1
|
Ngu-Schwemlein M, Merle J, Cameron T, Witcher C, Todd D. Dithiolated peptides incorporating bis(tryptophan)s for cooperative mercury(II) binding. Bioorg Med Chem 2021; 44:116296. [PMID: 34237490 DOI: 10.1016/j.bmc.2021.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 11/15/2022]
Abstract
The indole side chain of tryptophan is a versatile π-donor that can participate in various types of cation-π interactions. An understanding of how it may contribute as an auxiliary binding group in mercury(II) complexes can provide valuable insights toward the design of effective chelators for optimal mercury immobilization. In this study, we investigate how the incorporation of two tryptophan residues in model dicysteinyl peptides might participate in peptide-mercury(II) complex stabilization. Two pentapeptides consisting of a Cys-Trp-Cys sequence motif containing a second tryptophan residue at the N-terminal (BT1) or C-terminal (BT2) were designed. An analogous cyclohexapeptide (BT3) was included to evaluate how tryptophan residues, restricted in constrained peptidic turn motifs, might take part in mercury(II) complexation. Their interactions with mercury(II) were investigated by spectroscopic methods and computational modeling. UV-vis studies indicate the formation of 1:1 dithiolated mercury(II) complex, which is corroborated by ESI-MS analysis. Spectroscopic studies reveal that the tryptophan indole group(s) in BT1 and BT3 can participate in mercury(II) cation-π interactions. Optimized 1:1 mercury(II)-BT3 structures indicate that both indole rings are very close to the mercury(II) coordination site and could stabilize it by shielding it from ligand exchange. These findings provide some useful insights toward use of aromatic donor groups as hydrophobic shields in designing more effective metal chelating agents.
Collapse
Affiliation(s)
- Maria Ngu-Schwemlein
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, USA.
| | - John Merle
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, USA
| | - T'ea Cameron
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, USA
| | - Charlexia Witcher
- Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, USA
| | - Daniel Todd
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
2
|
Anandababu A, Anandan S, Syed A, Marraiki N, Ashokkumar M. Upper rim modified calix[4]arene towards selective turn-on fluorescence sensor for spectroscopically silent metal ions. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
|
4
|
Aliaga ME, López-Alarcón C, Bridi R, Speisky H. Redox-implications associated with the formation of complexes between copper ions and reduced or oxidized glutathione. J Inorg Biochem 2015; 154:78-88. [PMID: 26277412 DOI: 10.1016/j.jinorgbio.2015.08.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/03/2015] [Accepted: 08/05/2015] [Indexed: 02/08/2023]
Abstract
Binding of copper by reduced glutathione (GSH) is generally seen as a mechanism to lower, if not abolish, the otherwise high electrophilicity and redox activity of its free ions. In recent years, however, this concept has been contradicted by new evidence revealing that, rather than stabilizing free copper ions, its binding to GSH leads to the formation of a Cu(I)-[GSH]2 complex capable of reducing molecular oxygen into superoxide. It is now understood that, under conditions leading to the removal of such radicals, the Cu(I)-[GSH]2 complex is readily oxidized into Cu(II)-GSSG. Interestingly, in the presence of a GSH excess, the latter complex is able to regenerate the superoxide-generating capacity of the complex it originated from, opening the possibility that a GSH-dependent interplay exists between the reduced and the oxidized glutathione forms of these copper-complexes. Furthermore, recent evidence obtained from experiments conducted in non-cellular systems and intact mitochondria indicates that the Cu(II)-GSSG complex is also able to function in a catalytic manner as an efficient superoxide dismutating- and catalase-like molecule. Here we review and discuss the most relevant chemical and biological evidence on the formation of the Cu(I)-[GSH]2 and Cu(II)-GSSG complexes and on the potential redox implications associated with their intracellular occurrence.
Collapse
Affiliation(s)
- Margarita E Aliaga
- Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 6094411, Chile.
| | - Camilo López-Alarcón
- Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 6094411, Chile
| | - Raquel Bridi
- Facultad de Química, Pontificia Universidad Católica de Chile, Santiago 6094411, Chile
| | - Hernán Speisky
- Nutrition and Food Technology Institute, University of Chile, Santiago, Chile; Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
5
|
Kinetic studies on cyclopalladation in palladium(II) complexes containing an indole moiety. PURE APPL CHEM 2014. [DOI: 10.1515/pac-2014-5020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Various Pd–C complexes have been developed to date, affording deep insights into the reaction intermediates in useful catalytic reactions in organic syntheses. Cyclopalladation is one of the most famous Pd–C bond formation reactions to generate the palladacycles. Indole is an electron-rich aromatic ring involved in the side chain of an essential amino acid, tryptophan (Trp), and Trp and its derivatives are important in biological systems, such as electron transfer in protein, cofactors for conversion of biological molecules and so on. Pd catalysts are also useful for syntheses of such indole derivatives, and the mechanisms are considered to be through the Pd–C intermediates. However, the detailed properties and formation mechanisms of Pd–indole species are still unclear. With these points in mind, we focus on Pd(II)–indole-C2 carbon bond formations using various Pd(II) complexes having an indole moiety, especially on the recent studies on the kinetic analyses for these cyclopalladation reactions and their detailed mechanisms.
