1
|
Methods for Measuring Exchangeable Protons in Glycosaminoglycans. Methods Mol Biol 2021. [PMID: 34626393 DOI: 10.1007/978-1-0716-1398-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recent NMR studies of the exchangeable protons of GAGs in aqueous solution, including those of the amide, sulfamate, and hydroxyl moieties, have demonstrated potential for the detection of intramolecular hydrogen bonds providing insights into secondary structure preferences. GAG amide protons are observable by NMR over wide pH and temperature ranges; however, specific solution conditions are required to reduce the exchange rate of the sulfamate and hydroxyl protons and allow their detection by NMR. Building on the vast body of knowledge on detection of hydrogen bonds in peptides and proteins, a variety of methods can be used to identify hydrogen bonds in GAGs including temperature coefficient measurements, evaluation of chemical shift differences between oligo- and monosaccharides, and relative exchange rates measured through line shape analysis and EXSY spectra. Emerging strategies to allow direct detection of hydrogen bonds through heteronuclear couplings offer promise for the future. Molecular dynamic simulations are important in this effort both to predict and confirm hydrogen bond donors and acceptors.
Collapse
|
2
|
|
3
|
Angles d’Ortoli T, Hamark C, Widmalm G. Structure–Reactivity Relationships of Conformationally Armed Disaccharide Donors and Their Use in the Synthesis of a Hexasaccharide Related to the Capsular Polysaccharide from Streptococcus pneumoniae Type 37. J Org Chem 2017; 82:8123-8140. [DOI: 10.1021/acs.joc.7b01264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Thibault Angles d’Ortoli
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Christoffer Hamark
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
4
|
Wang Y, Wang J, Gao M, Zhang X. Functional dual hydrophilic dendrimer-modified metal-organic framework for the selective enrichment of N-glycopeptides. Proteomics 2017; 17:e1700005. [PMID: 28390088 DOI: 10.1002/pmic.201700005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/06/2017] [Accepted: 04/06/2017] [Indexed: 01/03/2023]
Abstract
Analysis of protein glycosylation remains a significant challenge due to the low abundance of glycoproteins or N-glycopeptides. Here we have synthesized an amino-functionalized metal-organic framework (MOF) MIL-101(Cr)-NH2 whose surface is grafted with a hydrophilic dendrimer poly(amidoamine) (PAMAM) for N-glycopeptide enrichment based on the hydrophilic interactions. The selected substrate MOF MIL-101(Cr) owns high surface area which provides nice support for peptide adsorption. In addition, the MOF displayed a good hydrophilic property after being modified with amino groups. Most importantly, the grafted hydrophilic dendrimer PAMAM was firstly applied in the postsynthetic modification of MOFs. And this functionalization route using macromolecular dendrimer opens a new perspective in MOFs design. Owing to its long dendritic chains and abundant amino groups, our material displayed dual hydrophilic property. In the enrichment of standard glycoprotein HRP digestion, the functional MOF material was shown to have low detection limit (1 fmol/μL) and good selectivity when the concentration of nonglycopeptides was 100 fold higher than the target N-glycopeptides. All the results proved that MIL-101(Cr)-NH2 @PAMAM has great potential in the glycoproteome analysis.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Jiaxi Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
5
|
Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. Int J Biol Macromol 2017; 98:748-776. [PMID: 28111295 DOI: 10.1016/j.ijbiomac.2017.01.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/06/2023]
Abstract
Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement.
