1
|
Camacho-Ramírez A, Meléndez-Zamudio M, Cervantes J, Palestino G, Guerra-Contreras A. One-step synthesis of amphiphilic copolymers PDMS- b-PEG using tris(pentafluorophenyl)borane and subsequent study of encapsulation and release of curcumin. J Mater Chem B 2024; 12:7076-7089. [PMID: 38817163 DOI: 10.1039/d4tb00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A series of amphiphilic block copolymer (BCP) micelles based on poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) (PEG) were synthesized by a one-step reaction in the presence of tris(pentafluorophenyl)borane (BCF) as a catalyst. The structural composition of PDMS-b-PEG (PR11) and PEG-b-PDMS-b-PEG (PR12) was corroborated by FTIR, 29Si NMR, and TGA. The BCPs were assembled in an aqueous solution, obtaining micelles between 57 and 87 nm in size. PR11 exhibited a higher (2.0 g L-1) critical micelle concentration (CMC) than PR12 (1.5 g L-1) due to the short chain length. The synthesized nano micelles were used to encapsulate curcumin, which is one of three compounds of turmeric plant 'Curcuma longa' with significant biological activities, including antioxidant, chemoprotective, antibacterial, anti-inflammatory, antiviral, and anti-depressant properties. The encapsulation efficiency of curcumin was 60% for PR11 and 45% for PR12. Regarding the release study, PR11 delivered 53% curcumin after five days under acidic conditions (pH of 1.2) compared to 43% at a pH of 7.4. The degradation products of curcumin were observed under basic conditions and were more stable at acidic pH. In both situations, the release process is carried out by breaking the silyl-ether bond, allowing the release of curcumin. PR11 showed prolonged release times, so it could be used to reduce ingestion times and simultaneously work as a nanocarrier for other hydrophobic drugs.
Collapse
Affiliation(s)
- Abygail Camacho-Ramírez
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| | - Miguel Meléndez-Zamudio
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4M1, Canada
| | - Jorge Cervantes
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| | - Gabriela Palestino
- Biopolymers and Nanostructures Laboratory, Faculty of Chemical Sciences, Autonomous University of San Luis Potosí, S.L.P., C.P. 78210, Mexico
| | - Antonio Guerra-Contreras
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P., 36050, Guanajuato, Mexico.
| |
Collapse
|
2
|
He W, Tao W, Wei Z, Tong G, Liu X, Tan J, Yang S, Hu J, Liu G, Yang R. Controlled switching thiocarbonylthio end-groups enables interconvertible radical and cationic single-unit monomer insertions and RAFT polymerizations. Nat Commun 2024; 15:5071. [PMID: 38871718 DOI: 10.1038/s41467-024-49463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
To emulate the ordered arrangement of monomer units found in natural macromolecules, single-unit monomer insertion (SUMI) have emerged as a potent technique for synthesizing sequence-controlled vinyl polymers. Specifically, numerous applications necessitate vinyl polymers encompassing both radically and cationically polymerizable monomers, posing a formidable challenge due to the distinct thiocarbonylthio end-groups required for efficient control over radical and cationic SUMIs. Herein, we present a breakthrough in the form of interconvertible radical and cationic SUMIs achieved through the manipulation of thiocarbonylthio end-groups. The transition from a trithiocarbonate (for radical SUMI) to a dithiocarbamate (for cationic SUMI) is successfully accomplished via a radical-promoted reaction with bis(thiocarbonyl) disulfide. Conversely, the reverse transformation utilizes the reaction between dithiocarbamate and bistrithiocarbonate disulfide under a cationic mechanism. Employing this strategy, we demonstrate a series of synthetic examples featuring discrete oligomers containing acrylate, maleimide, vinyl ether, and styrene, compositions unattainable through the SUMI of a single mechanism alone.
Collapse
Affiliation(s)
- Wei He
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Wei Tao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ze Wei
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Guoming Tong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiaojuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiajia Tan
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Sheng Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
3
|
Yuan R, Fang Z, Liu F, He X, Du S, Zhang N, Zeng Q, Wei Y, Wu Y, Tao L. Ferrocene-Based Antioxidant Self-Healing Hydrogel via the Biginelli Reaction for Wound Healing. ACS Macro Lett 2024; 13:475-482. [PMID: 38591821 DOI: 10.1021/acsmacrolett.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The development of antioxidant wound dressings to remove excessive free radicals around wounds is essential for wound healing. In this study, we developed an efficient strategy to prepare antioxidant self-healing hydrogels as wound dressings by combining multicomponent reactions (MCRs) and postpolymerization modification. A polymer containing ferrocene and phenylboronic acid groups was developed via the Biginelli reaction, followed by efficient modification. This polymer is antioxidant due to its ferrocene moieties and can rapidly cross-link poly(vinyl alcohol) to realize an antioxidant self-healing hydrogel through dynamic borate ester linkages. This hydrogel has low cytotoxicity and is biocompatible. In in vivo experiments, this hydrogel is superior to existing clinical dressings in promoting wound healing. This study demonstrates the value of the Biginelli reaction in exploring biomaterials, potentially offering insights into the design of other multifunctional polymers and related materials using different MCRs.
