Carlo molecular simulation that ascertains the multiple CO2-philic sites and epoxide binding sites in 1' to further decipher the mechanistic pathway.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
26
|
Biggins N, Ziebel ME, Gonzalez MI, Long JR. Crystallographic characterization of the metal-organic framework Fe 2(bdp) 3 upon reductive cation insertion. Chem Sci 2020; 11:9173-9180. [PMID: 34123166 PMCID: PMC8163410 DOI: 10.1039/d0sc03383a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Precisely locating extra-framework cations in anionic metal–organic framework compounds remains a long-standing, yet crucial, challenge for elucidating structure–performance relationships in functional materials. Single-crystal X-ray diffraction is one of the most powerful approaches for this task, but single crystals of frameworks often degrade when subjected to post-synthetic metalation or reduction. Here, we demonstrate the growth of sizable single crystals of the robust metal–organic framework Fe2(bdp)3 (bdp2− = benzene-1,4-dipyrazolate) and employ single-crystal-to-single-crystal chemical reductions to access the solvated framework materials A2Fe2(bdp)3·yTHF (A = Li+, Na+, K+). X-ray diffraction analysis of the sodium and potassium congeners reveals that the cations are located near the center of the triangular framework channels and are stabilized by weak cation–π interactions with the framework ligands. Freeze-drying with benzene enables isolation of activated single crystals of Na0.5Fe2(bdp)3 and Li2Fe2(bdp)3 and the first structural characterization of activated metal–organic frameworks wherein extra-framework alkali metal cations are also structurally located. Comparison of the solvated and activated sodium-containing structures reveals that the cation positions differ in the two materials, likely due to cation migration that occurs upon solvent removal to maximize stabilizing cation–π interactions. Hydrogen adsorption data indicate that these cation–framework interactions are sufficient to diminish the effective cationic charge, leading to little or no enhancement in gas uptake relative to Fe2(bdp)3. In contrast, Mg0.85Fe2(bdp)3 exhibits enhanced H2 affinity and capacity over the non-reduced parent material. This observation shows that increasing the charge density of the pore-residing cation serves to compensate for charge dampening effects resulting from cation–framework interactions and thereby promotes stronger cation–H2 interactions. Single-crystal X-ray diffraction reveals structural influences on gas adsorption properties in anionic metal–organic frameworks.![]()
Collapse
Affiliation(s)
- Naomi Biggins
- Department of Chemistry, University of California Berkeley California 94720 USA .,Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Michael E Ziebel
- Department of Chemistry, University of California Berkeley California 94720 USA .,Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Miguel I Gonzalez
- Department of Chemistry, University of California Berkeley California 94720 USA
| | - Jeffrey R Long
- Department of Chemistry, University of California Berkeley California 94720 USA .,Department of Chemical and Biomolecular Engineering, University of California Berkeley California 94720 USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| |
Collapse
|
27
|
Affiliation(s)
- Dae-Woon Lim
- Department of Chemistry and Medical Chemistry, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwondo 26493, Republic of Korea
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
28
|
Chakraborty G, Das P, Mandal SK. Polar Sulfone-Functionalized Oxygen-Rich Metal-Organic Frameworks for Highly Selective CO 2 Capture and Sensitive Detection of Acetylacetone at ppb Level. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11724-11736. [PMID: 32011848 DOI: 10.1021/acsami.9b22658] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A rational combination of an oxygen-rich pyridyl substituted tetrapodal ligand, tetrakis(4-pyridyloxymethylene)methane (TPOM), and a polar sulfone-functionalized conjugated bent dicarboxylate linker, dibenzothiophene-5,5'-dioxide-3,7-dicarboxylic acid (H2(3,7-DBTDC)), with d10 metal centers, Zn(II) and Cd(II), has led to the construction of two new three-dimensional (3D) metal-organic frameworks,{[Zn2(TPOM)(3,7-DBTDC)2]·7H2O·DMA}n (1) and {[Cd2(TPOM)(3,7-DBTDC)2]·6H2O·3DMF}n (2). Single-crystal X-ray analysis indicates that 1 is a 3D framework with a dinuclear repeating unit having two different Zn(II) centers (tetrahedral and square pyramidal) and 2 is a 3D framework comprised of a dinuclear repeating unit with one crystallographically independent distorted pentagonal bipyramidal Cd(II) coordinated to chelating/bridging carboxylates and nitrogen atoms of the TPOM ligand. In both cases, the pores are aligned with oxygen atoms of the TPOM ligand and decorated with polar sulfone moieties. On the basis of the stability established by thermogravimetric analysis and powder X-ray diffraction (PXRD) and the presence of large solvent accessible voids (25.4% for 1 and 40.6% for 2), gas sorption studies of different gases (N2, CO2, and CH4) and water vapor have been explored for both 1 and 2. The CO2 sorption isotherm depicts type I isotherm with an uptake of 93.6 cm3 g-1 (for 1) and 100.6 cm3 g-1 (for 2) at 195 K. Additionally, sorption of CO2 is highly selective over that of N2 and CH4 for both 1 and 2 due to the strong quadrupolar interactions between sulfone moieties and CO2 molecules. Configurational bias Monte Carlo (CBMC) molecular simulation has further justified the highly selective CO2 capture. On the other hand, the luminescence nature of 1 and 2 has been employed for highly selective detection of acetylacetone in aqueous methanol with a limit of 59 ppb in 1 and 66 ppb in 2, which are among the best reported values so far in the literature. The Stern-Volmer plots, spectral overlap, density functional theory calculations, CBMC simulation, and time-resolved lifetime measurements have been utilized for an extensive mechanistic study. The exclusive selectivity for acetylacetone in 1 and 2 have been confirmed by competitive selectivity test. Both exhibited good recyclability and stability after sensing experiments analyzed by fluorescence, PXRD, and field emission scanning electron microscopy studies.
Collapse
Affiliation(s)
- Gouri Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
29
|
Li B, Yan QQ, Xu ZQ, Xu YB, Yong GP. Tuning the interpenetration of metal–organic frameworks through changing ligand functionality: effect on gas adsorption properties. CrystEngComm 2020. [DOI: 10.1039/c9ce01309a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two interpenetrated MOFs are constructed with a 2-connected ligand, whereas one non-interpenetrated MOF is constructed by using a 3-connected ligand.
Collapse
Affiliation(s)
- Bin Li
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Qing-Qing Yan
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Zhi-Qiang Xu
- The USTC-Anhui Tobacco Joint Laboratory of Chemistry and Combustion
- Hefei 230066
- P. R. China
| | - Ying-Bo Xu
- The USTC-Anhui Tobacco Joint Laboratory of Chemistry and Combustion
- Hefei 230066
- P. R. China
| | - Guo-Ping Yong
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| |
Collapse
|
30
|
Wang Q, Meng L, Cheng H, Zhang Z, Xue D, Bai J. Selective CO 2 or CH 4 adsorption of two anionic bcu-MOFs with two different counterions: experimental and simulation studies. Inorg Chem Front 2020. [DOI: 10.1039/d0qi01080d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two new bcu-MOFs with counterions tuned from Li(H2O)4+ to DMA+ have been successfully synthesized and their selective CO2 or CH4 adsorption over N2 gas has been systematically investigated in-depth by both experimental and simulation studies.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
| | - Liuli Meng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
| | - Hongtao Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
| | - Zonghui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
| | - Dongxu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
| | - Junfeng Bai
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an 710062
| |
Collapse
|
31
|
Zhang Y, Huang C, Mi L. Metal–organic frameworks as acid- and/or base-functionalized catalysts for tandem reactions. Dalton Trans 2020; 49:14723-14730. [DOI: 10.1039/d0dt03025b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we have reviewed the development of MOFs anchored with acidic and/or basic sites as heterogeneous catalysts for tandem/cascade (domino) reactions over the past five years.
