1
|
Miao H, Wang L, Wu Q, Huang Z. Antimicrobial Peptides: Mechanism, Expressions, and Optimization Strategies. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10391-4. [PMID: 39528853 DOI: 10.1007/s12602-024-10391-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Antimicrobial peptides (AMPs) are favoured because of their broad-spectrum antimicrobial properties and because they do not easily develop microbial resistance. However, the low yield and difficult extraction processes of AMPs have become bottlenecks in large-scale industrial applications and scientific research. Microbial recombinant production may be the most economical and effective method of obtaining AMPs in large quantities. In this paper, we review the mechanism, summarize the current status of microbial recombinant production, and focus on strategies to improve the yield and activity of AMPs, in order to provide a reference for their large-scale production.
Collapse
Affiliation(s)
- Huabiao Miao
- School of Life Science, Yunnan Normal University, Kunming, 650500, China
- Engineering Research Center for Efficient Utilization of Characteristic Biological Resources in Yunnan, Ministry of Education, Kunming, 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China
| | - Lu Wang
- School of Life Science, Yunnan Normal University, Kunming, 650500, China
| | - Qian Wu
- School of Life Science, Yunnan Normal University, Kunming, 650500, China
- Engineering Research Center for Efficient Utilization of Characteristic Biological Resources in Yunnan, Ministry of Education, Kunming, 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China
| | - Zunxi Huang
- School of Life Science, Yunnan Normal University, Kunming, 650500, China.
- Engineering Research Center for Efficient Utilization of Characteristic Biological Resources in Yunnan, Ministry of Education, Kunming, 650500, China.
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, 650500, China.
| |
Collapse
|
2
|
Panteleev PV, Pichkur EB, Kruglikov RN, Paleskava A, Shulenina OV, Bolosov IA, Bogdanov IV, Safronova VN, Balandin SV, Marina VI, Kombarova TI, Korobova OV, Shamova OV, Myasnikov AG, Borzilov AI, Osterman IA, Sergiev PV, Bogdanov AA, Dontsova OA, Konevega AL, Ovchinnikova TV. Rumicidins are a family of mammalian host-defense peptides plugging the 70S ribosome exit tunnel. Nat Commun 2024; 15:8925. [PMID: 39414793 PMCID: PMC11484942 DOI: 10.1038/s41467-024-53309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
The antimicrobial resistance crisis along with challenges of antimicrobial discovery revealed the vital necessity to develop new antibiotics. Many of the animal proline-rich antimicrobial peptides (PrAMPs) inhibit the process of bacterial translation. Genome projects allowed to identify immune-related genes encoding animal host defense peptides. Here, using genome mining approach, we discovered a family of proline-rich cathelicidins, named rumicidins. The genes encoding these peptides are widespread among ruminant mammals. Biochemical studies indicated that rumicidins effectively inhibited the elongation stage of bacterial translation. The cryo-EM structure of the Escherichia coli 70S ribosome in complex with one of the representatives of the family revealed that the binding site of rumicidins span the ribosomal A-site cleft and the nascent peptide exit tunnel interacting with its constriction point by the conservative Trp23-Phe24 dyad. Bacterial resistance to rumicidins is mediated by knockout of the SbmA transporter or modification of the MacAB-TolC efflux pump. A wide spectrum of antibacterial activity, a high efficacy in the animal infection model, and lack of adverse effects towards human cells in vitro make rumicidins promising molecular scaffolds for development of ribosome-targeting antibiotics.
Collapse
Affiliation(s)
- Pavel V Panteleev
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Moscow, Russia
| | - Eugene B Pichkur
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Russia
| | - Roman N Kruglikov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Moscow, Russia
| | - Alena Paleskava
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Russia
| | - Olga V Shulenina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Russia
| | - Ilia A Bolosov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Moscow, Russia
| | - Victoria N Safronova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Balandin
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Moscow, Russia
| | | | - Tatiana I Kombarova
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), Obolensk, Russia
| | - Olga V Korobova
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), Obolensk, Russia
| | - Olga V Shamova
- Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Alexander G Myasnikov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Russia
| | - Alexander I Borzilov
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), Obolensk, Russia
| | - Ilya A Osterman
- Lomonosov Moscow State University, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Petr V Sergiev
- Lomonosov Moscow State University, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Alexey A Bogdanov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Dontsova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Russia.
| | - Tatiana V Ovchinnikova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, Moscow, Russia.
- Lomonosov Moscow State University, Moscow, Russia.
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
3
|
Liu S, Tang Y, Chen S, Li X, Liu H. Total Syntheses of Streptamidine and Klebsazolicin Using Biomimetic On-Resin Ring-Closing Amidine Formation. Angew Chem Int Ed Engl 2024; 63:e202407952. [PMID: 38923770 DOI: 10.1002/anie.202407952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Diketopiperazine (DKP) derived cyclic amidine structures widely exist in peptide natural products according to the genome mining result. The largely unknown bioactivity and mode of action are partially caused by the poor availability of the compounds via microbiological and chemical approaches. To tackle this challenge, in this work, we have developed the on-resin ring-closing amidine formation strategy to synthesize peptides containing N-terminal DKP derived cyclic amidine structure, in which the 6-exo-trig cyclization mediated by HgCl2 activation of thioamides was the key step. Leveraging from this new strategy, we finished the total syntheses of streptamidine and klebsazolicin. Meanwhile, eleven klebsazolicin analogues were synthesized for its structure-activity relationship study.
Collapse
Affiliation(s)
- Shunhe Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Yang Tang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
| | - Sheng Chen
- Department of Food Science and Nutrition, State Key Lab of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
4
|
Sugrue I, Ross RP, Hill C. Bacteriocin diversity, function, discovery and application as antimicrobials. Nat Rev Microbiol 2024; 22:556-571. [PMID: 38730101 PMCID: PMC7616364 DOI: 10.1038/s41579-024-01045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 05/12/2024]
Abstract
Bacteriocins are potent antimicrobial peptides that are produced by bacteria. Since their discovery almost a century ago, diverse peptides have been discovered and described, and some are currently used as commercial food preservatives. Many bacteriocins exhibit extensively post-translationally modified structures encoded on complex gene clusters, whereas others have simple linear structures. The molecular structures, mechanisms of action and resistance have been determined for a number of bacteriocins, but most remain incompletely characterized. These gene-encoded peptides are amenable to bioengineering strategies and heterologous expression, enabling metagenomic mining and modification of novel antimicrobials. The ongoing global antimicrobial resistance crisis demands that novel therapeutics be developed to combat infectious pathogens. New compounds that are target-specific and compatible with the resident microbiota would be valuable alternatives to current antimicrobials. As bacteriocins can be broad or narrow spectrum in nature, they are promising tools for this purpose. However, few bacteriocins have gone beyond preclinical trials and none is currently used therapeutically in humans. In this Review, we explore the broad diversity in bacteriocin structure and function, describe identification and optimization methods and discuss the reasons behind the lack of translation beyond the laboratory of these potentially valuable antimicrobials.