Collapse
Affiliation(s)
- Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhao Fang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Fang Liu
- China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Sa Du
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Nan Zhang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Qiang Zeng
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Gao G, Hara M, Seki T, Takeoka Y. Synthesis of thermo-responsive polymer gels composed of star-shaped block copolymers by copper-catalyzed living radical polymerization and click reaction. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2302795. [PMID: 38361532 PMCID: PMC10868426 DOI: 10.1080/14686996.2024.2302795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/30/2023] [Indexed: 02/17/2024]
Abstract
In recent times, there has been a significant surge in research interest surrounding thermo-responsive water-soluble polyacrylamides, primarily due to their intriguing capability to undergo significant solubility changes in water. These polymers exhibit the remarkable ability to shift from a soluble to an insoluble state in response to temperature variations. The capacity of these polymers to dynamically respond to temperature changes opens up exciting avenues for designing smart materials with tunable properties, amplifying their utility across a spectrum of scientific and technological applications. Researchers have been particularly captivated by the potential applications of thermo-responsive water-soluble polyacrylamides in diverse fields such as drug delivery, gene carriers, tissue engineering, sensors, catalysis, and chromatography separation. This study reports the construction and functionalization of polymer gels consisting of a polymer network of polyacrylamide derivatives with nano-sized structural units. Specifically, thermo-responsive polymer gels were synthesized by combining well-defined star-shaped polymers composed of polyacrylamide derivatives with a multifunctional initiator and linking method through a self-accelerating click reaction. The polymerization system employed a highly living approach, resulting in polymer chains characterized by narrow molecular weight distributions. The method's high functionality facilitated the synthesis of a temperature-responsive block copolymer gel composed of N-isopropyl acrylamide (NIPA) and N-ethyl acrylamide (NEAA). The resulting polymer gel, comprising star-shaped block copolymers of NIPA and NEAA, showcases smooth volume changes with temperature jumps.
Collapse
Affiliation(s)
- Guohao Gao
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya, Japan
| | - Mitsuo Hara
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya, Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Yuan R, He X, Zhu C, Tao L. Recent Developments in Functional Polymers via the Kabachnik-Fields Reaction: The State of the Art. Molecules 2024; 29:727. [PMID: 38338468 PMCID: PMC10856324 DOI: 10.3390/molecules29030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Recently, multicomponent reactions (MCRs) have attracted much attention in polymer synthesis. As one of the most well-known MCRs, the Kabachnik-Fields (KF) reaction has been widely used in the development of new functional polymers. The KF reaction can efficiently introduce functional groups into polymer structures; thus, polymers prepared via the KF reaction have unique α-aminophosphonates and show important bioactivity, metal chelating abilities, and flame-retardant properties. In this mini-review, we mainly summarize the latest advances in the KF reaction to synthesize functional polymers for the preparation of heavy metal adsorbents, multifunctional hydrogels, flame retardants, and bioimaging probes. We also discuss some emerging applications of functional polymers prepared by means of the KF reaction. Finally, we put forward our perspectives on the further development of the KF reaction in polymer chemistry.
Collapse
Affiliation(s)
- Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| | - Chongyu Zhu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China;
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| |
Collapse
|
6
|
Tao W, He W, Feng X, Liu G, Shi Q, Tan J, Hu J, Yang S, Liu G, Yang R. Cationic Single-Unit Monomer Insertion (cSUMI): From Discrete Oligomers to the α-/ω-End and In-Chain Sequence-Regulated Polymers. J Am Chem Soc 2023; 145:3636-3646. [PMID: 36724078 DOI: 10.1021/jacs.2c12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Single-unit monomer insertion (SUMI) has become an important strategy for the synthesis of sequence-controlled vinyl polymers due to its strong versatility and high efficiency. However, all reported SUMI processes are based on a free-radical mechanism, resulting in a limited number of monomer types being applicable to SUMI or a limited number of sequences of structural units that SUMI can synthesize. Herein, we developed a novel SUMI based on a cationic mechanism (cSUMI), which operates through a degenerative (similar to radical SUMI) but cationic chain transfer process. By optimizing the chain transfer agent (CTA) and monomer pairs, a high-efficiency cSUMI was achieved for vinyl ether and styrene monomers. Based on this reaction, a range of discrete oligomers containing vinyl ether and styrene moieties, and even α-/ω-end and in-chain sequence-regulated polymers were synthesized, most of which cannot be achieved by radical SUMI. In addition, we explored the application of these sequence-regulated polymers in the preparation of miktoarm star polymers, delivery of photosensitizers, and solubilization of fluorescence probes. The development of SUMI with a new mechanism will certainly broaden the scope of structures and sequences in precise vinyl-based polymers.