Collapse
Affiliation(s)
- Yingying Zhang
- Center for Advanced Materials Research
- Henan Key Laboratory of Functional Salt Materials
- Zhongyuan University of Technology
- Zhengzhou
- China
| | - Chao Huang
- Center for Advanced Materials Research
- Henan Key Laboratory of Functional Salt Materials
- Zhongyuan University of Technology
- Zhengzhou
- China
| | - Liwei Mi
- Center for Advanced Materials Research
- Henan Key Laboratory of Functional Salt Materials
- Zhongyuan University of Technology
- Zhengzhou
- China
| |
Collapse
|
32
|
Zhao C, Male L, Chen TY, Barker JA, Shannon IJ, Anderson PA. An Ion-Exchangeable MOF with Reversible Dehydration and Dynamic Structural Behavior (NH 4 ) 2 [Zn 2 (O 3 PCH 2 CH 2 COO) 2 ]⋅5 H 2 O (BIRM-1). Chemistry 2019; 25:13865-13868. [PMID: 31486553 DOI: 10.1002/chem.201903230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/31/2019] [Indexed: 11/09/2022]
Abstract
(NH4 )2 [Zn2 (O3 PCH2 CH2 COO)2 ]⋅5 H2 O (BIRM-1) is a new metal phosphonate material, synthesized through a simple hydrothermal reaction between zinc nitrate and 3-phosphonopropionic acid, using urea and tetraethylammonium bromide as the reaction medium. In common with other metal-organic framework materials, BIRM-1 has a large three-dimensional porous structure providing potential access to a high internal surface area. Unlike most others, it has the advantage of containing ammonium cations within the pores and has the ability to undergo cation exchange. Additionally, BIRM-1 also exhibits a reversible dehydration behavior involving an amorphization-recrystallization cycle. The ability to undergo ion exchange and dynamic structural behavior are of interest in their own right, but also increase the range of potential applications for this material. Here the crystal structure of this new metal phosphonate and its ion exchange behavior with K+ as an exemplar are studied in detail, and its unusual structure-reviving property reported.
Collapse
Affiliation(s)
- Chao Zhao
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,SCHOTT Glass Technologies (Suzhou) Co., Ltd., No. 79 Huoju Rd., Science & Technology Industry Park, New District, Suzhou, 215009, P. R. China
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tzu-Yu Chen
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Materials and Engineering Research Institute, Faculty of Science, Technology and Arts, Sheffield Hallam University, City Campus, Howard Street, Sheffield, S1 1WB, UK
| | - Joseph A Barker
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ian J Shannon
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paul A Anderson
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
33
|
Zhao SN, Zhang Y, Song SY, Zhang HJ. Design strategies and applications of charged metal organic frameworks. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Hu J, Liu Y, Liu J, Gu C. Chelation of transition metals into MOFs as a promising method for enhancing CO
2
capture: A computational study. AIChE J 2019. [DOI: 10.1002/aic.16835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jianbo Hu
- State Key Laboratory of Coal Combustion School of Energy and Power Engineering, Huazhong University of Science and Technology Wuhan China
| | - Yang Liu
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia
| | - Jing Liu
- State Key Laboratory of Coal Combustion School of Energy and Power Engineering, Huazhong University of Science and Technology Wuhan China
| | - Chenkai Gu
- State Key Laboratory of Coal Combustion School of Energy and Power Engineering, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
35
|
Panchariya DK, Kumar EA, Singh SK. Lithium-Doped Silica-Rich MIL-101(Cr) for Enhanced Hydrogen Uptake. Chem Asian J 2019; 14:3728-3735. [PMID: 31460699 DOI: 10.1002/asia.201900833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/31/2019] [Indexed: 11/06/2022]
Abstract
Metal-organic frameworks (MOFs) show promising characteristics for hydrogen storage application. In this direction, modification of under-utilized large pore cavities of MOFs has been extensively explored as a promising strategy to further enhance the hydrogen storage properties of MOFs. Here, we described a simple methodology to enhance the hydrogen uptake properties of RHA incorporated MIL-101 (RHA-MIL-101, where RHA is rice husk ash-a waste material) by controlled doping of Li+ ions. The hydrogen gas uptake of Li-doped RHA-MIL-101 is significantly higher (up to 72 %) compared to the undoped RHA-MIL-101, where the content of Li+ ions doping greatly influenced the hydrogen uptake properties. We attributed the observed enhancement in the hydrogen gas uptake of Li-doped RHA-MIL-101 to the favorable Li+ ion-to-H2 interactions and the cooperative effect of silanol bonds of silica-rich rice-husk ash incorporated in MIL-101.
