1
|
Galenkamp NS, Zernia S, Van Oppen YB, van den Noort M, Milias-Argeitis A, Maglia G. Allostery can convert binding free energies into concerted domain motions in enzymes. Nat Commun 2024; 15:10109. [PMID: 39572546 PMCID: PMC11582565 DOI: 10.1038/s41467-024-54421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Enzymatic mechanisms are typically inferred from structural data. However, understanding enzymes require unravelling the intricate dynamic interplay between dynamics, conformational substates, and multiple protein structures. Here, we use single-molecule nanopore analysis to investigate the catalytic conformational changes of adenylate kinase (AK), an enzyme that catalyzes the interconversion of various adenosine phosphates (ATP, ADP, and AMP). Kinetic analysis validated by hidden Markov models unravels the details of domain motions during catalysis. Our findings reveal that allosteric interactions between ligands and cofactor enable converting binding energies into directional conformational changes of the two catalytic domains of AK. These coordinated motions emerged to control the exact sequence of ligand binding and the affinity for the three different substrates, thereby guiding the reactants along the reaction coordinates. Interestingly, we find that about 10% of enzymes show altered allosteric regulation and ligand affinities, indicating that a subset of enzymes folds in alternative catalytically active forms. Since molecules or proteins might be able to selectively stabilize one of the folds, this observation suggests an evolutionary path for allostery in enzymes. In AK, this complex catalytic framework has likely emerged to prevent futile ATP/ADP hydrolysis and to regulate the enzyme for different energy needs of the cell.
Collapse
Affiliation(s)
- Nicole Stéphanie Galenkamp
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Sarah Zernia
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Yulan B Van Oppen
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Marco van den Noort
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Giovanni Maglia
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
2
|
Muir DF, Asper GPR, Notin P, Posner JA, Marks DS, Keiser MJ, Pinney MM. Evolutionary-Scale Enzymology Enables Biochemical Constant Prediction Across a Multi-Peaked Catalytic Landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619915. [PMID: 39484523 PMCID: PMC11526920 DOI: 10.1101/2024.10.23.619915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Quantitatively mapping enzyme sequence-catalysis landscapes remains a critical challenge in understanding enzyme function, evolution, and design. Here, we expand an emerging microfluidic platform to measure catalytic constants-k cat and K M-for hundreds of diverse naturally occurring sequences and mutants of the model enzyme Adenylate Kinase (ADK). This enables us to dissect the sequence-catalysis landscape's topology, navigability, and mechanistic underpinnings, revealing distinct catalytic peaks organized by structural motifs. These results challenge long-standing hypotheses in enzyme adaptation, demonstrating that thermophilic enzymes are not slower than their mesophilic counterparts. Combining the rich representations of protein sequences provided by deep-learning models with our custom high-throughput kinetic data yields semi-supervised models that significantly outperform existing models at predicting catalytic parameters of naturally occurring ADK sequences. Our work demonstrates a promising strategy for dissecting sequence-catalysis landscapes across enzymatic evolution and building family-specific models capable of accurately predicting catalytic constants, opening new avenues for enzyme engineering and functional prediction.