Collapse
Affiliation(s)
- Ivan Sugrue
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
5
|
Chen J, Wang W, Hu X, Yue Y, Lu X, Wang C, Wei B, Zhang H, Wang H. Medium-sized peptides from microbial sources with potential for antibacterial drug development. Nat Prod Rep 2024; 41:1235-1263. [PMID: 38651516 DOI: 10.1039/d4np00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Covering: 1993 to the end of 2022As the rapid development of antibiotic resistance shrinks the number of clinically available antibiotics, there is an urgent need for novel options to fill the existing antibiotic pipeline. In recent years, antimicrobial peptides have attracted increased interest due to their impressive broad-spectrum antimicrobial activity and low probability of antibiotic resistance. However, macromolecular antimicrobial peptides of plant and animal origin face obstacles in antibiotic development because of their extremely short elimination half-life and poor chemical stability. Herein, we focus on medium-sized antibacterial peptides (MAPs) of microbial origin with molecular weights below 2000 Da. The low molecular weight is not sufficient to form complex protein conformations and is also associated to a better chemical stability and easier modifications. Microbially-produced peptides are often composed of a variety of non-protein amino acids and terminal modifications, which contribute to improving the elimination half-life of compounds. Therefore, MAPs have great potential for drug discovery and are likely to become key players in the development of next-generation antibiotics. In this review, we provide a detailed exploration of the modes of action demonstrated by 45 MAPs and offer a concise summary of the structure-activity relationships observed in these MAPs.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xubin Hu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujie Yue
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyue Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenjie Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
6
|
Shi C, Patel VA, Mitchell DA, Zhao H. Enterolyin S, a Polythiazole-containing Hemolytic Peptide from Enterococcus caccae. Chembiochem 2024; 25:e202400212. [PMID: 38648232 PMCID: PMC11186716 DOI: 10.1002/cbic.202400212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The β-hemolytic factor streptolysin S (SLS) is an important linear azol(in)e-containing peptide (LAP) that contributes significantly to the virulence of Streptococcus pyogenes. Despite its discovery 85 years ago, SLS has evaded structural characterizing owing to its notoriously problematic physicochemical properties. Here, we report the discovery and characterization of a structurally analogous hemolytic peptide from Enterococcus caccae, termed enterolysin S (ELS). Through heterologous expression, site-directed mutagenesis, chemoselective modification, and high-resolution mass spectrometry, we found that ELS contains an intriguing contiguous octathiazole moiety. The discovery of ELS expands our knowledge of hemolytic LAPs by adding a new member to this virulence-promoting family of modified peptides.
Collapse
Affiliation(s)
- Chengyou Shi
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
| | - Varshal A Patel
- Department of Biochemistry, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois, Urbana Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
Gupta R, Singh M, Pathania R. Chemical genetic approaches for the discovery of bacterial cell wall inhibitors. RSC Med Chem 2023; 14:2125-2154. [PMID: 37974958 PMCID: PMC10650376 DOI: 10.1039/d3md00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Antimicrobial resistance (AMR) in bacterial pathogens is a worldwide health issue. The innovation gap in discovering new antibiotics has remained a significant hurdle in combating the AMR problem. Currently, antibiotics target various vital components of the bacterial cell envelope, nucleic acid and protein biosynthesis machinery and metabolic pathways essential for bacterial survival. The critical role of the bacterial cell envelope in cell morphogenesis and integrity makes it an attractive drug target. While a significant number of in-clinic antibiotics target peptidoglycan biosynthesis, several components of the bacterial cell envelope have been overlooked. This review focuses on various antibacterial targets in the bacterial cell wall and the strategies employed to find their novel inhibitors. This review will further elaborate on combining forward and reverse chemical genetic approaches to discover antibacterials that target the bacterial cell envelope.
Collapse
Affiliation(s)
- Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Mangal Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee - 247 667 Uttarakhand India
| |
Collapse
|
8
|
Wang W, Gu L, Wang J, Hu X, Wei B, Zhang H, Wang H, Chen J. Recent Advances in Polypeptide Antibiotics Derived from Marine Microorganisms. Mar Drugs 2023; 21:547. [PMID: 37888482 PMCID: PMC10608164 DOI: 10.3390/md21100547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
In the post-antibiotic era, the rapid development of antibiotic resistance and the shortage of available antibiotics are triggering a new health-care crisis. The discovery of novel and potent antibiotics to extend the antibiotic pipeline is urgent. Small-molecule antimicrobial peptides have a wide variety of antimicrobial spectra and multiple innovative antimicrobial mechanisms due to their rich structural diversity. Consequently, they have become a new research hotspot and are considered to be promising candidates for next-generation antibiotics. Therefore, we have compiled a collection of small-molecule antimicrobial peptides derived from marine microorganisms from the last fifteen years to show the recent advances in this field. We categorize these compounds into three classes-cyclic oligopeptides, cyclic depsipeptides, and cyclic lipopeptides-according to their structural features, and present their sources, structures, and antimicrobial spectrums, with a discussion of the structure activity relationships and mechanisms of action of some compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianwei Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory Pharmaceutical Engineering of Zhejiang Province & College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Panteleev PV, Safronova VN, Kruglikov RN, Bolosov IA, Ovchinnikova TV. Genomic Insights into Bacterial Resistance to Proline-Rich Antimicrobial Peptide Bac7. MEMBRANES 2023; 13:438. [PMID: 37103865 PMCID: PMC10145973 DOI: 10.3390/membranes13040438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 06/19/2023]
Abstract
Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a modest toxicity toward mammalian cells attract much attention as new templates for the development of antibiotic drugs. However, a comprehensive understanding of mechanisms of bacterial resistance development to PrAMPs is necessary before their clinical application. In this study, development of the resistance to the proline-rich bovine cathelicidin Bac71-22 derivative was characterized in the multidrug-resistant Escherichia coli clinical isolate causing the urinary tract infection. Three Bac71-22-resistant strains with ≥16-fold increase in minimal inhibitory concentrations (MICs) were selected by serially passaging after four-week experimental evolution. It was shown that in salt-containing medium, the resistance was mediated by inactivation of the SbmA transporter. The absence of salt in the selection media affected both dynamics and main molecular targets under selective pressure: a point mutation leading to the amino acid substitution N159H in the WaaP kinase responsible for heptose I phosphorylation in the LPS structure was also found. This mutation led to a phenotype with a decreased susceptibility to both the Bac71-22 and polymyxin B. Screening of antimicrobial activities with the use of a wide panel of known AMPs, including the human cathelicidin LL-37 and conventional antibiotics, against selected strains indicated no significant cross-resistance effects.
Collapse
|
10
|
Dual-Uptake Mode of the Antibiotic Phazolicin Prevents Resistance Acquisition by Gram-Negative Bacteria. mBio 2023; 14:e0021723. [PMID: 36802165 PMCID: PMC10128002 DOI: 10.1128/mbio.00217-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Phazolicin (PHZ) is a peptide antibiotic exhibiting narrow-spectrum activity against rhizobia closely related to its producer, Rhizobium sp. strain Pop5. Here, we show that the frequency of spontaneous PHZ-resistant mutants in Sinorhizobium meliloti is below the detection limit. We find that PHZ can enter S. meliloti cells through two distinct promiscuous peptide transporters, BacA and YejABEF, which belong to the SLiPT (SbmA-like peptide transporter) and ABC (ATP-binding cassette) transporter families, respectively. The dual-uptake mode explains the lack of observed resistance acquisition because the simultaneous inactivation of both transporters is necessary for resistance to PHZ. Since both BacA and YejABEF are essential for the development of functional symbiosis of S. meliloti with leguminous plants, the unlikely acquisition of PHZ resistance via the inactivation of these transporters is further disfavored. A whole-genome transposon sequencing screen did not reveal additional genes that can provide strong PHZ resistance when inactivated. However, it was found that the capsular polysaccharide KPS, the novel putative envelope polysaccharide PPP (PHZ-protecting polysaccharide), as well as the peptidoglycan layer jointly contribute to the sensitivity of S. meliloti to PHZ, most likely serving as barriers that reduce the amount of PHZ transported inside the cell. IMPORTANCE Many bacteria produce antimicrobial peptides to eliminate competitors and create an exclusive niche. These peptides act either by membrane disruption or by inhibiting essential intracellular processes. The Achilles' heel of the latter type of antimicrobials is their dependence on transporters to enter susceptible cells. Transporter inactivation results in resistance. Here, we show that a rhizobial ribosome-targeting peptide, phazolicin (PHZ), uses two different transporters, BacA and YejABEF, to enter the cells of a symbiotic bacterium, Sinorhizobium meliloti. This dual-entry mode dramatically reduces the probability of the appearance of PHZ-resistant mutants. Since these transporters are also crucial for S. meliloti symbiotic associations with host plants, their inactivation in natural settings is strongly disfavored, making PHZ an attractive lead for the development of biocontrol agents for agriculture.