Collapse
Affiliation(s)
- Dharmendra K Panchariya
- Discipline of Mechanical Engineering, Indian Institute of Technology Indore, Simrol, Indore-, 453552, India
| | - E Anil Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Tirupati-, 517506, India
| | - Sanjay K Singh
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore-, 453552, India
| |
Collapse
|
36
|
Zhao J, Qu X, Wang J, Yan B. Photophysical Tuning of Viologen-Based Metal–Organic Framework Hybrids via Anion Exchange and Chemical Sensing on Persulfate (S2O82–). Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jing Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Xianglong Qu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Jinmin Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
37
|
Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H. Mixed‐Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902229] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mohammad Yaser Masoomi
- Department of Chemistry Faculty of Sciences Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran
| | - Ali Morsali
- Department of Chemistry Faculty of Sciences Tarbiat Modares University P.O. Box 14155-4838 Tehran Iran
| | | | - Hermenegildo Garcia
- Dep. de Quimica y Instituto Universitario de Tecnologia Quimica (CSIC-UPV), Universitat Politecnica de Valencia Valencia 46022 Spain
| |
Collapse
|
38
|
Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H. Mixed-Metal MOFs: Unique Opportunities in Metal-Organic Framework (MOF) Functionality and Design. Angew Chem Int Ed Engl 2019; 58:15188-15205. [PMID: 30977953 DOI: 10.1002/anie.201902229] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 01/14/2023]
Abstract
Mixed-metal metal-organic frameworks (MM-MOFs) can be considered to be those MOFs having two different metals anywhere in the structure. Herein we summarize the various strategies for the preparation of MM-MOFs and some of their applications in adsorption, gas separation, and catalysis. It is shown that compared to homometallic MOFs, MM-MOFs bring about the opportunity to take advantage of the complexity and the synergism derived from the presence of different metal ions in the structure of MOFs. This is reflected in a superior performance and even stability of MM-MOFs respect to related single-metal MOFs. Emphasis is made on the use of MM-MOFs as catalysts for tandem reactions.
Collapse
Affiliation(s)
- Mohammad Yaser Masoomi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14155-4838, Tehran, Iran
| | | | - Hermenegildo Garcia
- Dep. de Quimica y, Instituto Universitario de Tecnologia Quimica (CSIC-UPV), Universitat Politecnica de Valencia, Valencia, 46022, Spain
| |
Collapse
|
39
|
Yang X, Liang T, Sun J, Zaworotko MJ, Chen Y, Cheng P, Zhang Z. Template-Directed Synthesis of Photocatalyst-Encapsulating Metal–Organic Frameworks with Boosted Photocatalytic Activity. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01783] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaojie Yang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | | | - Michael J. Zaworotko
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94T9PX, Republic of Ireland
| | | | - Peng Cheng
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
40
|
Jiang XL, Hou SL, Jiao ZH, Zhao B. Luminescent Detection of Colchicine by a Unique Indium–Organic Framework in Water with High Sensitivity. Anal Chem 2019; 91:9754-9759. [DOI: 10.1021/acs.analchem.9b01379] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiao-Lei Jiang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin 300071, China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin 300071, China
| | - Zhuo-Hao Jiao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, MOE, Nankai University, Tianjin 300071, China
| |
Collapse
|
41
|
Han Y, Liu K, Sinnwell MA, Liu L, Huang H, Thallapally PK. Direct Observation of Li + Ions Trapped in a Mg 2+-Templated Metal-Organic Framework. Inorg Chem 2019; 58:8922-8926. [PMID: 31247838 DOI: 10.1021/acs.inorgchem.9b01207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the first example of a metal-organic framework (MOF) in which the location of Li+ ions trapped in the porous confinement can be unambiguously defined by single-crystal X-ray diffraction. Furthermore, the Li+-doped MOF shows significant enhancement in gas uptake as well as selective adsorption of CO2 over CH4.
Collapse
Affiliation(s)
- Yi Han
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao , Shandong 266042 , P. R. China.,Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Kang Liu
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao , Shandong 266042 , P. R. China
| | - Michael A Sinnwell
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Lili Liu
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin Polytechnic University , Tianjin 300387 , China
| | | |
Collapse
|
42
|
Micheroni D, Lin Z, Chen YS, Lin W. Luminescence Enhancement of cis-[Ru(bpy)2(py)2]2+ via Confinement within a Metal–Organic Framework. Inorg Chem 2019; 58:7645-7648. [DOI: 10.1021/acs.inorgchem.9b00396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Daniel Micheroni
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zekai Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
43
|
Bakuru VR, DMello ME, Kalidindi SB. Metal-Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges. Chemphyschem 2019; 20:1177-1215. [PMID: 30768752 DOI: 10.1002/cphc.201801147] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/09/2019] [Indexed: 12/19/2022]
Abstract
Hydrogen is in limelight as an environmental benign alternative to fossil fuels from few decades. To bring the concept of hydrogen economy from academic labs to real world certain challenges need to be addressed in the areas of hydrogen production, storage, and its use in fuel cells. Crystalline metal-organic frameworks (MOFs) with unprecedented surface areas are considered as potential materials for addressing the challenges in each of these three areas. MOFs combine the diverse chemistry of molecular linkers with their ability to coordinate to metal ions and clusters. The unabated flurry of research using MOFs in the context of hydrogen energy related activities in the past decade demonstrates the versatility of this class of materials. In the present review, we discuss major strategical advances that have taken place in the field of "hydrogen economy and MOFs" and point out issues requiring further attention.