Collapse
|
6
|
Haridas V, Praveen Kumar PP, Suresh CH. Cysteine-based fluorescence “turn-on” sensors for Cu2+ and Ag+. RSC Adv 2014. [DOI: 10.1039/c4ra10936h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amino acid cysteine was transformed to fluorescent turn-on sensors for Cu+2 and Ag+. The metal ion binding was studied in detail by spectroscopic, microscopic, calorimetric and computational methods.
Collapse
Affiliation(s)
- V. Haridas
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas-110016, India
| | - P. P. Praveen Kumar
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas-110016, India
| | - Cherumuttathu H. Suresh
- Inorganic and Theoretical Chemistry Section, CSTD, CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram – 695019, India
| |
Collapse
|
7
|
Tanooka S, Suzuki T, Yajima T, Shiraiwa T, Iwatsuki S, Shimazaki Y. Pd–C bond formation with the indole ring in palladium complexes of N,N,O-donor ligands. Effect of the nitrogen donor properties. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Mahadevi AS, Sastry GN. Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 2012; 113:2100-38. [PMID: 23145968 DOI: 10.1021/cr300222d] [Citation(s) in RCA: 751] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A Subha Mahadevi
- Molecular Modeling Group, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
| | | |
Collapse
|
9
|
Concentration-dependent palladium(II)–indole bond formation in complexes with a 2N-donor ligand containing an indole moiety: Synthesis, characterization, and reaction analysis. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.07.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Saito S, Furukawa K, Osuka A. T-Shaped Three-Coordinate Copper(II) Heptaphyrin Complexes. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902901] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Saito S, Furukawa K, Osuka A. T-Shaped Three-Coordinate Copper(II) Heptaphyrin Complexes. Angew Chem Int Ed Engl 2009; 48:8086-9. [DOI: 10.1002/anie.200902901] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Lucas HR, Karlin KD. Copper-Carbon Bonds in Mechanistic and Structural Probing of Proteins as well as in Situations where Copper is a Catalytic or Receptor Site. METAL-CARBON BONDS IN ENZYMES AND COFACTORS 2009. [DOI: 10.1039/9781847559333-00295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
While copper-carbon bonds are well appreciated in organometallic synthetic chemistry, such occurrences are less known in biological settings. By far, the greatest incidence of copper-carbon moieties is in bioinorganic research aimed at probing copper protein active site structure and mechanism; for example, carbon monoxide (CO) binding as a surrogate for O2. Using infrared (IR) spectroscopy, CO coordination to cuprous sites has proven to be an extremely useful tool for determining active site copper ligation (e.g., donor atom number and type). The coupled (hemocyanin, tyrosinase, catechol oxidase) and non-coupled (peptidylglycine α-hydroxylating monooxygenase, dopamine β-monooxygenase) binuclear copper proteins as well as the heme-copper oxidases (HCOs) have been studied extensively via this method. In addition, environmental changes within the vicinity of the active site have been determined based on shifts in the CO stretching frequencies, such as for copper amine oxidases, nitrite reductases and again in the binuclear proteins and HCOs. In many situations, spectroscopic monitoring has provided kinetic and thermodynamic data on CuI-CO formation and CO dissociation from copper(I); recently, processes occurring on a femtosecond timescale have been reported. Copper-cyano moieties have also been useful for obtaining insights into the active site structure and mechanisms of copper-zinc superoxide dismutase, azurin, nitrous oxide reductase, and multi-copper oxidases. Cyanide is a good ligand for both copper(I) and copper(II), therefore multiple physical-spectroscopic techniques can be applied. A more obvious occurrence of a “Cu-C” moiety was recently described for a CO dehydrogenase which contains a novel molybdenum-copper catalytic site. A bacterial copper chaperone (CusF) was recently established to have a novel d-π interaction comprised of copper(I) with the arene containing side-chain of a tryptophan amino acid residue. Meanwhile, good evidence exists that a plant receptor site (ETR1) utilizes copper(I) to sense ethylene, a growth hormone. A copper olfactory receptor has also been suggested. All of the above mentioned occurrences or uses of carbon-containing substrates and/or probes are reviewed and discussed within the framework of copper proteins and other relevant systems.
Collapse
Affiliation(s)
- Heather R. Lucas
- Department of Chemistry, The Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| | - Kenneth D. Karlin
- Department of Chemistry, The Johns Hopkins University 3400 N. Charles Street Baltimore MD 21218 USA
| |
Collapse
|
13
|
Shimazaki Y, Yajima T, Takani M, Yamauchi O. Metal complexes involving indole rings: Structures and effects of metal–indole interactions. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2008.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Turski ML, Thiele DJ. New roles for copper metabolism in cell proliferation, signaling, and disease. J Biol Chem 2009; 284:717-21. [PMID: 18757361 PMCID: PMC2613604 DOI: 10.1074/jbc.r800055200] [Citation(s) in RCA: 276] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Michelle L Turski
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
15
|
Shimazaki Y, Takani M, Yamauchi O. Metal complexes of amino acids and amino acid side chain groups. Structures and properties. Dalton Trans 2009:7854-69. [PMID: 19771344 DOI: 10.1039/b905871k] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|