Collapse
|
11
|
Zhong G, Wang ZJ, Yan F, Zhang Y, Huo L. Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS BIO & MED CHEM AU 2023; 3:1-31. [PMID: 37101606 PMCID: PMC10125368 DOI: 10.1021/acsbiomedchemau.2c00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 04/28/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are of increasing interest in natural products as well as drug discovery. This empowers not only the unique chemical structures and topologies in natural products but also the excellent bioactivities such as antibacteria, antifungi, antiviruses, and so on. Advances in genomics, bioinformatics, and chemical analytics have promoted the exponential increase of RiPPs as well as the evaluation of biological activities thereof. Furthermore, benefiting from their relatively simple and conserved biosynthetic logic, RiPPs are prone to be engineered to obtain diverse analogues that exhibit distinct physiological activities and are difficult to synthesize. This Review aims to systematically address the variety of biological activities and/or the mode of mechanisms of novel RiPPs discovered in the past decade, albeit the characteristics of selective structures and biosynthetic mechanisms are briefly covered as well. Almost one-half of the cases are involved in anti-Gram-positive bacteria. Meanwhile, an increasing number of RiPPs related to anti-Gram-negative bacteria, antitumor, antivirus, etc., are also discussed in detail. Last but not least, we sum up some disciplines of the RiPPs' biological activities to guide genome mining as well as drug discovery and optimization in the future.
Collapse
Affiliation(s)
- Guannan Zhong
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
| | - Zong-Jie Wang
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fu Yan
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- CAS
Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty
of Synthetic Biology, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liujie Huo
- Helmholtz
International Laboratory for Anti-Infectives, State Key Laboratory
of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute, Shandong University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
12
|
Koller TO, Scheid U, Kösel T, Herrmann J, Krug D, Boshoff HIM, Beckert B, Evans JC, Schlemmer J, Sloan B, Weiner DM, Via LE, Moosa A, Ioerger TR, Graf M, Zinshteyn B, Abdelshahid M, Nguyen F, Arenz S, Gille F, Siebke M, Seedorf T, Plettenburg O, Green R, Warnke AL, Ullrich J, Warrass R, Barry CE, Warner DF, Mizrahi V, Kirschning A, Wilson DN, Müller R. The Myxobacterial Antibiotic Myxovalargin: Biosynthesis, Structural Revision, Total Synthesis, and Molecular Characterization of Ribosomal Inhibition. J Am Chem Soc 2023; 145:851-863. [PMID: 36603206 PMCID: PMC9853869 DOI: 10.1021/jacs.2c08816] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Resistance of bacterial pathogens against antibiotics is declared by WHO as a major global health threat. As novel antibacterial agents are urgently needed, we re-assessed the broad-spectrum myxobacterial antibiotic myxovalargin and found it to be extremely potent against Mycobacterium tuberculosis. To ensure compound supply for further development, we studied myxovalargin biosynthesis in detail enabling production via fermentation of a native producer. Feeding experiments as well as functional genomics analysis suggested a structural revision, which was eventually corroborated by the development of a concise total synthesis. The ribosome was identified as the molecular target based on resistant mutant sequencing, and a cryo-EM structure revealed that myxovalargin binds within and completely occludes the exit tunnel, consistent with a mode of action to arrest translation during a late stage of translation initiation. These studies open avenues for structure-based scaffold improvement toward development as an antibacterial agent.
Collapse
Affiliation(s)
- Timm O. Koller
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Ullrich Scheid
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center
for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Teresa Kösel
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany
| | - Jennifer Herrmann
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center
for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany,German
Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Daniel Krug
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center
for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany,Department
of Pharmacy, Saarland University, 66123 Saarbrücken, Germany,German
Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bertrand Beckert
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Joanna C. Evans
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, University
of Cape Town, Rondebosch 7700, South Africa
| | - Jan Schlemmer
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center
for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany,German
Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Becky Sloan
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Danielle M. Weiner
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Laura E. Via
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Atica Moosa
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, University
of Cape Town, Rondebosch 7700, South Africa
| | - Thomas R. Ioerger
- Department
of Computer Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Michael Graf
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Boris Zinshteyn
- Department
of Molecular Biology and Genetics, Johns Hopkins University, Baltimore,
Maryland 21205, United States; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Maha Abdelshahid
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Fabian Nguyen
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Stefan Arenz
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Franziska Gille
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany
| | - Maik Siebke
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany,Institute
of Medicinal Chemistry, Helmholtz Zentrum
München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Tim Seedorf
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany
| | - Oliver Plettenburg
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany,Institute
of Medicinal Chemistry, Helmholtz Zentrum
München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Rachel Green
- Department
of Molecular Biology and Genetics, Johns Hopkins University, Baltimore,
Maryland 21205, United States; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Anna-Luisa Warnke
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany,Institute
of Medicinal Chemistry, Helmholtz Zentrum
München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Joachim Ullrich
- MSD
Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Ralf Warrass
- MSD
Animal Health Innovation GmbH, Zur Propstei, 55270 Schwabenheim, Germany
| | - Clifton E. Barry
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Digby F. Warner
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, University
of Cape Town, Rondebosch 7700, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, University
of Cape Town, Rondebosch 7700, South Africa
| | - Andreas Kirschning
- Leibniz
Universität Hannover, Institute of
Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Schneiderberg 1B, 30167 Hannover, Germany,
| | - Daniel N. Wilson
- Institute
for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany,
| | - Rolf Müller
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center
for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany,Department
of Pharmacy, Saarland University, 66123 Saarbrücken, Germany,German
Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 38124 Braunschweig, Germany,
| |
Collapse
|
13
|
Elashal HE, Koos JD, Cheung-Lee WL, Choi B, Cao L, Richardson MA, White HL, Link AJ. Biosynthesis and characterization of fuscimiditide, an aspartimidylated graspetide. Nat Chem 2022; 14:1325-1334. [PMID: 35982233 PMCID: PMC10078976 DOI: 10.1038/s41557-022-01022-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Microviridins and other ω-ester-linked peptides, collectively known as graspetides, are characterized by side-chain-side-chain linkages installed by ATP-grasp enzymes. Here we report the discovery of a family of graspetides, the gene clusters of which also encode an O-methyltransferase with homology to the protein repair catalyst protein L-isoaspartyl methyltransferase. Using heterologous expression, we produced fuscimiditide, a ribosomally synthesized and post-translationally modified peptide (RiPP). NMR analysis of fuscimiditide revealed that the peptide contains two ester cross-links forming a stem-loop macrocycle. Furthermore, an unusually stable aspartimide moiety is found within the loop macrocycle. We fully reconstituted fuscimiditide biosynthesis in vitro including formation of the ester and aspartimide moieties. The aspartimide moiety embedded in fuscimiditide hydrolyses regioselectively to isoaspartate. Surprisingly, this isoaspartate-containing peptide is also a substrate for the L-isoaspartyl methyltransferase homologue, thus driving any hydrolysis products back to the aspartimide form. Whereas an aspartimide is often considered a nuisance product in protein formulations, our data suggest that some RiPPs have aspartimide residues intentionally installed via enzymatic activity.
Collapse
Affiliation(s)
- Hader E Elashal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Joseph D Koos
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Wai Ling Cheung-Lee
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Brian Choi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Michelle A Richardson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Heather L White
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
14
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
15
|
Lukianov DA, Buev VS, Ivanenkov YA, Kartsev VG, Skvortsov DA, Osterman IA, Sergiev PV. Imidazole Derivative As a Novel Translation Inhibitor. Acta Naturae 2022; 14:71-77. [PMID: 35923569 PMCID: PMC9307981 DOI: 10.32607/actanaturae.11654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Searching for novel compounds with antibiotic activity and understanding their
mechanism of action is extremely important. The ribosome is one of the main
targets for antibiotics in bacterial cells. Even if the molecule does not suit
the clinical application for whatever reasons, an investigation of its
mechanism of action can deepen our understanding of the ribosome function. Such
data can inform us on how the already used translational inhibitors can be
modified. In this study, we demonstrate that 1-(2-oxo-2-((4-phenoxyphenyl)
Collapse
Affiliation(s)
- D. A. Lukianov
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Chemistry Department, Moscow, 119991 Russia
| | - V. S. Buev
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991 Russia
| | - Y. A. Ivanenkov
- Institute of Biochemistry and Genetics Russian Academy of Science (IBG RAS), Ufa Scientific Centre, Ufa, 450054 Russia
- The Federal State Unitary Enterprise Dukhov Automatics Research Institute, Moscow, 127055 Russia
| | | | - D. A. Skvortsov
- Lomonosov Moscow State University, Chemistry Department, Moscow, 119991 Russia
- Higher School of Economics, Faculty of biology and biotechnologies, Moscow, 101000 Russia
| | - I. A. Osterman
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Chemistry Department, Moscow, 119991 Russia
- Sirius University of Science and Technology, Genetics and Life Sciences Research Center, Sochi, 354340 Russia
| | - P. V. Sergiev
- Skolkovo Institute of Science and Technology, Center of Life Sciences, Skolkovo, 143028 Russia
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991 Russia
- Lomonosov Moscow State University, Chemistry Department, Moscow, 119991 Russia
- Lomonosov Moscow State University, Institute of functional genomics, Moscow, 119991 Russia
| |
Collapse
|
16
|
Zeng T, Hess BA, Zhang F, Wu R. Bio-inspired chemical space exploration of terpenoids. Brief Bioinform 2022; 23:6586263. [PMID: 35576010 DOI: 10.1093/bib/bbac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022] Open
Abstract
Many computational methods are devoted to rapidly generating pseudo-natural products to expand the open-ended border of chemical spaces for natural products. However, the accessibility and chemical interpretation were often ignored or underestimated in conventional library/fragment-based or rule-based strategies, thus hampering experimental synthesis. Herein, a bio-inspired strategy (named TeroGen) is developed to mimic the two key biosynthetic stages (cyclization and decoration) of terpenoid natural products, by utilizing physically based simulations and deep learning models, respectively. The precision and efficiency are validated for different categories of terpenoids, and in practice, more than 30 000 sesterterpenoids (10 times as many as the known sesterterpenoids) are predicted to be linked in a reaction network, and their synthetic accessibility and chemical interpretation are estimated by thermodynamics and kinetics. Since it could not only greatly expand the chemical space of terpenoids but also numerate plausible biosynthetic routes, TeroGen is promising for accelerating heterologous biosynthesis, bio-mimic and chemical synthesis of complicated terpenoids and derivatives.
