1
|
Zhou W, Fiorin G, Anselmi C, Karimi-Varzaneh HA, Poblete H, Forrest LR, Faraldo-Gómez JD. Large-scale state-dependent membrane remodeling by a transporter protein. eLife 2019; 8:50576. [PMID: 31855177 PMCID: PMC6957315 DOI: 10.7554/elife.50576] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
That channels and transporters can influence the membrane morphology is increasingly recognized. Less appreciated is that the extent and free-energy cost of these deformations likely varies among different functional states of a protein, and thus, that they might contribute significantly to defining its mechanism. We consider the trimeric Na+-aspartate symporter GltPh, a homolog of an important class of neurotransmitter transporters, whose mechanism entails one of the most drastic structural changes known. Molecular simulations indicate that when the protomers become inward-facing, they cause deep, long-ranged, and yet mutually-independent membrane deformations. Using a novel simulation methodology, we estimate that the free-energy cost of this membrane perturbation is in the order of 6–7 kcal/mol per protomer. Compensating free-energy contributions within the protein or its environment must thus stabilize this inward-facing conformation for the transporter to function. We discuss these striking results in the context of existing experimental observations for this and other transporters.
Collapse
Affiliation(s)
- Wenchang Zhou
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Giacomo Fiorin
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Claudio Anselmi
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Hossein Ali Karimi-Varzaneh
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Horacio Poblete
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States.,Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
2
|
Hilgemann DW, Dai G, Collins A, Lariccia V, Magi S, Deisl C, Fine M. Lipid signaling to membrane proteins: From second messengers to membrane domains and adapter-free endocytosis. J Gen Physiol 2018; 150:211-224. [PMID: 29326133 PMCID: PMC5806671 DOI: 10.1085/jgp.201711875] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hilgemann et al. explain how lipid signaling to membrane proteins involves a hierarchy of mechanisms from lipid binding to membrane domain coalescence. Lipids influence powerfully the function of ion channels and transporters in two well-documented ways. A few lipids act as bona fide second messengers by binding to specific sites that control channel and transporter gating. Other lipids act nonspecifically by modifying the physical environment of channels and transporters, in particular the protein–membrane interface. In this short review, we first consider lipid signaling from this traditional viewpoint, highlighting innumerable Journal of General Physiology publications that have contributed to our present understanding. We then switch to our own emerging view that much important lipid signaling occurs via the formation of membrane domains that influence the function of channels and transporters within them, promote selected protein–protein interactions, and control the turnover of surface membrane.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Gucan Dai
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Anthony Collins
- Saba University School of Medicine, The Bottom, Saba, Dutch Caribbean
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche," Ancona, Italy
| | - Christine Deisl
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Michael Fine
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
3
|
Guo A, Lu P, Lee J, Zhen C, Chiosis G, Wang YL. HSP90 stabilizes B-cell receptor kinases in a multi-client interactome: PU-H71 induces CLL apoptosis in a cytoprotective microenvironment. Oncogene 2017; 36:3441-3449. [PMID: 28114285 DOI: 10.1038/onc.2016.494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 01/15/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of B cells in the hematopoietic system and lymphoid tissues. Although inhibitors targeting the B-cell receptor (BCR) pathway have been successful in the treatment of the disease, the underlying mechanisms leading to BCR over-activity in CLL are not fully understood. In this study, we found that HSP90, a highly conserved molecular chaperone, is overexpressed in CLL compared with resting B cells. HSP90 overexpression is accompanied by the overexpression of several BCR kinases including LYN, spleen tyrosine kinase, Bruton tyrosine kinase and AKT. Chemical and immune-precipitation demonstrated that these BCR constituents are present in a multi-client chaperone complex with HSP90. Inhibition of HSP90 with PU-H71 destabilized the BCR kinases and caused apoptosis of CLL cells through the mitochondrial apoptotic pathway. Further, PU-H71 induced apoptosis in the presence of stromal co-culture or cytoprotective survival signals. Finally, genetic knockdown of HSP90 and its client AKT, but not BTK, reduced CLL viability. Overall, our study suggests that the chaperone function of HSP90 contributes to the over-activity of the BCR signaling in CLL and inhibition of HSP90 has the potential to achieve a multi-targeting effect. Thus, HSP90 inhibition may be explored to prevent or overcome drug resistance to single targeting agents.
Collapse
Affiliation(s)
- A Guo
- Division of Genomic and Molecular Pathology, Department of Pathology, University of Chicago and
| | - P Lu
- Division of Genomic and Molecular Pathology, Department of Pathology, University of Chicago and
| | - J Lee
- Division of Genomic and Molecular Pathology, Department of Pathology, University of Chicago and
| | - C Zhen
- Division of Genomic and Molecular Pathology, Department of Pathology, University of Chicago and
| | - G Chiosis
- Program in Chemical Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Y L Wang
- Division of Genomic and Molecular Pathology, Department of Pathology, University of Chicago and
| |
Collapse
|
4
|
Cheng CY, Olijve LLC, Kausik R, Han S. Cholesterol enhances surface water diffusion of phospholipid bilayers. J Chem Phys 2015; 141:22D513. [PMID: 25494784 DOI: 10.1063/1.4897539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed (1)H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5-10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in faster surface water diffusivity. Another is the concurrent tightening of lipid packing that reduces passive, possibly unwanted, diffusion of ions and water across the bilayer.
Collapse
Affiliation(s)
- Chi-Yuan Cheng
- Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Luuk L C Olijve
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ravinath Kausik
- Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Songi Han
- Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
5
|
Oliva R, Del Vecchio P, Stellato MI, D'Ursi AM, D'Errico G, Paduano L, Petraccone L. A thermodynamic signature of lipid segregation in biomembranes induced by a short peptide derived from glycoprotein gp36 of feline immunodeficiency virus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:510-7. [PMID: 25450811 DOI: 10.1016/j.bbamem.2014.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022]
Abstract
The interactions between proteins/peptides and lipid bilayers are fundamental in a variety of key biological processes, and among these, the membrane fusion process operated by viral glycoproteins is one of the most important, being a fundamental step of the infectious event. In the case of the feline immunodeficiency virus (FIV), a small region of the membrane proximal external region (MPER) of the glycoprotein gp36 has been demonstrated to be necessary for the infection to occur, being able to destabilize the membranes to be fused. In this study, we report a physicochemical characterization of the interaction process between an eight-residue peptide, named C8, modeled on that gp36 region and some biological membrane models (liposomes) by using calorimetric and spectroscopic measurements. CD studies have shown that the peptide conformation changes upon binding to the liposomes. Interestingly, the peptide folds from a disordered structure (in the absence of liposomes) to a more ordered structure with a low but significant helix content. Isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) results show that C8 binds with high affinity the lipid bilayers and induces a significant perturbation/reorganization of the lipid membrane structure. The type and the extent of such membrane reorganization depend on the membrane composition. These findings provide interesting insights into the role of this short peptide fragment in the mechanism of virus-cell fusion, demonstrating its ability to induce lipid segregation in biomembranes.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Anna Maria D'Ursi
- Department of Pharmaceutical Science, University of Salerno, Fisciano, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|