Collapse
Affiliation(s)
- Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Arooj Kanwal
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Mohammad Zuber
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | | | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
6
|
Ricard-Blum S, Lisacek F. Glycosaminoglycanomics: where we are. Glycoconj J 2016; 34:339-349. [PMID: 27900575 DOI: 10.1007/s10719-016-9747-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/21/2023]
Abstract
Glycosaminoglycans regulate numerous physiopathological processes such as development, angiogenesis, innate immunity, cancer and neurodegenerative diseases. Cell surface GAGs are involved in cell-cell and cell-matrix interactions, cell adhesion and signaling, and host-pathogen interactions. GAGs contribute to the assembly of the extracellular matrix and heparan sulfate chains are able to sequester growth factors in the ECM. Their biological activities are regulated by their interactions with proteins. The structural heterogeneity of GAGs, mostly due to chemical modifications occurring during and after their synthesis, makes the development of analytical techniques for their profiling in cells, tissues, and biological fluids, and of computational tools for mining GAG-protein interaction data very challenging. We give here an overview of the experimental approaches used in glycosaminoglycomics, of the major GAG-protein interactomes characterized so far, and of the computational tools and databases available to analyze and store GAG structures and interactions.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 CNRS - Université Lyon 1, INSA Lyon, CPE Lyon, 69622, Villeurbanne Cedex, France.
| | - Frédérique Lisacek
- SIB Swiss Institute of Bioinformatics, 1 Rue Michel-Servet, 1211, Geneva, Switzerland.,Computer Science Department, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Pomin VH. Phylogeny, structure, function, biosynthesis and evolution of sulfated galactose-containing glycans. Int J Biol Macromol 2016; 84:372-9. [DOI: 10.1016/j.ijbiomac.2015.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 11/30/2015] [Accepted: 12/11/2015] [Indexed: 01/20/2023]
|
8
|
Abstract
Recent NMR studies of the exchangeable protons of GAGs in aqueous solution, including those of the amide, sulfamate, and hydroxyl moieties, have demonstrated potential for the detection of intramolecular hydrogen bonds, providing insights into secondary structure preferences. GAG amide protons are observable by NMR over wide pH and temperature ranges; however, specific solution conditions are required to reduce the exchange rate of the sulfamate and hydroxyl protons and allow their detection by NMR. Building on the vast body of knowledge on detection of hydrogen bonds in peptides and proteins, a variety of methods can be used to identify hydrogen bonds in GAGs including temperature coefficient measurements, evaluation of chemical shift differences between oligo- and monosaccharides, and relative exchange rates measured through line shape analysis and EXSY spectra. Emerging strategies to allow direct detection of hydrogen bonds through heteronuclear couplings offer promise for the future. Molecular dynamic simulations are important in this effort both to predict and confirm hydrogen bond donors and acceptors.
Collapse
Affiliation(s)
- Consuelo N Beecher
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA,
| | | |
Collapse
|
9
|
Wang Y, Wang J, Gao M, Zhang X. An ultra hydrophilic dendrimer-modified magnetic graphene with a polydopamine coating for the selective enrichment of glycopeptides. J Mater Chem B 2015; 3:8711-8716. [DOI: 10.1039/c5tb01684c] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel ultra hydrophilic dendrimer-modified magnetic graphene@polydopamine@poly(amidoamine) (magG@PDA@PAMAM) was synthesized for the efficient and selective enrichment of N-linked glycopeptides.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200433
- China
| | - Jiaxi Wang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200433
- China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200433
- China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
10
|
Liu C, Deng Q, Fang G, Huang X, Wang S. Facile synthesis of graphene doped poly(ionic liquid) boronate affinity material for specific capture of glycoproteins. J Mater Chem B 2014; 2:5229-5237. [DOI: 10.1039/c4tb00663a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Zhang W, Peng B, Tian F, Qin W, Qian X. Facile Preparation of Well-Defined Hydrophilic Core–Shell Upconversion Nanoparticles for Selective Cell Membrane Glycan Labeling and Cancer Cell Imaging. Anal Chem 2013; 86:482-9. [DOI: 10.1021/ac402389w] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wanjun Zhang
- National Center for Protein
Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome
Research Center, Institute of Radiation Medicine, Beijing, China
| | - Bo Peng
- National Center for Protein
Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome
Research Center, Institute of Radiation Medicine, Beijing, China
| | - Fang Tian
- National Center for Protein
Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome
Research Center, Institute of Radiation Medicine, Beijing, China
| | - Weijie Qin
- National Center for Protein
Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome
Research Center, Institute of Radiation Medicine, Beijing, China
| | - Xiaohong Qian
