1
|
Holdbrook DA, Marzinek JK, Boncel S, Boags A, Tan YS, Huber RG, Verma CS, Bond PJ. The nanotube express: Delivering a stapled peptide to the cell surface. J Colloid Interface Sci 2021; 604:670-679. [PMID: 34280765 DOI: 10.1016/j.jcis.2021.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/23/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS Carbon nanotubes (CNTs) represent a novel platform for cellular delivery of therapeutic peptides. Chemically-functionalized CNTs may enhance peptide uptake by improving their membrane targeting properties. EXPERIMENTS Using coarse-grained (CG) molecular dynamics (MD) simulations, we investigate membrane interactions of a peptide conjugated to pristine and chemically-modified CNTs. As proof of principle, we focus on their interactions with PM2, an amphipathic stapled peptide that inhibits the E3 ubiquitin ligase HDM2 from negatively regulating the p53 tumor suppressor. CNT interaction with both simple planar lipid bilayers as well as spherical lipid vesicles was studied, the latter as a surrogate for curved cellular membranes. FINDINGS Membrane permeation was rapid and spontaneous for both pristine and oxidized CNTs when unconjugated. This was slowed upon addition of a noncovalently attached peptide surface "sheath", which may be an effective way to slow CNT entry and avert membrane rupture. The CNT conjugates were observed to "desheath" their peptide layer at the bilayer interface upon insertion, leaving their cargo behind in the outer leaflet. This suggests that a synergy may exist to optimize CNT safety whilst enhancing the delivery efficiency of "hitchhiking" therapeutic molecules.
Collapse
Affiliation(s)
- Daniel A Holdbrook
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore
| | - Slawomir Boncel
- Silesian University of Technology, Faculty of Chemistry, Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Krzywoustego 4, 44-100 Gliwice, Poland.
| | - Alister Boags
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore
| | - Roland G Huber
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore
| | - Chandra S Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore; National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, 117543 Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore.
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Str., #07-01 Matrix, 38671 Singapore, Singapore; National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, 117543 Singapore, Singapore.
| |
Collapse
|
2
|
Yalla K, Elliott C, Day JP, Findlay J, Barratt S, Hughes ZA, Wilson L, Whiteley E, Popiolek M, Li Y, Dunlop J, Killick R, Adams DR, Brandon NJ, Houslay MD, Hao B, Baillie GS. FBXW7 regulates DISC1 stability via the ubiquitin-proteosome system. Mol Psychiatry 2018; 23:1278-1286. [PMID: 28727686 PMCID: PMC5984089 DOI: 10.1038/mp.2017.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/27/2023]
Abstract
Disrupted in schizophrenia 1 (DISC1) is a multi-functional scaffolding protein that has been associated with neuropsychiatric disease. The role of DISC1 is to assemble protein complexes that promote neural development and signaling, hence tight control of the concentration of cellular DISC1 in neurons is vital to brain function. Using structural and biochemical techniques, we show for we believe the first time that not only is DISC1 turnover elicited by the ubiquitin proteasome system (UPS) but that it is orchestrated by the F-Box protein, FBXW7. We present the structure of FBXW7 bound to the DISC1 phosphodegron motif and exploit this information to prove that disruption of the FBXW7-DISC1 complex results in a stabilization of DISC1. This action can counteract DISC1 deficiencies observed in neural progenitor cells derived from induced pluripotent stem cells from schizophrenia patients with a DISC1 frameshift mutation. Thus manipulation of DISC1 levels via the UPS may provide a novel method to explore DISC1 function.