Collapse
Affiliation(s)
- Tao Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | | | - Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
17
|
Panteleev PV, Safronova VN, Kruglikov RN, Bolosov IA, Bogdanov IV, Ovchinnikova TV. A Novel Proline-Rich Cathelicidin from the Alpaca Vicugna pacos with Potency to Combat Antibiotic-Resistant Bacteria: Mechanism of Action and the Functional Role of the C-Terminal Region. MEMBRANES 2022; 12:membranes12050515. [PMID: 35629841 PMCID: PMC9146984 DOI: 10.3390/membranes12050515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023]
Abstract
Over recent years, a growing number of bacterial species have become resistant to clinically relevant antibiotics. Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a negligible toxicity toward mammalian cells attract attention as new templates for the development of antibiotic drugs. Here, we mined genomes of all living Camelidae species and found a novel family of Bac7-like proline-rich cathelicidins which inhibited bacterial protein synthesis. The N-terminal region of a novel peptide from the alpaca Vicugna pacos named VicBac is responsible for inhibition of bacterial protein synthesis with an IC50 value of 0.5 µM in the E. coli cell-free system whereas the C-terminal region allows the peptide to penetrate bacterial membranes effectively. We also found that the full-length VicBac did not induce bacterial resistance after a two-week selection experiment, unlike the N-terminal truncated analog, which depended on the SbmA transport system. Both pro- and anti-inflammatory action of VicBac and its N-terminal truncated variant on various human cell types was found by multiplex immunoassay. The presence of the C-terminal tail in the natural VicBac does not provide for specific immune-modulatory effects in vitro but enhances the observed impact compared with the truncated analog. The pronounced antibacterial activity of VicBac, along with its moderate adverse effects on mammalian cells, make this molecule a promising scaffold for the development of peptide antibiotics.
Collapse
|
18
|
Ataeian M, Liu Y, Kouris A, Hawley AK, Strous M. Ecological Interactions of Cyanobacteria and Heterotrophs Enhances the Robustness of Cyanobacterial Consortium for Carbon Sequestration. Front Microbiol 2022; 13:780346. [PMID: 35222325 PMCID: PMC8880816 DOI: 10.3389/fmicb.2022.780346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Lack of robustness is a major barrier to foster a sustainable cyanobacterial biotechnology. Use of cyanobacterial consortium increases biodiversity, which provides functional redundancy and prevents invading species from disrupting the production ecosystem. Here we characterized a cyanobacterial consortium enriched from microbial mats of alkaline soda lakes in BC, Canada, at high pH and alkalinity. This consortium has been grown in open laboratory culture for 4 years without crashes. Using shotgun metagenomic sequencing, 29 heterotrophic metagenome-assembled-genomes (MAGs) were retrieved and were assigned to Bacteroidota, Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobiota, Patescibacteria, Planctomycetota, and Archaea. In combination with metaproteomics, the overall stability of the consortium was determined under different cultivation conditions. Genome information from each heterotrophic population was investigated for six ecological niches created by cyanobacterial metabolism and one niche for phototrophy. Genome-resolved metaproteomics with stable isotope probing using 13C-bicarbonate (protein/SIP) showed tight coupling of carbon transfer from cyanobacteria to the heterotrophic populations, specially Wenzhouxiangella. The community structure was compared to a previously described consortium of a closely related cyanobacteria, which indicated that the results may be generalized. Productivity losses associated with heterotrophic metabolism were relatively small compared to other losses during photosynthesis.
Collapse
Affiliation(s)
- Maryam Ataeian
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Yihua Liu
- Department Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Angela Kouris
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Alyse K. Hawley
- School of Engineering, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
19
|
Russell AH, Vior NM, Hems ES, Lacret R, Truman AW. Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature. Chem Sci 2021; 12:11769-11778. [PMID: 34659714 PMCID: PMC8442711 DOI: 10.1039/d1sc01456k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/31/2021] [Indexed: 12/30/2022] Open
Abstract
Ribosomally synthesised and post-translationally modified peptides (RiPPs) are a structurally diverse class of natural product with a wide range of bioactivities. Genome mining for RiPP biosynthetic gene clusters (BGCs) is often hampered by poor annotation of the short precursor peptides that are ultimately modified into the final molecule. Here, we utilise a previously described genome mining tool, RiPPER, to identify novel RiPP precursor peptides near YcaO-domain proteins, enzymes that catalyse various RiPP post-translational modifications including heterocyclisation and thioamidation. Using this dataset, we identified a novel and diverse family of RiPP BGCs spanning over 230 species of Actinobacteria and Firmicutes. A representative BGC from Streptomyces albidoflavus J1074 (formerly known as Streptomyces albus) was characterised, leading to the discovery of streptamidine, a novel amidine-containing RiPP. This new BGC family highlights the breadth of unexplored natural products with structurally rare features, even in model organisms.
Collapse
Affiliation(s)
- Alicia H Russell
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| | - Natalia M Vior
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| | - Edward S Hems
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| | - Rodney Lacret
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| |
Collapse
|
20
|
Ghilarov D, Inaba-Inoue S, Stepien P, Qu F, Michalczyk E, Pakosz Z, Nomura N, Ogasawara S, Walker GC, Rebuffat S, Iwata S, Heddle JG, Beis K. Molecular mechanism of SbmA, a promiscuous transporter exploited by antimicrobial peptides. SCIENCE ADVANCES 2021; 7:eabj5363. [PMID: 34516884 PMCID: PMC8442886 DOI: 10.1126/sciadv.abj5363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/16/2021] [Indexed: 05/12/2023]
Abstract
Antibiotic metabolites and antimicrobial peptides mediate competition between bacterial species. Many of them hijack inner and outer membrane proteins to enter cells. Sensitivity of enteric bacteria to multiple peptide antibiotics is controlled by the single inner membrane protein SbmA. To establish the molecular mechanism of peptide transport by SbmA and related BacA, we determined their cryo–electron microscopy structures at 3.2 and 6 Å local resolution, respectively. The structures show a previously unknown fold, defining a new class of secondary transporters named SbmA-like peptide transporters. The core domain includes conserved glutamates, which provide a pathway for proton translocation, powering transport. The structures show an outward-open conformation with a large cavity that can accommodate diverse substrates. We propose a molecular mechanism for antibacterial peptide uptake paving the way for creation of narrow-targeted therapeutics.