- National Center for Protein
Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome
Research Center, Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
12
|
Bai H, Pan Y, Tong W, Zhang W, Ren X, Tian F, Peng B, Wang X, Zhang Y, Deng Y, Qin W, Qian X. Graphene based soft nanoreactors for facile “one-step” glycan enrichment and derivatization for MALDI-TOF-MS analysis. Talanta 2013; 117:1-7. [DOI: 10.1016/j.talanta.2013.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/14/2013] [Accepted: 08/17/2013] [Indexed: 12/13/2022]
|
13
|
Pan Y, Bai H, Ma C, Deng Y, Qin W, Qian X. Brush polymer modified and lectin immobilized core-shell microparticle for highly efficient glycoprotein/glycopeptide enrichment. Talanta 2013; 115:842-8. [PMID: 24054672 DOI: 10.1016/j.talanta.2013.06.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/16/2013] [Accepted: 06/20/2013] [Indexed: 12/12/2022]
Abstract
Protein glycosylation regulates numerous important biological processes and plays key roles in many diseases including cancer, diabetes and inflammation. The ability to efficiently profile variation of protein glycosylation in biological samples is very useful for identifying new diagnostic biomarkers or developing new therapeutic approaches. Due to the low availability of glycoprotein/glycopeptide from natural sources, enrichment before mass spectrometry (MS) analysis is usually a prerequisite. Affinity enrichment using lectins is currently one of the most widely adopted approaches. Conventionally, lectins are immobilized on solid supporting materials for sample recovery. However, the limited specific surface area, high steric hindrance and rigid nature of such supporting materials restricts lectin loading amount and results in low flexibility as well as accessibility of the immobilized lectins. Therefore, we proposed using core-shell microparticles composed of silica core and brush-like polymer chains shell for improved lectin immobilization. The surface bound brush-like polymer are synthesized by in situ growth of polymer chains from microparticle surface using surface initiated atom transfer radical polymerization (SI-ATRP). The flexible non-crosslinked polymer chains not only provide numerous binding sites, but also work as three-dimensional support for lectin immobilization, which leads to high loading amount and good accessibility of the immobilized lectin. Successful enrichment which facilitated glycoprotein/glycopeptide identification is demonstrated.
Collapse
Affiliation(s)
- Yiting Pan
- School of Life Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China; National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Zhang W, Han H, Bai H, Tong W, Zhang Y, Ying W, Qin W, Qian X. A Highly Efficient and Visualized Method for Glycan Enrichment by Self-Assembling Pyrene Derivative Functionalized Free Graphene Oxide. Anal Chem 2013; 85:2703-9. [DOI: 10.1021/ac303101t] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wanjun Zhang
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Huanhuan Han
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Haihong Bai
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Wei Tong
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Yangjun Zhang
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Wantao Ying
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Weijie Qin
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| | - Xiaohong Qian
- National
Center for Protein Sciences Beijing, State
Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206,
P.R. China
| |
Collapse
|
15
|
Toukach FV, Ananikov VP. Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. Chem Soc Rev 2013; 42:8376-415. [DOI: 10.1039/c3cs60073d] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Affiliation(s)
- K. S. Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky prospekt 47, 119991 Moscow,
Russian Federation
| | - Ph. V. Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Leninsky prospekt 47, 119991 Moscow,
Russian Federation
| |
Collapse
|
17
|
Langeslay DJ, Young RP, Beni S, Beecher CN, Mueller LJ, Larive CK. Sulfamate proton solvent exchange in heparin oligosaccharides: evidence for a persistent hydrogen bond in the antithrombin-binding pentasaccharide Arixtra. Glycobiology 2012; 22:1173-82. [PMID: 22593556 DOI: 10.1093/glycob/cws085] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sulfamate groups (NHSO(3)(-)) are important structural elements in the glycosaminoglycans (GAGs) heparin and heparan sulfate (HS). In this work, proton nuclear magnetic resonance (NMR) line-shape analysis is used to explore the solvent exchange properties of the sulfamate NH groups within heparin-related mono-, di-, tetra- and pentasaccharides as a function of pH and temperature. The results of these experiments identified a persistent hydrogen bond within the Arixtra (fondaparinux sodium) pentasaccharide between the internal glucosamine sulfamate NH and the adjacent 3-O-sulfo group. This discovery provides new insights into the solution structure of the Arixtra pentasaccharide and suggests that 3-O-sulfation of the heparin N-sulfoglucosamine (GlcNS) residues pre-organize the secondary structure in a way that facilitates binding to antithrombin-III. NMR studies of the GlcNS NH groups can provide important information about heparin structure complementary to that available from NMR spectral analysis of the carbon-bound protons.