Collapse
Affiliation(s)
- Duncan F Muir
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Program in Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Garrison P R Asper
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Pascal Notin
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Jacob A Posner
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael J Keiser
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Margaux M Pinney
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Valhalla Fellow, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Nam K, Thodika ARA, Tischlik S, Phoeurk C, Nagy TM, Schierholz L, Ådén J, Rogne P, Drescher M, Sauer-Eriksson AE, Wolf-Watz M. Magnesium induced structural reorganization in the active site of adenylate kinase. SCIENCE ADVANCES 2024; 10:eado5504. [PMID: 39121211 PMCID: PMC11313852 DOI: 10.1126/sciadv.ado5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Phosphoryl transfer is a fundamental reaction in cellular signaling and metabolism that requires Mg2+ as an essential cofactor. While the primary function of Mg2+ is electrostatic activation of substrates, such as ATP, the full spectrum of catalytic mechanisms exerted by Mg2+ is not known. In this study, we integrate structural biology methods, molecular dynamic (MD) simulations, phylogeny, and enzymology assays to provide molecular insights into Mg2+-dependent structural reorganization in the active site of the metabolic enzyme adenylate kinase. Our results demonstrate that Mg2+ induces a conformational rearrangement of the substrates (ATP and ADP), resulting in a 30° adjustment of the angle essential for reversible phosphoryl transfer, thereby optimizing it for catalysis. MD simulations revealed transitions between conformational substates that link the fluctuation of the angle to large-scale enzyme dynamics. The findings contribute detailed insight into Mg2+ activation of enzymes and may be relevant for reversible and irreversible phosphoryl transfer reactions.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | - Sonja Tischlik
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Chanrith Phoeurk
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Bio-Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | | | - Léon Schierholz
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Malte Drescher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | | | | |
Collapse
|
4
|
Alavi Z, Casanova-Morales N, Quiroga-Roger D, Wilson CAM. Towards the understanding of molecular motors and its relationship with local unfolding. Q Rev Biophys 2024; 57:e7. [PMID: 38715547 DOI: 10.1017/s0033583524000052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Molecular motors are machines essential for life since they convert chemical energy into mechanical work. However, the precise mechanism by which nucleotide binding, catalysis, or release of products is coupled to the work performed by the molecular motor is still not entirely clear. This is due, in part, to a lack of understanding of the role of force in the mechanical-structural processes involved in enzyme catalysis. From a mechanical perspective, one promising hypothesis is the Haldane-Pauling hypothesis which considers the idea that part of the enzymatic catalysis is strain-induced. It suggests that enzymes cannot be efficient catalysts if they are fully complementary to the substrates. Instead, they must exert strain on the substrate upon binding, using enzyme-substrate energy interaction (binding energy) to accelerate the reaction rate. A novel idea suggests that during catalysis, significant strain energy is built up, which is then released by a local unfolding/refolding event known as 'cracking'. Recent evidence has also shown that in catalytic reactions involving conformational changes, part of the heat released results in a center-of-mass acceleration of the enzyme, raising the possibility that the heat released by the reaction itself could affect the enzyme's integrity. Thus, it has been suggested that this released heat could promote or be linked to the cracking seen in proteins such as adenylate kinase (AK). We propose that the energy released as a consequence of ligand binding/catalysis is associated with the local unfolding/refolding events (cracking), and that this energy is capable of driving the mechanical work.
Collapse
Affiliation(s)
- Zahra Alavi
- Department of Physics, Loyola Marymount University, Los Angeles, CA, USA
| | | | - Diego Quiroga-Roger
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Hernández Berthet AS, Aptekmann AA, Tejero J, Sánchez IE, Noguera ME, Roman EA. Associating protein sequence positions with the modulation of quantitative phenotypes. Arch Biochem Biophys 2024; 755:109979. [PMID: 38583654 DOI: 10.1016/j.abb.2024.109979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Although protein sequences encode the information for folding and function, understanding their link is not an easy task. Unluckily, the prediction of how specific amino acids contribute to these features is still considerably impaired. Here, we developed a simple algorithm that finds positions in a protein sequence with potential to modulate the studied quantitative phenotypes. From a few hundred protein sequences, we perform multiple sequence alignments, obtain the per-position pairwise differences for both the sequence and the observed phenotypes, and calculate the correlation between these last two quantities. We tested our methodology with four cases: archaeal Adenylate Kinases and the organisms optimal growth temperatures, microbial rhodopsins and their maximal absorption wavelengths, mammalian myoglobins and their muscular concentration, and inhibition of HIV protease clinical isolates by two different molecules. We found from 3 to 10 positions tightly associated with those phenotypes, depending on the studied case. We showed that these correlations appear using individual positions but an improvement is achieved when the most correlated positions are jointly analyzed. Noteworthy, we performed phenotype predictions using a simple linear model that links per-position divergences and differences in the observed phenotypes. Predictions are comparable to the state-of-art methodologies which, in most of the cases, are far more complex. All of the calculations are obtained at a very low information cost since the only input needed is a multiple sequence alignment of protein sequences with their associated quantitative phenotypes. The diversity of the explored systems makes our work a valuable tool to find sequence determinants of biological activity modulation and to predict various functional features for uncharacterized members of a protein family.