Collapse
Affiliation(s)
- Wei Tao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.,Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei He
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xuepu Feng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guoqin Liu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiangqiang Shi
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiajia Tan
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sheng Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.,Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
7
|
Matsumoto M, Sutrisno L, Ariga K. Covalent nanoarchitectonics: Polymer synthesis with designer structures and sequences. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Michio Matsumoto
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
| | - Linawati Sutrisno
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
- Graduate School of Frontier Sciences The University of Tokyo Chiba Japan
| |
Collapse
|
8
|
Li Z, Li J, Zhao B, Pan X, Pan X, Zhu J. Photoinduced
RAFT Step‐Growth
Polymerization toward Degradable Living Polymer Networks. CHINESE J CHEM 2023. [DOI: 10.1002/cjoc.202200620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Zhuang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Bowen Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Xiaofeng Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
9
|
Boyer C, Kamigaito M, Satoh K, Moad G. Radical-Promoted Single-unit Monomer Insertion (SUMI) [aka. Reversible-Deactivation Radical Addition (RDRA)]. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Zhang YY, Yang GW, Xie R, Zhu XF, Wu GP. Sequence-Reversible Construction of Oxygen-Rich Block Copolymers from Epoxide Mixtures by Organoboron Catalysts. J Am Chem Soc 2022; 144:19896-19909. [PMID: 36256447 DOI: 10.1021/jacs.2c07857] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Switchable catalysis, in combination with epoxide-involved ring-opening (co)polymerization, is a powerful technique that can be used to synthesize various oxygen-rich block copolymers. Despite intense research in this field, the sequence-controlled polymerization from epoxide congeners has never been realized due to their similar ring-strain which exerts a decisive influence on the reaction process. Recently, quaternary ammonium (or phosphonium)-containing bifunctional organoboron catalysts have been developed by our group, showing high efficiency for various epoxide conversions. Herein, we, for the first time, report an operationally simple pathway to access well-defined polyether-block-polycarbonate copolymers from mixtures of epoxides by switchable catalysis, which was enabled through thermodynamically and kinetically preferential ring-opening of terminal epoxides or internal epoxides under different atmospheres (CO2 or N2) using one representative bifunctional organoboron catalyst. This strategy shows a broad substrate scope as it is suitable for various combinations of terminal epoxides and internal epoxides, delivering corresponding well-defined block copolymers. NMR, MALDI-TOF, and gel permeation chromatography analyses confirmed the successful construction of polyether-block-polycarbonate copolymers. Kinetic studies and density functional theory calculations elucidate the reversible selectivity between different epoxides in the presence/absence of CO2. Moreover, by replacing comonomer CO2 with cyclic anhydride, the well-defined polyether-block-polyester copolymers can also be synthesized. This work provides a rare example of sequence-controlled polymerization from epoxide mixtures, broadening the arsenal of switchable catalysis that can produce oxygen-rich polymers in a controlled manner.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Valle M, Ximenis M, Lopez de Pariza X, Chan JMW, Sardon H. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022; 61:e202203043. [PMID: 35700152 PMCID: PMC9545893 DOI: 10.1002/anie.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Organocatalysis has evolved into an effective complement to metal- or enzyme-based catalysis in polymerization, polymer functionalization, and depolymerization. The ease of removal and greater sustainability of organocatalysts relative to transition-metal-based ones has spurred development in specialty applications, e.g., medical devices, drug delivery, optoelectronics. Despite this, the use of organocatalysis and other organomediated reactions in polymer chemistry is still rapidly developing, and we envisage their rapidly growing application in nascent areas such as controlled radical polymerization, additive manufacturing, and chemical recycling in the coming years. In this Review, we describe ten trending areas where we anticipate paradigm shifts resulting from novel organocatalysts and other transition-metal-free conditions. We highlight opportunities and challenges and detail how new discoveries could lead to previously inaccessible functional materials and a potentially circular plastics economy.
Collapse
Affiliation(s)
- María Valle
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Marta Ximenis
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
- University of the Balearic Islands UIBDepartment of ChemistryCra. Valldemossa, Km 7.507122Palma de MallorcaSpain
| | - Xabier Lopez de Pariza
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| | - Julian M. W. Chan
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHU Jose Mari Korta CenterAvda Tolosa 7220018Donostia-San SebastianSpain
| |
Collapse
|
12
|
Furuya T, Koga T. Effects of Primary Structure of Reactive Polymers on Network Structure and Mechanical Properties of Gels. MACROMOL THEOR SIMUL 2022. [DOI: 10.1002/mats.202200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tsutomu Furuya
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Kyoto 615‐8510 Japan
| | - Tsuyoshi Koga
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Kyoto 615‐8510 Japan
| |
Collapse
|
13
|
Kamigaito M. Evolutions of precision radical polymerizations from metal-catalyzed radical addition: living polymerization, step-growth polymerization, and monomer sequence control. Polym J 2022. [DOI: 10.1038/s41428-022-00680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Sardon H, Valle M, Lopez de Pariza X, Ximenis M, Chan JM. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Haritz Sardon
- University of Basque Country POLYMAT Paseo Manuel Lardizabal n 3 20018 San Sebastian SPAIN
| | - María Valle
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | | | - Marta Ximenis
- University of the Basque Country: Universidad del Pais Vasco POLYMAT SPAIN
| | - Julian M.W. Chan
- Agency for Science Technology and Research Institue of Chemical and Engineering Science SINGAPORE
| |
Collapse
|
15
|
Qu R, Suo H, Gu Y, Weng Y, Qin Y. Sidechain Metallopolymers with Precisely Controlled Structures: Synthesis and Application in Catalysis. Polymers (Basel) 2022; 14:1128. [PMID: 35335458 PMCID: PMC8956016 DOI: 10.3390/polym14061128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Inspired by the cooperative multi-metallic activation in metalloenzyme catalysis, artificial enzymes as multi-metallic catalysts have been developed for improved kinetics and higher selectivity. Previous models about multi-metallic catalysts, such as cross-linked polymer-supported catalysts, failed to precisely control the number and location of their active sites, leading to low activity and selectivity. In recent years, metallopolymers with metals in the sidechain, also named as sidechain metallopolymers (SMPs), have attracted much attention because of their combination of the catalytic, magnetic, and electronic properties of metals with desirable mechanical and processing properties of polymeric backbones. Living and controlled polymerization techniques provide access to SMPs with precisely controlled structures, for example, controlled degree of polymerization (DP) and molecular weight dispersity (Đ), which may have excellent performance as multi-metallic catalysts in a variety of catalytic reactions. This review will cover the recent advances about SMPs, especially on their synthesis and application in catalysis. These tailor-made SMPs with metallic catalytic centers can precisely control the number and location of their active sites, exhibiting high catalytic efficiency.