Collapse
Affiliation(s)
- Dmitry Ghilarov
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Satomi Inaba-Inoue
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198, Japan
| | - Piotr Stepien
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Feng Qu
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| | | | - Zuzanna Pakosz
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Ogasawara
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Graham Charles Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sylvie Rebuffat
- Molecules of Communication and Adaptation of Microorganisms Laboratory (MCAM, UMR 7245 CNRS-MNHN), Muséum National d’Histoire Naturelle, Sorbonne Universités, Centre National de la Recherche Scientifique, CP 54, 57 rue Cuvier, Paris 75005, France
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Research Acceleration Program, Membrane Protein Crystallography Project, Japan Science and Technology Agency, Kyoto, Japan
| | | | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire OX11 0FA, UK
| |
Collapse
|
21
|
Cao L, Do T, Link AJ. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J Ind Microbiol Biotechnol 2021; 48:6121428. [PMID: 33928382 PMCID: PMC8183687 DOI: 10.1093/jimb/kuab005] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products remain a critical source of medicines and drug leads. One of the most rapidly growing superclasses of natural products is RiPPs: ribosomally synthesized and posttranslationally modified peptides. RiPPs have rich and diverse bioactivities. This review highlights examples of the molecular mechanisms of action that underly those bioactivities. Particular emphasis is placed on RiPP/target interactions for which there is structural information. This detailed mechanism of action work is critical toward the development of RiPPs as therapeutics and can also be used to prioritize hits in RiPP genome mining studies.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
22
|
Context-specific action of macrolide antibiotics on the eukaryotic ribosome. Nat Commun 2021; 12:2803. [PMID: 33990576 PMCID: PMC8121947 DOI: 10.1038/s41467-021-23068-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells.
Collapse
|
23
|
Isolation and structure determination of new linear azole-containing peptides spongiicolazolicins A and B from Streptomyces sp. CWH03. Appl Microbiol Biotechnol 2020; 105:93-104. [PMID: 33215256 DOI: 10.1007/s00253-020-11016-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Linear azole-containing peptides are a class of ribosomally synthesized and post-translationally modified peptides. We performed a chemical investigation on marine actinomycetes, and new linear azole-containing peptides named spongiicolazolicins A and B were found in the MeOH extracts of a newly isolated strain Streptomyces sp. CWH03 (NBRC 114659) and two strains of S. spongiicola (strain HNM0071T: DSM 103383T and strain 531S: NBRC 113560). The strain Streptomyces sp. CWH03 was indicated to be a new species closely related to S. spongiicola by phylogenetic analysis using the genome sequence. The new peptides named spongiicolazolicins A and B were isolated from the cell of Streptomyces sp. CWH03. The partial structure of spongiicolazolicin A was determined by 2D NMR experiments. Based on data of MS/MS experiments, the chemical structures of spongiicolazolicins A and B were proposed using the amino acid sequence deduced from the precursor-encoding gene, which was found from whole-genome sequence data of Streptomyces sp. CWH03. The biosynthetic gene cluster of spongiicolazolicins was proposed based on comparative analysis with that of a known linear azole peptide goadsporin. KEY POINTS: • Streptomyces sp. CWH03 was a new species isolated from marine sediment. • New linear azole-containing peptides named spongiicolazolicins A and B were isolated. • Biosynthetic pathway of spongiicolazolicins was proposed.
Collapse
|
24
|
Telhig S, Ben Said L, Zirah S, Fliss I, Rebuffat S. Bacteriocins to Thwart Bacterial Resistance in Gram Negative Bacteria. Front Microbiol 2020; 11:586433. [PMID: 33240239 PMCID: PMC7680869 DOI: 10.3389/fmicb.2020.586433] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
An overuse of antibiotics both in human and animal health and as growth promoters in farming practices has increased the prevalence of antibiotic resistance in bacteria. Antibiotic resistant and multi-resistant bacteria are now considered a major and increasing threat by national health agencies, making the need for novel strategies to fight bugs and super bugs a first priority. In particular, Gram-negative bacteria are responsible for a high proportion of nosocomial infections attributable for a large part to Enterobacteriaceae, such as pathogenic Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To cope with their highly competitive environments, bacteria have evolved various adaptive strategies, among which the production of narrow spectrum antimicrobial peptides called bacteriocins and specifically microcins in Gram-negative bacteria. They are produced as precursor peptides that further undergo proteolytic cleavage and in many cases more or less complex posttranslational modifications, which contribute to improve their stability and efficiency. Many have a high stability in the gastrointestinal tract where they can target a single pathogen whilst only slightly perturbing the gut microbiota. Several microcins and antibiotics can bind to similar bacterial receptors and use similar pathways to cross the double-membrane of Gram-negative bacteria and reach their intracellular targets, which they also can share. Consequently, bacteria may use common mechanisms of resistance against microcins and antibiotics. This review describes both unmodified and modified microcins [lasso peptides, siderophore peptides, nucleotide peptides, linear azole(in)e-containing peptides], highlighting their potential as weapons to thwart bacterial resistance in Gram-negative pathogens and discusses the possibility of cross-resistance and co-resistance occurrence between antibiotics and microcins in Gram-negative bacteria.
Collapse
Affiliation(s)
- Soufiane Telhig
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Laila Ben Said
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Séverine Zirah
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
| | - Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
25
|
Osterman IA, Wieland M, Maviza TP, Lashkevich KA, Lukianov DA, Komarova ES, Zakalyukina YV, Buschauer R, Shiriaev DI, Leyn SA, Zlamal JE, Biryukov MV, Skvortsov DA, Tashlitsky VN, Polshakov VI, Cheng J, Polikanov YS, Bogdanov AA, Osterman AL, Dmitriev SE, Beckmann R, Dontsova OA, Wilson DN, Sergiev PV. Tetracenomycin X inhibits translation by binding within the ribosomal exit tunnel. Nat Chem Biol 2020; 16:1071-1077. [PMID: 32601485 DOI: 10.1038/s41589-020-0578-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/28/2020] [Indexed: 11/09/2022]
Abstract
The increase in multi-drug resistant pathogenic bacteria is making our current arsenal of clinically used antibiotics obsolete, highlighting the urgent need for new lead compounds with distinct target binding sites to avoid cross-resistance. Here we report that the aromatic polyketide antibiotic tetracenomycin (TcmX) is a potent inhibitor of protein synthesis, and does not induce DNA damage as previously thought. Despite the structural similarity to the well-known translation inhibitor tetracycline, we show that TcmX does not interact with the small ribosomal subunit, but rather binds to the large subunit, within the polypeptide exit tunnel. This previously unappreciated binding site is located adjacent to the macrolide-binding site, where TcmX stacks on the noncanonical basepair formed by U1782 and U2586 of the 23S ribosomal RNA. Although the binding site is distinct from the macrolide antibiotics, our results indicate that like macrolides, TcmX allows translation of short oligopeptides before further translation is blocked.