Collapse
Affiliation(s)
- Ayelén S Hernández Berthet
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA, C.A.B.A., Argentina.
| | - Ariel A Aptekmann
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Laboratorio de Fisiología de Proteínas, Buenos Aires, Argentina; Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08873, USA; Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Ignacio E Sánchez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Laboratorio de Fisiología de Proteínas, Buenos Aires, Argentina.
| | - Martín E Noguera
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini, Junín 956, 1113AAD, C.A.B.A., Argentina; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD, Bernal, Argentina.
| | - Ernesto A Roman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA, C.A.B.A., Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini, Junín 956, 1113AAD, C.A.B.A., Argentina.
| |
Collapse
|
6
|
Nam K, Arattu Thodika AR, Grundström C, Sauer UH, Wolf-Watz M. Elucidating Dynamics of Adenylate Kinase from Enzyme Opening to Ligand Release. J Chem Inf Model 2024; 64:150-163. [PMID: 38117131 PMCID: PMC10778088 DOI: 10.1021/acs.jcim.3c01618] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
This study explores ligand-driven conformational changes in adenylate kinase (AK), which is known for its open-to-close conformational transitions upon ligand binding and release. By utilizing string free energy simulations, we determine the free energy profiles for both enzyme opening and ligand release and compare them with profiles from the apoenzyme. Results reveal a three-step ligand release process, which initiates with the opening of the adenosine triphosphate-binding subdomain (ATP lid), followed by ligand release and concomitant opening of the adenosine monophosphate-binding subdomain (AMP lid). The ligands then transition to nonspecific positions before complete dissociation. In these processes, the first step is energetically driven by ATP lid opening, whereas the second step is driven by ATP release. In contrast, the AMP lid opening and its ligand release make minor contributions to the total free energy for enzyme opening. Regarding the ligand binding mechanism, our results suggest that AMP lid closure occurs via an induced-fit mechanism triggered by AMP binding, whereas ATP lid closure follows conformational selection. This difference in the closure mechanisms provides an explanation with implications for the debate on ligand-driven conformational changes of AK. Additionally, we determine an X-ray structure of an AK variant that exhibits significant rearrangements in the stacking of catalytic arginines, explaining its reduced catalytic activity. In the context of apoenzyme opening, the sequence of events is different. Here, the AMP lid opens first while the ATP lid remains closed, and the free energy associated with ATP lid opening varies with orientation, aligning with the reported AK opening and closing rate heterogeneity. Finally, this study, in conjunction with our previous research, provides a comprehensive view of the intricate interplay between various structural elements, ligands, and catalytic residues that collectively contribute to the robust catalytic power of the enzyme.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Abdul Raafik Arattu Thodika
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | | | - Uwe H. Sauer
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| | - Magnus Wolf-Watz
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| |
Collapse
|
7
|
Kim J, Moon S, Romo TD, Yang Y, Bae E, Phillips GN. Conformational dynamics of adenylate kinase in crystals. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:014702. [PMID: 38389978 PMCID: PMC10883716 DOI: 10.1063/4.0000205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