Collapse
Affiliation(s)
- Rui Qu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Hongyi Suo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Yanan Gu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| | - Yunxuan Weng
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; (R.Q.); (H.S.); (Y.G.)
| |
Collapse
|
16
|
Li X, Han L, Zhang R, Li C, Zhang S, Bai H, Wang X, Wang B, Ma H. Regulation from gradient to near periodic sequence during anionic copolymerization of styrene and dimethyl-[4-(1-phenyl-vinyl)phenyl]silane (DPE-SiH). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Li Z, Li J, Pan X, Zhang Z, Zhu J. Catalyst-Free, Visible-Light-Induced Step-Growth Polymerization by a Photo-RAFT Single-Unit Monomer Insertion Reaction. ACS Macro Lett 2022; 11:230-235. [PMID: 35574774 DOI: 10.1021/acsmacrolett.1c00762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photoinduced polymerization is an attractive technique with the advantages of easy operation, mild conditions, and excellent temporospatial controllability. However, the application of this technique in step-growth polymerization is highly challenging. Here, we present a catalyst-free, visible-light-induced step-growth polymerization method utilizing a photo-RAFT single-unit monomer insertion reaction between the xanthate and vinyl ether groups. Benefitting from this reaction, a pendant cationic RAFT agent can be generated in each repeating unit of the polymer backbone. Both cationic and radical side chain extensions were successfully realized, providing a facile approach for the postpolymerization of step-growth polymers for the development of various functional polymeric materials.
Collapse
Affiliation(s)
- Zhuang Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Maruyama K, Kanazawa A, Aoshima S. ABC-Type Periodic Terpolymer Synthesis by a One-Pot Approach Consisting of Oxirane- and Carbonyl-Derived Cyclic Acetal Generation and Subsequent Living Cationic Alternating Copolymerization with a Vinyl Monomer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kazuya Maruyama
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
19
|
Miyajima M, Satoh K, Kamigaito M. Periodically Functionalized Sequence‐Regulated Vinyl Polymers via Iterative Atom Transfer Radical Additions and Acyclic Diene Metathesis Polymerization. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Masato Miyajima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1‐H120 Ookayama, Meguro‐ku Tokyo 152‐8550 Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| |
Collapse
|
20
|
Yang Y, Yu K, Liu S, Yan J, Lai H, Xing F, Xiao P. Radical Ring-Opening Single Unit Monomer Insertion: An Approach to Degradable and Biocompatible Sequence-Defined Oligomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yili Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Keman Yu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Shan Liu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Jieyu Yan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Haiwang Lai
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
| | - Feiyue Xing
- Department of Immunobiology, College of Life Science and Technology, Jinan University, #601 Huangpu West Avenue, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou 510632, China
| | - Pu Xiao
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
21
|
Kwon D, Jochi Y, Okaya Y, Seki T, Satoh K, Kamigaito M, Hoshino T, Urayama K, Takeoka Y. Nonturbid Fast Temperature-Responsive Hydrogels with Homogeneous Three-Dimensional Networks by Two Types of Star Polymer Synthesis Methods. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- DoWoo Kwon
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuto Jochi
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yuumi Okaya
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taiki Hoshino
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-51982, Japan
| | - Kenji Urayama
- Department of Macromolecular Science & Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
22
|
Zhang Y, Cao X, Gao Y, Xie Y, Huang Z, Zhang Z, Zhu X. Bridging from the Sequence to Architecture: Graft Copolymers Engineering
via
Successive Latent Monomer and Grafting‐from Strategies
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yajie Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Xiaohuan Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Yang Gao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Yujie Xie
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Zhihao Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University Suzhou Jiangsu 215123 China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
- Global Institute of Software Technology, No. 5 Qingshan Road, Suzhou National Hi‐Tech District Suzhou Jiangsu 215163 China
| |
Collapse
|
23
|
Jia Z, Jiang J, Zhang X, Cui Y, Chen Z, Pan X, Wu J. Isotactic-Alternating, Heterotactic-Alternating, and ABAA-Type Sequence-Controlled Copolyester Syntheses via Highly Stereoselective and Regioselective Ring-Opening Polymerization of Cyclic Diesters. J Am Chem Soc 2021; 143:4421-4432. [PMID: 33724019 DOI: 10.1021/jacs.1c00902] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesizing different types of sequence-controlled copolyesters can enrich the diversity of copolyesters and modify their properties more precisely, but it is still a challenge to synthesize a complicated sequence-controlled copolyester using different hydroxy acids in a living polymerization manner. In this work, a highly regioselective and stereoselective catalytic system was developed to synthesize biorenewable and biodegradable copolyesters of mandelic acid and lactic acid with isotactic-alternating, heterotactic-alternating, and ABAA-type precise and complicated sequences. Because of the regular incorporation of mandelic acid into polylactide, these sequence-controlled copolymers of mandelic acid and lactic acid show higher glass-transition temperatures than polylactide and a random copolymer. A stereocomplexation interaction between two opposite enantiomeric isotactic polymer chains was also discovered in the isotactic-alternating copolymer.