Collapse
Affiliation(s)
- Ilya A Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia. .,Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Maximiliane Wieland
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Tinashe P Maviza
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Kseniya A Lashkevich
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitrii A Lukianov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - Ekaterina S Komarova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuliya V Zakalyukina
- Department of Soil Science and Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Robert Buschauer
- Gene Center, Department of Biochemistry, University of Munich, Munich, Germany
| | - Dmitrii I Shiriaev
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Semen A Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.,A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Jaime E Zlamal
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mikhail V Biryukov
- Department of Soil Science and Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A Skvortsov
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim N Tashlitsky
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Jingdong Cheng
- Gene Center, Department of Biochemistry, University of Munich, Munich, Germany
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexey A Bogdanov
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sergey E Dmitriev
- Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Roland Beckmann
- Gene Center, Department of Biochemistry, University of Munich, Munich, Germany
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia.,Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia. .,Department of Chemistry, Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
26
|
Hansen BK, Larsen CK, Nielsen JT, Svenningsen EB, Van LB, Jacobsen KM, Bjerring M, Flygaard RK, Jenner LB, Nejsum LN, Brodersen DE, Mulder FA, Tørring T, Poulsen TB. Structure and Function of the Bacterial Protein Toxin Phenomycin. Structure 2020; 28:528-539.e9. [DOI: 10.1016/j.str.2020.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
|
27
|
Travin DY, Bikmetov D, Severinov K. Translation-Targeting RiPPs and Where to Find Them. Front Genet 2020; 11:226. [PMID: 32296456 PMCID: PMC7136475 DOI: 10.3389/fgene.2020.00226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 11/15/2022] Open
Abstract
Prokaryotic translation is among the major targets of diverse natural products with antibacterial activity including several classes of clinically relevant antibiotics. In this review, we summarize the information about the structure, biosynthesis, and modes of action of translation inhibiting ribosomally synthesized and post-translationally modified peptides (RiPPs). Azol(in)e-containing RiPPs are known to target translation, and several new compounds inhibiting the ribosome have been characterized recently. We performed a systematic search for biosynthetic gene clusters (BGCs) of azol(in)e-containing RiPPs. This search uncovered several groups of clusters that likely direct the synthesis of novel compounds, some of which may be targeting the ribosome.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Bikmetov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Waksman Institute for Microbiology, Rutgers, Piscataway, NJ, United States
| |
Collapse
|
28
|
Racine E, Gualtieri M. From Worms to Drug Candidate: The Story of Odilorhabdins, a New Class of Antimicrobial Agents. Front Microbiol 2019; 10:2893. [PMID: 31921069 PMCID: PMC6930155 DOI: 10.3389/fmicb.2019.02893] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
A major issue currently facing medicine is antibiotic resistance. No new class of antibiotics for the treatment of Gram-negative infections has been introduced in more than 40 years. We screened a collection of Xenorhabdus and Photorhabdus strains in the quest to discover new structures that are active against the most problematic multidrug-resistant bacteria. These species are symbiotic bacteria of entomopathogenic nematodes and their life cycle, the richness of the bacteria’s genome in non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes, and their propensity to produce secondary metabolites with a large diversity of chemical structures make them a good starting point to begin an ambitious drug discovery program. Odilorhabdins (ODLs), a novel antibacterial class, were identified from this campaign. These compounds inhibit bacterial translation by binding to the small ribosomal subunit at a site not exploited by current antibiotics. Following the development of the total synthesis of this family of peptides, a medicinal chemistry program was started to optimize their pharmacological properties. NOSO-502, the first ODL preclinical candidate was selected. This compound is currently under preclinical development for the treatment of multidrug-resistant Gram-negative infections in hospitalized patients.
Collapse
|
29
|
Isayenko OY. Synergistic activity of filtrates of Lactobacillus rhamnosus and Saccharomyces boulardii and antibacterial preparations against Corynebacterium spp. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We present the results of the first study of the combined influence of the biologically active substances Lactobacillus rhamnosus GG ATCC 53103 and Saccharomyces boulardii, obtained by the author’s method, and antibacterial agents on Corynebacterium spp. The first area of research was the study of increasing the sensitivity of toxigenic microorganisms to antimicrobial drugs due to the consecutive effects of the structural components and metabolites of L. rhamnosus GG and S. boulardii and antibacterial drugs on Corynebacterium spp. tox+. The greatest increase in the sensitivity of test-cultures of corynebacteria to penicillin (by 19.4 mm), imipenem (by 15.0 mm), vancomycin (by 12.0 mm), gentamicin (by 11.0 mm), ciprofloxacin (by 9.8 mm), erythromycin (by 9.6 mm), cefotaxime (by 9.5 mm) occurred due to the products of lactobacteria and a combination of metabolites of lactobacteria and saccharomycetes. The second area of research was the study of the synergic activity of substances L. rhamnosus GG and S. boulardii and traditional antibacterial drugs manifested by their simultaneous effect on Corynebacterium spp. Maximum potentiation of azithromycin (by 4.6 mm), erythromycin (by 4.5 mm), cefotaxime (by 2.2 mm), ceftriaxone (by 1.6 mm) and ampicillin (by 1.0 mm) relative to corynebacteria was also observed under the influence of lactobacteria metabolites and a combination of lactobacteria and saccharomycetes metabolites. Different degrees of manifestation of the combined action of biologically active substances L. rhamnosus GG and S. boulardii with antibiotics were determined, which depended on the selected combinations, the method of influence on the microorganism, the individual sensitivity of the test-cultures, the activity of the test filtrates and the initial concentration of the producers used to obtain the products of vital activity of lactobacteria and saccharomyces. The presented complexes of structural components and metabolites of L. rhamnosus GG and S. boulardii, obtained without the use of traditional nutrient media, by increasing the bioavailability of pathogenic pathogens can reduce the required concentration of the antibiotic, continuing their use, and suspend the likelihood of pathogens developing resistance to microorganisms. This makes them promising candidates both for the development of "accompaniment-preparations" for antibiotics for the additional therapy of infectious diseases of different etiology, and for the creation of a new direction of antimicrobial agents with multifunctional capabilities. Synergistic activity of filtrates L. rhamnosus GG and S. boulardii and antibacterial preparations against Corynebacterium spp.
Collapse
|
30
|
Baquero F, Lanza VF, Baquero MR, Del Campo R, Bravo-Vázquez DA. Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere. Front Microbiol 2019; 10:2261. [PMID: 31649628 PMCID: PMC6795089 DOI: 10.3389/fmicb.2019.02261] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Microcins are low-molecular-weight, ribosomally produced, highly stable, bacterial-inhibitory molecules involved in competitive, and amensalistic interactions between Enterobacteriaceae in the intestine. These interactions take place in a highly complex chemical landscape, the intestinal eco-active chemosphere, composed of chemical substances that positively or negatively influence bacterial growth, including those originated from nutrient uptake, and those produced by the action of the human or animal host and the intestinal microbiome. The contribution of bacteria results from their effect on the host generated molecules, on food and digested food, and organic substances from microbial origin, including from bacterial degradation. Here, we comprehensively review the main chemical substances present in the human intestinal chemosphere, particularly of those having inhibitory effects on microorganisms. With this background, and focusing on Enterobacteriaceae, the most relevant human pathogens from the intestinal microbiota, the microcin’s history and classification, mechanisms of action, and mechanisms involved in microcin’s immunity (in microcin producers) and resistance (non-producers) are reviewed. Products from the chemosphere likely modulate the ecological effects of microcin activity. Several cross-resistance mechanisms are shared by microcins, colicins, bacteriophages, and some conventional antibiotics, which are expected to produce cross-effects. Double-microcin-producing strains (such as microcins MccM and MccH47) have been successfully used for decades in the control of pathogenic gut organisms. Microcins are associated with successful gut colonization, facilitating translocation and invasion, leading to bacteremia, and urinary tract infections. In fact, Escherichia coli strains from the more invasive phylogroups (e.g., B2) are frequently microcinogenic. A publicly accessible APD3 database http://aps.unmc.edu/AP/ shows particular genes encoding microcins in 34.1% of E. coli strains (mostly MccV, MccM, MccH47, and MccI47), and much less in Shigella and Salmonella (<2%). Some 4.65% of Klebsiella pneumoniae are microcinogenic (mostly with MccE492), and even less in Enterobacter or Citrobacter (mostly MccS). The high frequency and variety of microcins in some Enterobacteriaceae indicate key ecological functions, a notion supported by their dominance in the intestinal microbiota of biosynthetic gene clusters involved in the synthesis of post-translationally modified peptide microcins.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Val F Lanza
- Bioinformatics Unit, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Maria-Rosario Baquero
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| | - Rosa Del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Daniel A Bravo-Vázquez
- Department of Microbiology, Alfonso X El Sabio University, Villanueva de la Cañada, Spain
| |
Collapse
|
31
|
Structure of ribosome-bound azole-modified peptide phazolicin rationalizes its species-specific mode of bacterial translation inhibition. Nat Commun 2019; 10:4563. [PMID: 31594941 PMCID: PMC6783444 DOI: 10.1038/s41467-019-12589-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/09/2019] [Indexed: 02/04/2023] Open
Abstract
Ribosome-synthesized post-translationally modified peptides (RiPPs) represent a rapidly expanding class of natural products with various biological activities. Linear azol(in)e-containing peptides (LAPs) comprise a subclass of RiPPs that display outstanding diversity of mechanisms of action while sharing common structural features. Here, we report the discovery of a new LAP biosynthetic gene cluster in the genome of Rhizobium Pop5, which encodes the precursor peptide and modification machinery of phazolicin (PHZ) – an extensively modified peptide exhibiting narrow-spectrum antibacterial activity against some symbiotic bacteria of leguminous plants. The cryo-EM structure of the Escherichia coli 70S-PHZ complex reveals that the drug interacts with the 23S rRNA and uL4/uL22 proteins and obstructs ribosomal exit tunnel in a way that is distinct from other compounds. We show that the uL4 loop sequence determines the species-specificity of antibiotic action. PHZ expands the known diversity of LAPs and may be used in the future as biocontrol agent for agricultural needs. The authors report the identification of phazolicin (PHZ) - a prokaryotic translation inhibitory peptide - and its structure in complex with the E. coli ribosome, delineating PHZ’s mode of action and suggesting a basis for its bacterial species-specific activity.