Adenylate kinase is a ubiquitous enzyme in living systems and undergoes dramatic conformational changes during its catalytic cycle. For these reasons, it is widely studied by genetic, biochemical, and biophysical methods, both experimental and theoretical. We have determined the basic crystal structures of three differently liganded states of adenylate kinase from Methanotorrus igneus, a hyperthermophilic organism whose adenylate kinase is a homotrimeric oligomer. The multiple copies of each protomer in the asymmetric unit of the crystal provide a unique opportunity to study the variation in the structure and were further analyzed using advanced crystallographic refinement methods and analysis tools to reveal conformational heterogeneity and, thus, implied dynamic behaviors in the catalytic cycle.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Tod D Romo
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Yifei Yang
- Departments of BioSciences, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
8
|
Knight AL, Widjaja V, Lisi GP. Temperature as a modulator of allosteric motions and crosstalk in mesophilic and thermophilic enzymes. Front Mol Biosci 2023; 10:1281062. [PMID: 37877120 PMCID: PMC10591084 DOI: 10.3389/fmolb.2023.1281062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Mesophilic and thermophilic enzyme counterparts are often studied to understand how proteins function under harsh conditions. To function well outside of standard temperature ranges, thermophiles often tightly regulate their structural ensemble through intra-protein communication (via allostery) and altered interactions with ligands. It has also become apparent in recent years that the enhancement or diminution of allosteric crosstalk can be temperature-dependent and distinguish thermophilic enzymes from their mesophilic paralogs. Since most studies of allostery utilize chemical modifications from pH, mutations, or ligands, the impact of temperature on allosteric function is comparatively understudied. Here, we discuss the biophysical methods, as well as critical case studies, that dissect temperature-dependent function of mesophilic-thermophilic enzyme pairs and their allosteric regulation across a range of temperatures.
Collapse
Affiliation(s)
| | | | - George P. Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| |
Collapse
|
9
|
Sarkar D, Lee H, Vant JW, Turilli M, Vermaas JV, Jha S, Singharoy A. Adaptive Ensemble Refinement of Protein Structures in High Resolution Electron Microscopy Density Maps with Radical Augmented Molecular Dynamics Flexible Fitting. J Chem Inf Model 2023; 63:5834-5846. [PMID: 37661856 DOI: 10.1021/acs.jcim.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have enabled modeling macromolecular complexes that are essential components of the cellular machinery. The density maps derived from cryo-EM experiments are often integrated with manual, knowledge-driven or artificial intelligence-driven and physics-guided computational methods to build, fit, and refine molecular structures. Going beyond a single stationary-structure determination scheme, it is becoming more common to interpret the experimental data with an ensemble of models that contributes to an average observation. Hence, there is a need to decide on the quality of an ensemble of protein structures on-the-fly while refining them against the density maps. We introduce such an adaptive decision-making scheme during the molecular dynamics flexible fitting (MDFF) of biomolecules. Using RADICAL-Cybertools, the new RADICAL augmented MDFF implementation (R-MDFF) is examined in high-performance computing environments for refinement of two prototypical protein systems, adenylate kinase and carbon monoxide dehydrogenase. For these test cases, use of multiple replicas in flexible fitting with adaptive decision making in R-MDFF improves the overall correlation to the density by 40% relative to the refinements of the brute-force MDFF. The improvements are particularly significant at high, 2-3 Å map resolutions. More importantly, the ensemble model captures key features of biologically relevant molecular dynamics that are inaccessible to a single-model interpretation. Finally, the pipeline is applicable to systems of growing sizes, which is demonstrated using ensemble refinement of capsid proteins from the chimpanzee adenovirus. The overhead for decision making remains low and robust to computing environments. The software is publicly available on GitHub and includes a short user guide to install R-MDFF on different computing environments, from local Linux-based workstations to high-performance computing environments.