Collapse
Affiliation(s)
- Zhaowei Jia
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jinxing Jiang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yaqin Cui
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, People's Republic of China
| | - Zhichun Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
24
|
Ousaka N, Endo T. One-Pot Nonisocyanate Synthesis of Sequence-Controlled Poly(hydroxy urethane)s from a Bis(six-membered cyclic carbonate) and Two Different Diamines. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Naoki Ousaka
- Molecular Engineering Institute, Kyushu Institute of Technology, Tobata-ku, Kitakyushu 804-8550, Japan
| | - Takeshi Endo
- Molecular Engineering Institute, Kyushu Institute of Technology, Tobata-ku, Kitakyushu 804-8550, Japan
| |
Collapse
|
25
|
Miyajima M, Satoh K, Kamigaito M. Sequence-regulated vinyl polymers via iterative atom transfer radical additions and acyclic diene metathesis polymerization. Polym Chem 2021. [DOI: 10.1039/d0py01564d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Iterative ATRAs and ADMET polymerization enabled the synthesis of sequence-regulated vinyl polymers without statistical distribution of monomer compositions and sequences.
Collapse
Affiliation(s)
- Masato Miyajima
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
26
|
Lin ST, Wang CC, Chang CJ, Nakamura Y, Lin KYA, Huang CF. Progress in the Preparation of Functional and (Bio)Degradable Polymers via Living Polymerizations. Int J Mol Sci 2020; 21:E9581. [PMID: 33339183 PMCID: PMC7765598 DOI: 10.3390/ijms21249581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022] Open
Abstract
This review presents the latest developments in (bio)degradable approaches and functional aliphatic polyesters and polycarbonates prepared by typical ring-opening polymerization (ROP) of lactones and trimethylene carbonates. It also considers several recent innovative synthetic methods including radical ring-opening polymerization (RROP), atom transfer radical polyaddition (ATRPA), and simultaneous chain- and step-growth radical polymerization (SCSRP) that produce aliphatic polyesters. With regard to (bio)degradable approaches, we have summarized several representative cleavable linkages that make it possible to obtain cleavable polymers. In the section on functional aliphatic polyesters, we explore the syntheses of specific functional lactones, which can be performed by ring-opening copolymerization of typical lactone/lactide monomers. Last but not the least, in the recent innovative methods section, three interesting synthetic methodologies, RROP, ATRPA, and SCSRP are discussed in detail with regard to their reaction mechanisms and polymer functionalities.