Collapse
|
32
|
Collin F, Maxwell A. The Microbial Toxin Microcin B17: Prospects for the Development of New Antibacterial Agents. J Mol Biol 2019; 431:3400-3426. [PMID: 31181289 PMCID: PMC6722960 DOI: 10.1016/j.jmb.2019.05.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/03/2023]
Abstract
Microcin B17 (MccB17) is an antibacterial peptide produced by strains of Escherichia coli harboring the plasmid-borne mccB17 operon. MccB17 possesses many notable features. It is able to stabilize the transient DNA gyrase-DNA cleavage complex, a very efficient mode of action shared with the highly successful fluoroquinolone drugs. MccB17 stabilizes this complex by a distinct mechanism making it potentially valuable in the fight against bacterial antibiotic resistance. MccB17 was the first compound discovered from the thiazole/oxazole-modified microcins family and the linear azole-containing peptides; these ribosomal peptides are post-translationally modified to convert serine and cysteine residues into oxazole and thiazole rings. These chemical moieties are found in many other bioactive compounds like the vitamin thiamine, the anti-cancer drug bleomycin, the antibacterial sulfathiazole and the antiviral nitazoxanide. Therefore, the biosynthetic machinery that produces these azole rings is noteworthy as a general method to create bioactive compounds. Our knowledge of MccB17 now extends to many aspects of antibacterial-bacteria interactions: production, transport, interaction with its target, and resistance mechanisms; this knowledge has wide potential applicability. After a long time with limited progress on MccB17, recent publications have addressed critical aspects of MccB17 biosynthesis as well as an explosion in the discovery of new related compounds in the thiazole/oxazole-modified microcins/linear azole-containing peptides family. It is therefore timely to summarize the evidence gathered over more than 40 years about this still enigmatic molecule and place it in the wider context of antibacterials.
Collapse
Affiliation(s)
- Frederic Collin
- Department Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Anthony Maxwell
- Department Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
33
|
Severi E, Thomas GH. Antibiotic export: transporters involved in the final step of natural product production. Microbiology (Reading) 2019; 165:805-818. [DOI: 10.1099/mic.0.000794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Emmanuele Severi
- Department of Biology, University of York, Wentworth Way, York, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
34
|
Abstract
Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.
Collapse
|
35
|
Svetlov MS, Plessa E, Chen CW, Bougas A, Krokidis MG, Dinos GP, Polikanov YS. High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition. RNA (NEW YORK, N.Y.) 2019; 25:600-606. [PMID: 30733327 PMCID: PMC6467010 DOI: 10.1261/rna.069260.118] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/28/2019] [Indexed: 05/22/2023]
Abstract
The 70S ribosome is a major target for antibacterial drugs. Two of the classical antibiotics, chloramphenicol (CHL) and erythromycin (ERY), competitively bind to adjacent but separate sites on the bacterial ribosome: the catalytic peptidyl transferase center (PTC) and the nascent polypeptide exit tunnel (NPET), respectively. The previously reported competitive binding of CHL and ERY might be due either to a direct collision of the two drugs on the ribosome or due to a drug-induced allosteric effect. Because of the resolution limitations, the available structures of these antibiotics in complex with bacterial ribosomes do not allow us to discriminate between these two possible mechanisms. In this work, we have obtained two crystal structures of CHL and ERY in complex with the Thermus thermophilus 70S ribosome at a higher resolution (2.65 and 2.89 Å, respectively) allowing unambiguous placement of the drugs in the electron density maps. Our structures provide evidence of the direct collision of CHL and ERY on the ribosome, which rationalizes the observed competition between the two drugs.
Collapse
Affiliation(s)
- Maxim S Svetlov
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Elena Plessa
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Chih-Wei Chen
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Anthony Bougas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Marios G Krokidis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Yury S Polikanov
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
36
|
Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2019; 42:805-828. [PMID: 30085042 DOI: 10.1093/femsre/fuy033] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria use various strategies to compete in an ecological niche, including the production of bacteriocins. Bacteriocins are ribosomally synthesized antibacterial peptides, and it has been postulated that the majority of Gram-positive bacteria produce one or more of these natural products. Bacteriocins can be used in food preservation and are also considered as potential alternatives to antibiotics. The majority of bacteriocins from Gram-positive bacteria had been traditionally divided into two major classes, namely lantibiotics, which are post-translationally modified bacteriocins, and unmodified bacteriocins. The last decade has seen an expanding number of ribosomally synthesized and post-translationally modified peptides (RiPPs) in Gram-positive bacteria that have antibacterial activity. These include linear azol(in)e-containing peptides, thiopeptides, bottromycins, glycocins, lasso peptides and lipolanthines. In addition, the three-dimensional (3D) structures of a number of modified and unmodified bacteriocins have been elucidated in recent years. This review gives an overview on the structural variety of bacteriocins from Gram-positive bacteria. It will focus on the chemical and 3D structures of these peptides, and their interactions with receptors and membranes, structure-function relationships and possible modes of action.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
37
|
Charon J, Manteca A, Innis CA. Using the Bacterial Ribosome as a Discovery Platform for Peptide-Based Antibiotics. Biochemistry 2019; 58:75-84. [PMID: 30372045 PMCID: PMC7615898 DOI: 10.1021/acs.biochem.8b00927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The threat of bacteria resistant to multiple antibiotics poses a major public health problem requiring immediate and coordinated action worldwide. While infectious pathogens have become increasingly resistant to commercially available drugs, antibiotic discovery programs in major pharmaceutical companies have produced no new antibiotic scaffolds in 40 years. As a result, new strategies must be sought to obtain a steady supply of novel scaffolds capable of countering the spread of resistance. The bacterial ribosome is a major target for antimicrobials and is inhibited by more than half of the antibiotics used today. Recent studies showing that the ribosome is a target for several classes of ribosomally synthesized antimicrobial peptides point to ribosome-targeting peptides as a promising source of antibiotic scaffolds. In this Perspective, we revisit the current paradigm of antibiotic discovery by proposing that the bacterial ribosome can be used both as a target and as a tool for the production and selection of peptide-based antimicrobials. Turning the ribosome into a high-throughput platform for the directed evolution of peptide-based antibiotics could be achieved in different ways. One possibility would be to use a combination of state-of-the-art microfluidics and genetic reprogramming techniques, which we will review briefly. If it is successful, this strategy has the potential to produce new classes of antibiotics for treating multi-drug-resistant pathogens.