Collapse
Affiliation(s)
- Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, East Lansing, Michigan 48824, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Hyungro Lee
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - John W Vant
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Matteo Turilli
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, East Lansing, Michigan 48824, United States
| | - Shantenu Jha
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
10
|
Kim S, Kang GH, Lim KM, Shin Y, Song K, Park S, An J, Kim DY, Shin HC, Cho SG. Thermostable Human Basic Fibroblast Growth Factor (TS-bFGF) Engineered with a Disulfide Bond Demonstrates Superior Culture Outcomes in Human Pluripotent Stem Cell. BIOLOGY 2023; 12:888. [PMID: 37372172 DOI: 10.3390/biology12060888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can differentiate into various tissues and are an essential source of various disease models and therapeutics. Various growth factors are required in order to culture pluripotent stem cells, among which basic fibroblast growth factor (bFGF) is essential for maintaining stem cell ability. However, bFGF has a short half-life (8 h) under normal mammalian cell culture conditions, and its activity decreases after 72 h, posing a serious problem in the production of high-quality stem cells. Here, we evaluated the various functions of pluripotent stem cells (PSCs) by utilizing an engineered thermostable bFGF (TS-bFGF) that is thermally stable and maintains activity longer under mammalian culture conditions. PSCs cultured with TS-bFGF showed better proliferation, stemness, morphology, and differentiation than cells cultured with wild-type bFGF. In light of the importance of stem cells in a wide range of applications in the medical and biotechnology fields, we anticipate that TS-bFGF, as a thermostable and long-acting bFGF, can play a key role in securing high-quality stem cells through various sets of stem cell culture processes.
Collapse
Affiliation(s)
- Sejong Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeokyung Shin
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kwonwoo Song
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sangrok Park
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jongyub An
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dae Young Kim
- PnP Biopharm Co., Ltd., 1304, Acetechnotower 8-cha, 11 Digital-ro 33-gil, Guro-gu, Seoul 08380, Republic of Korea
| | - Hang-Cheol Shin
- PnP Biopharm Co., Ltd., 1304, Acetechnotower 8-cha, 11 Digital-ro 33-gil, Guro-gu, Seoul 08380, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
Scheerer D, Adkar BV, Bhattacharyya S, Levy D, Iljina M, Riven I, Dym O, Haran G, Shakhnovich EI. Allosteric communication between ligand binding domains modulates substrate inhibition in adenylate kinase. Proc Natl Acad Sci U S A 2023; 120:e2219855120. [PMID: 37094144 PMCID: PMC10160949 DOI: 10.1073/pnas.2219855120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/22/2023] [Indexed: 04/26/2023] Open
Abstract
Enzymes play a vital role in life processes; they control chemical reactions and allow functional cycles to be synchronized. Many enzymes harness large-scale motions of their domains to achieve tremendous catalytic prowess and high selectivity for specific substrates. One outstanding example is provided by the three-domain enzyme adenylate kinase (AK), which catalyzes phosphotransfer between ATP to AMP. Here we study the phenomenon of substrate inhibition by AMP and its correlation with domain motions. Using single-molecule FRET spectroscopy, we show that AMP does not block access to the ATP binding site, neither by competitive binding to the ATP cognate site nor by directly closing the LID domain. Instead, inhibitory concentrations of AMP lead to a faster and more cooperative domain closure by ATP, leading in turn to an increased population of the closed state. The effect of AMP binding can be modulated through mutations throughout the structure of the enzyme, as shown by the screening of an extensive AK mutant library. The mutation of multiple conserved residues reduces substrate inhibition, suggesting that substrate inhibition is an evolutionary well conserved feature in AK. Combining these insights, we developed a model that explains the complex activity of AK, particularly substrate inhibition, based on the experimentally observed opening and closing rates. Notably, the model indicates that the catalytic power is affected by the microsecond balance between the open and closed states of the enzyme. Our findings highlight the crucial role of protein motions in enzymatic activity.