Collapse
Affiliation(s)
- Si-Ting Lin
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402-27, Taiwan;
| | - Chung-Chi Wang
- Division of Cardiovascular Surgery, Veterans General Hospital, Taichung 407-05, Taiwan;
| | - Chi-Jung Chang
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Seatwen District, Taichung 40724, Taiwan;
| | - Yasuyuki Nakamura
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science, Tsukuba 305-0047, Japan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402-27, Taiwan
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 402-27, Taiwan;
| |
Collapse
|
27
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Miyajima M, Satoh K, Horibe T, Ishihara K, Kamigaito M. Multifactor Control of Vinyl Monomer Sequence, Molecular Weight, and Tacticity via Iterative Radical Additions and Olefin Metathesis Reactions. J Am Chem Soc 2020; 142:18955-18962. [DOI: 10.1021/jacs.0c09289] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Masato Miyajima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H120 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takahiro Horibe
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
29
|
Construction methodologies and sequence-oriented properties of sequence-controlled oligomers/polymers generated via radical polymerization. Polym J 2020. [DOI: 10.1038/s41428-020-00405-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020; 252:120078. [PMID: 32417653 DOI: 10.1016/j.biomaterials.2020.120078] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Synthetic macromolecular antimicrobials have shown efficacy in the treatment of multidrug resistant (MDR) pathogens. These synthetic macromolecules, inspired by Nature's antimicrobial peptides (AMPs), mitigate resistance by disrupting microbial cell membrane or targeting multiple intracellular proteins or genes. Unlike AMPs, these polymers are less prone to degradation by proteases and are easier to synthesize on a large scale. Recently, various studies have revealed that cancer cell membrane, like that of microbes, is negatively charged, and AMPs can be used as anticancer agents. Nevertheless, efforts in developing polymers as anticancer agents has remained limited. This review highlights the recent advancement in the development of synthetic biodegradable antimicrobial polymers (e.g. polycarbonates, polyesters and polypeptides) and anticancer macromolecules including peptides and polymers. Additionally, strategies to improve their in vivo bioavailability and selectivity towards bacteria and cancer cells are examined. Lastly, future perspectives, including use of artificial intelligence or machine learning, in the development of antimicrobial and anticancer macromolecules are discussed.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
31
|
Yu H, Li S, Schwieter KE, Liu Y, Sun B, Moore JS, Schroeder CM. Charge Transport in Sequence-Defined Conjugated Oligomers. J Am Chem Soc 2020; 142:4852-4861. [PMID: 32069403 DOI: 10.1021/jacs.0c00043] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A major challenge in synthetic polymers lies in understanding how primary monomer sequence affects materials properties. In this work, we show that charge transport in single molecule junctions of conjugated oligomers critically depends on the primary sequence of monomers. A series of sequence-defined oligomers ranging from two to seven units was synthesized by an iterative approach based on the van Leusen reaction, providing conjugated oligomers with backbones consisting of para-linked phenylenes connected to oxazole, imidazole, or nitro-substituted pyrrole. The charge transport properties of these materials were characterized using a scanning tunneling microscope-break junction (STM-BJ) technique, thereby enabling direct measurement of molecular conductance for sequence-defined dimers, trimers, pentamers, and a heptamer. Our results show that oligomers with specific monomer sequences exhibit unexpected and distinct charge transport pathways that enhance molecular conductance more than 10-fold. A systematic analysis using monomer substitution patterns established that sequence-defined pentamers containing imidazole or pyrrole groups in specific locations provide molecular attachment points on the backbone to the gold electrodes, thereby giving rise to multiple conductance pathways. These findings reveal the subtle but important role of molecular structure including steric hindrance and directionality of heterocycles in determining charge transport in these molecular junctions. This work brings new understanding for designing molecular electronic components.
Collapse
Affiliation(s)
- Hao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Songsong Li
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kenneth E Schwieter
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yun Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Ntoukam DHS, Mutlu H, Theato P. Post-polymerization modification of Poly(vinylcyclopropanes): A potential route to periodic copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Wang S, Zhang H, He W, Zhou H, Tao Y. Sequence-controlled proline-based polyacrylamides via RAFT polymerization: Influence of sequence structure on polymers performances. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Lu J, Li J, Wang J, Du M, Liu H. Precision AABB-type cyclocopolymers via alternating cyclocopolymerization of disiloxane-tethered divinyl monomers. Polym Chem 2020. [DOI: 10.1039/c9py01748h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free radical cyclocopolymerization of divinyl monomers bMA and bSt in the presence of ZnCl2 yields a cyclocopolymer with an AABB-type chain sequence.
Collapse
Affiliation(s)
- Jun Lu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Junjiang Li
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Jinghang Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Min Du
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Hewen Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
35
|
|
36
|
Nishimori K, Ouchi M. AB-alternating copolymers via chain-growth polymerization: synthesis, characterization, self-assembly, and functions. Chem Commun (Camb) 2020; 56:3473-3483. [DOI: 10.1039/d0cc00275e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this review, four topics on alternating copolymers synthesized via chain-growth polymerization are reviewed: (1) how to control the alternating sequence; (2) sequence analysis; (3) self-assembly; and (4) functions.