Collapse
Affiliation(s)
- Justine Charon
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), Pessac 33607, France
| | - Aitor Manteca
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), Pessac 33607, France
| | - C. Axel Innis
- Institut Européen de Chimie et Biologie, Univ. Bordeaux, Institut National de la Santé et de la Recherche Médicale (U1212) and Centre National de la Recherche Scientifique (UMR 5320), Pessac 33607, France
| |
Collapse
|
38
|
Di Costanzo L, Dutta S, Burley SK. Amino acid modifications for conformationally constraining naturally occurring and engineered peptide backbones: Insights from the Protein Data Bank. Biopolymers 2018; 109:e23230. [PMID: 30368772 DOI: 10.1002/bip.23230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
Extensive efforts invested in understanding the rules of protein folding are now being applied, with good effect, in de novo design of proteins/peptides. For proteins containing standard α-amino acids alone, knowledge derived from experimentally determined three-dimensional (3D) structures of proteins and biologically active peptides are available from the Protein Data Bank (PDB), and the Cambridge Structural Database (CSD). These help predict and design protein structures, with reasonable confidence. However, our knowledge of 3D structures of biomolecules containing backbone modified amino acids is still evolving. A major challenge in de novo protein/peptide design concerns the engineering of conformationally constrained molecules with specific structural elements and chemical groups appropriately positioned for biological activity. This review explores four classes of amino acid modifications that constrain protein/peptide backbone structure. Systematic analysis of peptidic molecule structures (eg, bioactive peptides, inhibitors, antibiotics, and designed molecules), containing these backbone-modified amino acids, found in the PDB and CSD are discussed. The review aims to provide structure-function insights that will guide future design of proteins/peptides.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Shuchismita Dutta
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A
| | - Stephen K Burley
- RCSB Protein Data Bank, Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, U.S.A.,RCSB Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, U.S.A.,Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, U.S.A
| |
Collapse
|
39
|
Terekhov SS, Osterman IA, Smirnov IV. High-Throughput Screening of Biodiversity for Antibiotic Discovery. Acta Naturae 2018; 10:23-29. [PMID: 30397523 PMCID: PMC6209406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Indexed: 11/17/2022] Open
Abstract
The increasing number of infections caused by antibiotic-resistant strains of pathogens challenges modern technologies of drug discovery. Combinatorial chemistry approaches are based on chemical libraries. They enable the creation of high-affinity low-molecular-weight ligands of the therapeutically significant molecular targets of human cells, thus opening an avenue toward a directed design of highly effective therapeutic agents. Nevertheless, these approaches face insurmountable difficulties in antibiotic discovery. Natural compounds that have evolved for such important characteristics as broad specificity and efficiency are a good alternative to chemical libraries. However, unrestricted use of natural antibiotics and their analogues leads to avalanche-like spread of resistance among bacteria. The search for new natural antibiotics, in its turn, is extremely complicated nowadays by the problem of antibiotic rediscovery. This calls for the application of alternative high-throughput platforms for antibiotic activity screening, cultivation of "unculturable" microorganisms, exploration of novel antibiotic biosynthetic gene clusters, as well as their activation and heterologous expression. Microfluidic technologies for the screening of antibiotic activity at the level of single cells are, therefore, of great interest, since they enable the use of a single platform to combine the technology of ultrahigh-throughput screening, next-generation sequencing, and genome mining, thus opening up unique opportunities for antibiotic discovery.
Collapse
Affiliation(s)
- S. S. Terekhov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Str., 16/10, Moscow, 117997, Russia
| | - I. A. Osterman
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991 , Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143026, Russia
| | - I. V. Smirnov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya Str., 16/10, Moscow, 117997, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991 , Russia
- National Research University “Higher School of Economics”, Myasnitskaya Str., 40, Moscow, 101000 , Russia
| |
Collapse
|
40
|
Polikanov YS, Aleksashin NA, Beckert B, Wilson DN. The Mechanisms of Action of Ribosome-Targeting Peptide Antibiotics. Front Mol Biosci 2018; 5:48. [PMID: 29868608 PMCID: PMC5960728 DOI: 10.3389/fmolb.2018.00048] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
The ribosome is one of the major targets in the cell for clinically used antibiotics. However, the increase in multidrug resistant bacteria is rapidly reducing the effectiveness of our current arsenal of ribosome-targeting antibiotics, highlighting the need for the discovery of compounds with new scaffolds that bind to novel sites on the ribosome. One possible avenue for the development of new antimicrobial agents is by characterization and optimization of ribosome-targeting peptide antibiotics. Biochemical and structural data on ribosome-targeting peptide antibiotics illustrates the large diversity of scaffolds, binding interactions with the ribosome as well as mechanism of action to inhibit translation. The availability of high-resolution structures of ribosomes in complex with peptide antibiotics opens the way to structure-based design of these compounds as novel antimicrobial agents.
Collapse
Affiliation(s)
- Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States
| | - Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Bertrand Beckert
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
41
|
Travin DY, Metelev M, Serebryakova M, Komarova ES, Osterman IA, Ghilarov D, Severinov K. Biosynthesis of Translation Inhibitor Klebsazolicin Proceeds through Heterocyclization and N-Terminal Amidine Formation Catalyzed by a Single YcaO Enzyme. J Am Chem Soc 2018; 140:5625-5633. [PMID: 29601195 DOI: 10.1021/jacs.8b02277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Klebsazolicin (KLB) is a recently discovered Klebsiella pneumonia peptide antibiotic targeting the exit tunnel of bacterial ribosome. KLB contains an N-terminal amidine ring and four azole heterocycles installed into a ribosomally synthesized precursor by dedicated maturation machinery. Using an in vitro system for KLB production, we show that the YcaO-domain KlpD maturation enzyme is a bifunctional cyclodehydratase required for the formation of both the core heterocycles and the N-terminal amidine ring. We further demonstrate that the amidine ring is formed concomitantly with proteolytic cleavage of azole-containing pro-KLB by a cellular protease TldD/E. Members of the YcaO family are diverse enzymes known to activate peptide carbonyls during natural product biosynthesis leading to the formation of azoline, macroamidine, and thioamide moieties. The ability of KlpD to simultaneously perform two distinct types of modifications is unprecedented for known YcaO proteins. The versatility of KlpD opens up possibilities for rational introduction of modifications into various peptide backbones.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Mikhail Metelev
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia
| | - Marina Serebryakova
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , 119992 , Russia
| | - Ekaterina S Komarova
- Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Ilya A Osterman
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Translational Biomedicine , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Dmitry Ghilarov
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia
| | - Konstantin Severinov
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia.,Waksman Institute for Microbiology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
42
|
Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Annu Rev Biochem 2018; 87:451-478. [PMID: 29570352 DOI: 10.1146/annurev-biochem-062917-011942] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic information is translated into proteins by the ribosome. Structural studies of the ribosome and of its complexes with factors and inhibitors have provided invaluable information on the mechanism of protein synthesis. Ribosome inhibitors are among the most successful antimicrobial drugs and constitute more than half of all medicines used to treat infections. However, bacterial infections are becoming increasingly difficult to treat because the microbes have developed resistance to the most effective antibiotics, creating a major public health care threat. This has spurred a renewed interest in structure-function studies of protein synthesis inhibitors, and in few cases, compounds have been developed into potent therapeutic agents against drug-resistant pathogens. In this review, we describe the modes of action of many ribosome-targeting antibiotics, highlight the major resistance mechanisms developed by pathogenic bacteria, and discuss recent advances in structure-assisted design of new molecules.
Collapse
Affiliation(s)
- Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China;
| | - Dejian Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China;
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA; .,Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Yury S Polikanov
- Department of Biological Sciences, and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois 60607, USA;
| | - Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA; .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA.,Current affiliation: Department of Microbiology and Immunology, and Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA;
| |
Collapse
|
43
|
Schwalen CJ, Hudson GA, Kosol S, Mahanta N, Challis GL, Mitchell DA. In Vitro Biosynthetic Studies of Bottromycin Expand the Enzymatic Capabilities of the YcaO Superfamily. J Am Chem Soc 2017; 139:18154-18157. [PMID: 29200283 PMCID: PMC5915351 DOI: 10.1021/jacs.7b09899] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bottromycins belong to the ribosomally synthesized and posttranslationally modified peptide (RiPP) family of natural products. Bottromycins exhibit unique structural features, including a hallmark macrolactamidine ring and thiazole heterocycle for which divergent members of the YcaO superfamily have been biosynthetically implicated. Here we report the in vitro reconstitution of two YcaO proteins, BmbD and BmbE, responsible for the ATP-dependent cyclodehydration reactions that yield thiazoline- and macrolactamidine-functionalized products, respectively. We also establish the substrate tolerance for BmbD and BmbE and systematically dissect the role of the follower peptide, which we show serves a purpose similar to canonical leader peptides in directing the biosynthetic enzymes to the substrate. Lastly, we leverage the expanded capabilities of YcaO proteins to conduct an extensive bioinformatic survey to classify known YcaO chemistry. This analysis predicts new functions remain to be uncovered within the superfamily.
Collapse
Affiliation(s)
- Christopher J. Schwalen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Graham A. Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Simone Kosol
- Department of Chemistry and Warwick Integrative Synthetic Biology Center, University of Warwick, Coventry CV4 7AL, UK
| | - Nilkamal Mahanta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Gregory L. Challis
- Department of Chemistry and Warwick Integrative Synthetic Biology Center, University of Warwick, Coventry CV4 7AL, UK
- Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
44
|
|