Collapse
Affiliation(s)
- Vasudeva Rao Bakuru
- Materials science division, Poornaprajna Institute of Scientific Research Devanahalli, Bangalore Rural, 576164, India
| | - Marilyn Esclance DMello
- Materials science division, Poornaprajna Institute of Scientific Research Devanahalli, Bangalore Rural, 576164, India
| | - Suresh Babu Kalidindi
- Materials science division, Poornaprajna Institute of Scientific Research Devanahalli, Bangalore Rural, 576164, India
| |
Collapse
|
44
|
Widmer RN, Lampronti GI, Anzellini S, Gaillac R, Farsang S, Zhou C, Belenguer AM, Wilson CW, Palmer H, Kleppe AK, Wharmby MT, Yu X, Cohen SM, Telfer SG, Redfern SAT, Coudert FX, MacLeod SG, Bennett TD. Pressure promoted low-temperature melting of metal-organic frameworks. NATURE MATERIALS 2019; 18:370-376. [PMID: 30886398 DOI: 10.1038/s41563-019-0317-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Metal-organic frameworks (MOFs) are microporous materials with huge potential for chemical processes. Structural collapse at high pressure, and transitions to liquid states at high temperature, have recently been observed in the zeolitic imidazolate framework (ZIF) family of MOFs. Here, we show that simultaneous high-pressure and high-temperature conditions result in complex behaviour in ZIF-62 and ZIF-4, with distinct high- and low-density amorphous phases occurring over different regions of the pressure-temperature phase diagram. In situ powder X-ray diffraction, Raman spectroscopy and optical microscopy reveal that the stability of the liquid MOF state expands substantially towards lower temperatures at intermediate, industrially achievable pressures and first-principles molecular dynamics show that softening of the framework coordination with pressure makes melting thermodynamically easier. Furthermore, the MOF glass formed by melt quenching the high-temperature liquid possesses permanent, accessible porosity. Our results thus imply a route to the synthesis of functional MOF glasses at low temperatures, avoiding decomposition on heating at ambient pressure.
Collapse
Affiliation(s)
- Remo N Widmer
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | | | - Simone Anzellini
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - Romain Gaillac
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - Stefan Farsang
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Chao Zhou
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Ana M Belenguer
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Hannah Palmer
- Department of Materials Sciences & Metallurgy, University of Cambridge, Cambridge, UK
| | - Annette K Kleppe
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - Michael T Wharmby
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Xiao Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Shane G Telfer
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Simon A T Redfern
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - Simon G MacLeod
- Atomic Weapons Establishment, Aldermaston, UK
- SUPA, School of Physics & Astronomy, and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh, UK
| | - Thomas D Bennett
- Department of Materials Sciences & Metallurgy, University of Cambridge, Cambridge, UK.
| |
Collapse
|
45
|
Xu X, Feng L, Li J, Yuan P, Feng J, Wei L, Cheng X. Rapid screening detection of fluoroquinolone residues in milk based on turn-on fluorescence of terbium coordination polymer nanosheets. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Lin CC, Huang YC, Usman M, Chao WH, Lin WK, Luo TT, Whang WT, Chen CH, Lu KL. Zr-MOF/Polyaniline Composite Films with Exceptional Seebeck Coefficient for Thermoelectric Material Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3400-3406. [PMID: 30580511 DOI: 10.1021/acsami.8b17308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controlling the polymerization of aniline in the presence of zirconium-based metal-organic frameworks (Zr-MOFs) using polystyrene sulfonic acid as a dopant resulted in the formation of a new type of free-standing thermoelectric composite film. Polyaniline chains interpenetrate into the Zr-MOFs to enhance the crystallinity of polyaniline, resulting in an improved degree of electrical conductivity. In addition, the inherent porosity of the Zr-MOFs functions to suppress the increase in thermal conductivity, thus dramatically promoting a negative Seebeck coefficient. When 20 wt % Zr-MOF was used, a power factor of up to 664 μW/(m K2) was obtained, which was accompanied by a surprisingly large, negative Seebeck coefficient. The new class of MOF-based composites offers a new direction for developing new types of efficient thermoelectric materials.