Collapse
Affiliation(s)
- Kana Nishimori
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
37
|
Shi X, Zhang X, Ni XL, Zhang H, Wei P, Liu J, Xing H, Peng HQ, Lam JWY, Zhang P, Wang Z, Hao H, Tang BZ. Supramolecular Polymerization with Dynamic Self-Sorting Sequence Control. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiujuan Shi
- HKUST Shenzhen Research Institute, No. 9 Yuexing first RD, South Area Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xiaodong Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Haoke Zhang
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Peifa Wei
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Junkai Liu
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hao Xing
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hui-Qing Peng
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W. Y. Lam
- HKUST Shenzhen Research Institute, No. 9 Yuexing first RD, South Area Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Pengfei Zhang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Zaiyu Wang
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hongxia Hao
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education and Collaborative Innovation Center of Judicial Civilization, Beijing 100088, China
| | - Ben Zhong Tang
- HKUST Shenzhen Research Institute, No. 9 Yuexing first RD, South Area Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Department of Chemical and Biological Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
38
|
Xu J. Single Unit Monomer Insertion: A Versatile Platform for Molecular Engineering through Radical Addition Reactions and Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01365] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
39
|
Synthesis of sequence-controlled polymers via sequential multicomponent reactions and interconvertible hybrid copolymerizations. Polym J 2019. [DOI: 10.1038/s41428-019-0266-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Mimura M, Kanazawa A, Aoshima S. ABC Pseudo-Periodic Sequence Control by Cationic Orthogonal Terpolymerization of Vinyl Ether, Oxirane, and Ketone. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Maki Mimura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
41
|
Zhang W, Liu Y, Huang J, Liu T, Xu W, Cheng SZD, Dong XH. Engineering self-assembly of giant molecules in the condensed state based on molecular nanoparticles. SOFT MATTER 2019; 15:7108-7116. [PMID: 31482930 DOI: 10.1039/c9sm01502g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In biological systems, it is well-known that the activities and functions of biomacromolecules are dictated not only by their primary chemistries, but also by their secondary, tertiary, and quaternary hierarchical structures. Achieving control of similar levels in synthetic macromolecules is yet to be demonstrated. Most of the critical molecular parameters associated with molecular and hierarchical structures, such as size, composition, topology, sequence, and stereochemistry, are heterogenous, which impedes the exploration and understanding of structure formation and manipulation. Alternatively, in the past few years we have developed a unique giant molecule system based on molecular nanoparticles, in which the above-mentioned molecular parameters, as well as interactions, are precisely defined and controlled. These molecules could self-assemble into a myriad of unconventional and unique structures in the bulk, thin films, and solution. Giant molecules thus offer a robust platform to manipulate the hierarchical structures via precise and modular assemblies of building blocks in an amplified size level compared with small molecules. It has been found that they are not only scientifically intriguing, but also technologically relevant.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Shiraogawa T, Ehara M. Theoretical Study on the Optical Properties of Multichromophoric Systems Based on an Exciton Approach: Modification Guidelines. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Takafumi Shiraogawa
- SOKENDAIThe Graduate University for Advanced Studies Nishigonaka 38, Myodaiji Okazaki 444-8585 Japan
| | - Masahiro Ehara
- SOKENDAIThe Graduate University for Advanced Studies Nishigonaka 38, Myodaiji Okazaki 444-8585 Japan
- Institute for Molecular Science and Research Center for Computational Science Nishigonaka 38, Myodaiji Okazaki 444-8585 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto University Kyoto 615-8245 Japan
| |
Collapse
|
43
|
Huang YS, Chen JK, Kuo SW, Hsieh YA, Yamamoto S, Nakanishi J, Huang CF. Synthesis of Poly( N-vinylpyrrolidone)-Based Polymer Bottlebrushes by ATRPA and RAFT Polymerization: Toward Drug Delivery Application. Polymers (Basel) 2019; 11:E1079. [PMID: 31234554 PMCID: PMC6631111 DOI: 10.3390/polym11061079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/29/2023] Open
Abstract
Atom transfer radical polyaddition (ATRPA) was utilized herein to synthesize a specific functional polyester. We conducted ATRPA of 4-vinylbenzyl 2-bromo-2-phenylacetate (VBBPA) inimer and successfully obtained a linear type poly(VBBPA) (PVBBPA) polyester with benzylic bromides along the backbone. To obtain a novel amphiphilic polymer bottlebrush, however, the lateral ATRP chain extension of PVBBPA with N-vinyl pyrrolidone (NVP) met the problem of quantitative dimerization. By replacing the bromides to xanthate moieties efficiently, we thus observed a pseudo linear first order reversible addition-fragmentation chain transfer (RAFT) polymerization to obtain novel poly(4-vinylbenzyl-2-phenylacetate)-g-poly(NVP) (PVBPA-g-PNVP) amphiphilic polymer bottlebrushes. The critical micelle concentration (CMC) and particle size of the amphiphilic polymer bottlebrushes were characterized by fluorescence spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM) (CMCs < 0.5 mg/mL; particle sizes = ca. 100 nm). Toward drug delivery application, we examined release profiles using a model drug of Nile red at different pH environments (3, 5, and 7). Eventually, low cytotoxicity and well cell uptake of the Madin-Darby Canine Kidney Epithelial (MDCK) for the polymer bottlebrush micelles were demonstrated.