Collapse
Affiliation(s)
- K Yalla
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - C Elliott
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - J P Day
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - J Findlay
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - S Barratt
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Z A Hughes
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - L Wilson
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - E Whiteley
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - M Popiolek
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Y Li
- Department of Molecular Biology and Biophysics, University of Connecticut Health Centre, Farmington, CT, USA
| | - J Dunlop
- AstraZeneca, Neuroscience, Innovative Medicines & Early Development, Waltham, MA, USA
| | - R Killick
- Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - D R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK
| | - N J Brandon
- AstraZeneca, Neuroscience, Innovative Medicines & Early Development, Waltham, MA, USA
| | - M D Houslay
- Institute of Pharmaceutical Science, King’s College, London, UK
| | - B Hao
- Department of Molecular Biology and Biophysics, University of Connecticut Health Centre, Farmington, CT, USA
| | - G S Baillie
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Contini A, Ferri N, Bucci R, Lupo MG, Erba E, Gelmi ML, Pellegrino S. Peptide modulators of Rac1/Tiam1 protein-protein interaction: An alternative approach for cardiovascular diseases. Biopolymers 2017; 110. [PMID: 29178143 DOI: 10.1002/bip.23089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023]
Abstract
Rac1 GTPase interaction with guanine nucleotide exchange factor Tiam1 is involved in several cancer types and cardiovascular diseases. Although small molecules interfering with their protein-protein interaction (PPI) were identified and studied, the ability of small peptides and peptide mimics acting as Rac1/Tiam1 PPI inhibitors has not been yet explored. Using computational alanine scanning (CAS), the "hot" interfacial residues have been determined allowing the design of a small library of putative PPI inhibitors. In particular, the insertion of an unnatural alpha, alpha disubstituted amino acid, that is norbornane amino acid, and the side chain stapling have been evaluated regarding both conformational stability and biological activity. REMD calculations and CD studies have indicated that one single norbornane amino acid at the N-terminus is not sufficient to stabilize the helix structure, while the side-chain stapling is a more efficient strategy. Furthermore, both engineered peptides have been found able to reduce Rac1-GTP levels in cultured human smooth muscle cells, while wild type sequence is not active.
Collapse
Affiliation(s)
- Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Raffaella Bucci
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Emanuela Erba
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences, University of Milano, Milano, Italy
| |
Collapse
|
4
|
Cell-Penetrating Peptides: Design Strategies beyond Primary Structure and Amphipathicity. Molecules 2017; 22:molecules22111929. [PMID: 29117144 PMCID: PMC6150340 DOI: 10.3390/molecules22111929] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 12/21/2022] Open
Abstract
Efficient intracellular drug delivery and target specificity are often hampered by the presence of biological barriers. Thus, compounds that efficiently cross cell membranes are the key to improving the therapeutic value and on-target specificity of non-permeable drugs. The discovery of cell-penetrating peptides (CPPs) and the early design approaches through mimicking the natural penetration domains used by viruses have led to greater efficiency of intracellular delivery. Following these nature-inspired examples, a number of rationally designed CPPs has been developed. In this review, a variety of CPP designs will be described, including linear and flexible, positively charged and often amphipathic CPPs, and more rigid versions comprising cyclic, stapled, or dimeric and/or multivalent, self-assembled peptides or peptido-mimetics. The application of distinct design strategies to known physico-chemical properties of CPPs offers the opportunity to improve their penetration efficiency and/or internalization kinetics. This led to increased design complexity of new CPPs that does not always result in greater CPP activity. Therefore, the transition of CPPs to a clinical setting remains a challenge also due to the concomitant involvement of various internalization routes and heterogeneity of cells used in the in vitro studies.
Collapse
|
5
|
Mizuno A, Matsui K, Shuto S. From Peptides to Peptidomimetics: A Strategy Based on the Structural Features of Cyclopropane. Chemistry 2017. [PMID: 28632330 DOI: 10.1002/chem.201702119] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peptidomimetics, non-natural mimicries of bioactive peptides, comprise an important class of drug molecules. The essence of the peptidomimetic design is to mimic the key conformation assumed by the bioactive peptides upon binding to their targets. Regulation of the conformation of peptidomimetics is important not only to enhance target binding affinity and selectivity, but also to confer cell-membrane permeability for targeting protein-protein interactions in cells. The rational design of peptidomimetics with suitable three-dimensional structures is challenging, however, due to the inherent flexibility of peptides and their dynamic conformational changes upon binding to the target biomolecules. In this Minireview, a three-dimensional structural diversity-oriented strategy based on the characteristic structural features of cyclopropane to address this challenging issue in peptidomimetic chemistry is described.
Collapse
Affiliation(s)
- Akira Mizuno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Kouhei Matsui
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka, 561-0825, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan.,Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| |
Collapse
|