Collapse
Affiliation(s)
- Derek J Langeslay
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
18
|
Carbohydrate synthesis and biosynthesis technologies for cracking of the glycan code: recent advances. Biotechnol Adv 2012; 31:17-37. [PMID: 22484115 DOI: 10.1016/j.biotechadv.2012.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 03/06/2012] [Accepted: 03/20/2012] [Indexed: 12/22/2022]
Abstract
The glycan code of glycoproteins can be conceptually defined at molecular level by the sequence of well characterized glycans attached to evolutionarily predetermined amino acids along the polypeptide chain. Functional consequences of protein glycosylation are numerous, and include a hierarchy of properties from general physicochemical characteristics such as solubility, stability and protection of the polypeptide from the environment up to specific glycan interactions. Definition of the glycan code for glycoproteins has been so far hampered by the lack of chemically defined glycoprotein glycoforms that proved to be extremely difficult to purify from natural sources, and the total chemical synthesis of which has been hitherto possible only for very small molecular species. This review summarizes the recent progress in chemical and chemoenzymatic synthesis of complex glycans and their protein conjugates. Progress in our understanding of the ways in which a particular glycoprotein glycoform gives rise to a unique set of functional properties is now having far reaching implications for the biotechnology of important glycodrugs such as therapeutical monoclonal antibodies, glycoprotein hormones, carbohydrate conjugates used for vaccination and other practically important protein-carbohydrate conjugates.
Collapse
|
19
|
Langeslay DJ, Beni S, Larive CK. A closer look at the nitrogen next door: 1H-15N NMR methods for glycosaminoglycan structural characterization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:169-174. [PMID: 22364674 DOI: 10.1016/j.jmr.2012.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/04/2012] [Accepted: 01/28/2012] [Indexed: 05/31/2023]
Abstract
Recently, experimental conditions were presented for the detection of the N-sulfoglucosamine (GlcNS) NHSO(3)(-) or sulfamate (1)H and (15)N NMR resonances of the pharmaceutically and biologically important glycosaminoglycan (GAG) heparin in aqueous solution. In the present work, we explore further the applicability of nitrogen-bound proton detection to provide structural information for GAGs. Compared to the detection of (15)N chemical shifts of aminosugars through long-range couplings using the IMPACT-HNMBC pulse sequence, the more sensitive two-dimensional (1)H-(15)N HSQC-TOCSY experiments provided additional structural data. The IMPACT-HNMBC experiment remains a powerful tool as demonstrated by the spectrum measured for the unsubstituted amine of 3-O-sulfoglucosamine (GlcN(3S)), which cannot be observed with the (1)H-(15)N HSQC-TOCSY experiment due to the fast exchange of the amino group protons with solvent. The (1)H-(15)N HSQC-TOCSY NMR spectrum reported for the mixture of model compounds GlcNS and N-acetylglucosamine (GlcNAc) demonstrate the broad utility of this approach. Measurements for the synthetic pentasaccharide drug Arixtra® (Fondaparinux sodium) in aqueous solution illustrate the power of this NMR pulse sequence for structural characterization of highly similar N-sulfoglucosamine residues in GAG-derived oligosaccharides.
Collapse
Affiliation(s)
- Derek J Langeslay
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|