Collapse
Affiliation(s)
- Yi-Shen Huang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ya-An Hsieh
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| | - Shota Yamamoto
- World Premier International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Jun Nakanishi
- World Premier International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Chih-Feng Huang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
| |
Collapse
|
44
|
Tao Y, Wang Z, Tao Y. Polypeptoids synthesis based on Ugi reaction: Advances and perspectives. Biopolymers 2019; 110:e23288. [DOI: 10.1002/bip.23288] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Yue Tao
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
- College of Applied Chemistry and Engineering, University of Science and Technology of China Hefei China
| | - Zhen Wang
- College of Applied Chemistry and Engineering, University of Science and Technology of China Hefei China
- Laboratory of Polymer Composites EngineeringChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Youhua Tao
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
- College of Applied Chemistry and Engineering, University of Science and Technology of China Hefei China
| |
Collapse
|
45
|
Satoh K, Ishizuka K, Hamada T, Handa M, Abe T, Ozawa S, Miyajima M, Kamigaito M. Construction of Sequence-Regulated Vinyl Copolymers via Iterative Single Vinyl Monomer Additions and Subsequent Metal-Catalyzed Step-Growth Radical Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00676] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kotaro Satoh
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kenta Ishizuka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tsuyoshi Hamada
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masato Handa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tomohiro Abe
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Satoshi Ozawa
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masato Miyajima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
46
|
Zhao B, Gao Z, Zheng Y, Gao C. Scalable Synthesis of Positively Charged Sequence-Defined Functional Polymers. J Am Chem Soc 2019; 141:4541-4546. [PMID: 30835105 DOI: 10.1021/jacs.9b00172] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthesizing and characterizing sequence-defined polymers with positively charged backbone are great challenges. By alternately processing Menschutkin reaction and Cu-catalyzed azide-alkyne cycloaddition reaction, we successfully synthesized series of scalable cationic sequence-defined polymers with quaternary ammonium backbone up to 12 repeating units and characterized their precise structures. Due to the dramatic polarity difference between weak polar feed molecules and strong polar target molecules, simple precipitation in weak polar solvents is enough to obtain pure sequence-defined polymers. Such a polar-inverse strategy (PIS), without protecting groups and solid support, offers extremely high yields up to 68% after 12 reaction steps (i.e., average yield >95% for each step), favoring cost-effective large-scale production. Because of the independent reactivity of selected functional groups, the cationic sequence-defined polymers are highly programmable, including backbone composition, sequence order, functional side groups, terminal groups and topological structure. Sequence information decoding is easily achieved according to Maldi-Tof mass spectrum without retrospecting its synthetic history, resulting in a great superiority in the field of information transmitting and reading. The resulting multifunctional sequence-defined polymers are water-soluble and positively charged, opening the avenue to bioapplications such as condensing DNA, gene transfection and drug delivery.
Collapse
Affiliation(s)
- Bo Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Zhengguo Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China.,Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering , Yantai University , 30 Qingquan Road , Yantai 264005 , P. R. China
| | - Yaochen Zheng
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering , Yantai University , 30 Qingquan Road , Yantai 264005 , P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| |
Collapse
|
47
|
Huang Z, Corrigan N, Lin S, Boyer C, Xu J. Upscaling single unit monomer insertion to synthesize discrete oligomers. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29330] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zixuan Huang
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering UNSW Sydney Kensington New South Wales 2052 Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering UNSW Sydney Kensington New South Wales 2052 Australia
| | - Shiyang Lin
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering UNSW Sydney Kensington New South Wales 2052 Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering UNSW Sydney Kensington New South Wales 2052 Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering UNSW Sydney Kensington New South Wales 2052 Australia
| |
Collapse
|
48
|
Li C, Han L, Ma H, Shen H, Yang L, Liu P, Hao X, Li Y. Synthesis of monodisperse isomeric oligomers based on meta-/ para- and linear/star-monomer precursors with Ugi–hydrosilylation orthogonal cycles. Polym Chem 2019. [DOI: 10.1039/c9py00307j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Monodisperse oligomers were precisely prepared through orthogonal cycles of Ugi-4CRs and hydrosilylation coupling reactions, and the “monodisperse isomeric oligomers” were explored.
Collapse
Affiliation(s)
- Chao Li
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Li Han
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Hongwei Ma
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Heyu Shen
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Lincan Yang
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Pibo Liu
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Xinyu Hao
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| | - Yang Li
- Department of Polymer Science and Engineering
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
49
|
Liu K, Li A, Yang Z, Jiang A, Xie F, Li S, Xia J, She Z, Tang K, Zhou C. Synthesis of strictly alternating copolymers by living carbanionic copolymerization of diphenylethylene with 1,3-pentadiene isomers. Polym Chem 2019. [DOI: 10.1039/c9py00008a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The living carbanionic alternating copolymerizations of 1,3-pentadiene isomers with DPE are reported, and yield well-defined alternating and highly stereoregular amorphous copolymers with controllable Mn, low ĐM and predominantly trans-1,4 units.
Collapse
|
50
|
Nakipoglu B, Yilmaz G, Yagci Y. Visible light induced radical coupling reactions for the synthesis of conventional polycondensates. Polym Chem 2019. [DOI: 10.1039/c9py01140d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a facile visible light induced synthetic method for preparing a series of conventional polycondensates, namely polyesters, polyurethanes and polyamides.
Collapse
Affiliation(s)
- Busra Nakipoglu
- Istanbul Technical University
- Department of Chemistry
- Istanbul
- Turkey
| | - Gorkem Yilmaz
- Istanbul Technical University
- Department of Chemistry
- Istanbul
- Turkey
| | - Yusuf Yagci
- Istanbul Technical University
- Department of Chemistry
- Istanbul
- Turkey
- Center of Excellence for Advanced Materials Research (CEAMR) and Department of Chemistry
| |
Collapse
|