Collapse
Affiliation(s)
- Chih-Chien Lin
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 300 , Taiwan
| | - Yi-Chia Huang
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 300 , Taiwan
| | - Muhammad Usman
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Wen-Hsuan Chao
- Material and Chemical Research Laboratory , Industrial Technology Research Institute , Hsinchu 310 , Taiwan
| | - Wei-Keng Lin
- Department of Engineering and System Science , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Tzuoo-Tsair Luo
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Wha-Tzong Whang
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 300 , Taiwan
| | - Chun-Hua Chen
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 300 , Taiwan
| | - Kuang-Lieh Lu
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
47
|
Lim DW, Sadakiyo M, Kitagawa H. Proton transfer in hydrogen-bonded degenerate systems of water and ammonia in metal-organic frameworks. Chem Sci 2019; 10:16-33. [PMID: 30746070 PMCID: PMC6335954 DOI: 10.1039/c8sc04475a] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Porous crystalline metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are emerging as a new class of proton conductors with numerous investigations. Some of the MOFs exhibit an excellent proton-conducting performance (higher than 10-2 S cm-1) originating from the interesting hydrogen(H)-bonding networks with guest molecules, where the conducting medium plays a crucial role. In the overwhelming majority of MOFs, the conducting medium is H2O because of its degenerate conjugate acid-base system (H3O+ + H2O ⇔ H2O + H3O+ or OH- + H2O ⇔ H2O + OH-) and the efficient H-bonding ability through two proton donor and two acceptor sites with a tetrahedral geometry. Considering the systematic molecular similarity to water, ammonia (NH3; NH4 + + NH3 ⇔ NH3 + NH4 +) is promising as the next proton-conducting medium. In addition, there are few reports on NH3-mediated proton conductivity in MOFs. In this perspective, we provide overviews of the degenerate water (hydronium or hydroxide)- or ammonia (ammonium)-mediated proton conduction system, the design strategies for proton-conductive MOFs, and the conduction mechanisms.
Collapse
Affiliation(s)
- Dae-Woon Lim
- Division of Chemistry , Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku , Kyoto 606-8502 , Japan .
| | - Masaaki Sadakiyo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) , Kyushu Univerisity , 744 Moto-oka, Nishi-ku , Fukuoka 819-0395 , Japan
| | - Hiroshi Kitagawa
- Division of Chemistry , Graduate School of Science , Kyoto University , Kitashirakawa-Oiwakecho, Sakyo-ku , Kyoto 606-8502 , Japan .
| |
Collapse
|
48
|
Wang T, Huang K, Peng M, Li X, Han D, Jing L, Qin D. Metal–organic frameworks based on tetraphenylpyrazine-derived tetracarboxylic acid for electrocatalytic hydrogen evolution reaction and NAC sensing. CrystEngComm 2019. [DOI: 10.1039/c8ce01868e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetraphenylpyrazine-derived tetracarboxylic acid-based new MOFs and their promising applications in the electrocatalytic hydrogen evolution reaction.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province
- School of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- P. R. China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province
- School of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- P. R. China
| | - Mengni Peng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province
- School of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- P. R. China
| | - Xianglin Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province
- School of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- P. R. China
| | - Defang Han
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province
- School of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- P. R. China
| | - Linhai Jing
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province
- School of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- P. R. China
| | - Dabin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province
- School of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
- P. R. China
| |
Collapse
|
49
|
Yin Z, Wan S, Yang J, Kurmoo M, Zeng MH. Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.11.015] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Gupta V, Mandal SK. A robust and water-stable two-fold interpenetrated metal–organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO2 capture. Dalton Trans 2019; 48:415-425. [DOI: 10.1039/c8dt03844a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A robust and water-stable two-fold interpenetrated metal–organic framework containing both rigid tetrapodal carboxylate and rigid bifunctional nitrogen linkers exhibiting selective CO2 capture is reported.
Collapse
Affiliation(s)
- Vijay Gupta
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- Mohali
- India
| | - Sanjay K. Mandal
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- Mohali
- India
| |
Collapse
|