Collapse
Affiliation(s)
- David Scheerer
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Bharat V Adkar
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | | | - Dorit Levy
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Marija Iljina
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Inbal Riven
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Orly Dym
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
12
|
Dulko-Smith B, Ojeda-May P, Åden J, Wolf-Watz M, Nam K. Mechanistic Basis for a Connection between the Catalytic Step and Slow Opening Dynamics of Adenylate Kinase. J Chem Inf Model 2023; 63:1556-1569. [PMID: 36802243 PMCID: PMC11779523 DOI: 10.1021/acs.jcim.2c01629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Escherichia coli adenylate kinase (AdK) is a small, monomeric enzyme that synchronizes the catalytic step with the enzyme's conformational dynamics to optimize a phosphoryl transfer reaction and the subsequent release of the product. Guided by experimental measurements of low catalytic activity in seven single-point mutation AdK variants (K13Q, R36A, R88A, R123A, R156K, R167A, and D158A), we utilized classical mechanical simulations to probe mutant dynamics linked to product release, and quantum mechanical and molecular mechanical calculations to compute a free energy barrier for the catalytic event. The goal was to establish a mechanistic connection between the two activities. Our calculations of the free energy barriers in AdK variants were in line with those from experiments, and conformational dynamics consistently demonstrated an enhanced tendency toward enzyme opening. This indicates that the catalytic residues in the wild-type AdK serve a dual role in this enzyme's function─one to lower the energy barrier for the phosphoryl transfer reaction and another to delay enzyme opening, maintaining it in a catalytically active, closed conformation for long enough to enable the subsequent chemical step. Our study also discovers that while each catalytic residue individually contributes to facilitating the catalysis, R36, R123, R156, R167, and D158 are organized in a tightly coordinated interaction network and collectively modulate AdK's conformational transitions. Unlike the existing notion of product release being rate-limiting, our results suggest a mechanistic interconnection between the chemical step and the enzyme's conformational dynamics acting as the bottleneck of the catalytic process. Our results also suggest that the enzyme's active site has evolved to optimize the chemical reaction step while slowing down the overall opening dynamics of the enzyme.
Collapse
Affiliation(s)
- Beata Dulko-Smith
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Pedro Ojeda-May
- High Performance Computing Centre North (HPC2N), Umeå University, Umeå SE-90187, Sweden
| | - Jörgen Åden
- Department of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | | | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
13
|
Nam K, Wolf-Watz M. Protein dynamics: The future is bright and complicated! STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:014301. [PMID: 36865927 PMCID: PMC9974214 DOI: 10.1063/4.0000179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Biological life depends on motion, and this manifests itself in proteins that display motion over a formidable range of time scales spanning from femtoseconds vibrations of atoms at enzymatic transition states, all the way to slow domain motions occurring on micro to milliseconds. An outstanding challenge in contemporary biophysics and structural biology is a quantitative understanding of the linkages among protein structure, dynamics, and function. These linkages are becoming increasingly explorable due to conceptual and methodological advances. In this Perspective article, we will point toward future directions of the field of protein dynamics with an emphasis on enzymes. Research questions in the field are becoming increasingly complex such as the mechanistic understanding of high-order interaction networks in allosteric signal propagation through a protein matrix, or the connection between local and collective motions. In analogy to the solution to the "protein folding problem," we argue that the way forward to understanding these and other important questions lies in the successful integration of experiment and computation, while utilizing the present rapid expansion of sequence and structure space. Looking forward, the future is bright, and we are in a period where we are on the doorstep to, at least in part, comprehend the importance of dynamics for biological function.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | | |
Collapse
|
14
|
Verma A, Åberg-Zingmark E, Sparrman T, Mushtaq AU, Rogne P, Grundström C, Berntsson R, Sauer UH, Backman L, Nam K, Sauer-Eriksson E, Wolf-Watz M. Insights into the evolution of enzymatic specificity and catalysis: From Asgard archaea to human adenylate kinases. SCIENCE ADVANCES 2022; 8:eabm4089. [PMID: 36332013 PMCID: PMC9635829 DOI: 10.1126/sciadv.abm4089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Enzymatic catalysis is critically dependent on selectivity, active site architecture, and dynamics. To contribute insights into the interplay of these properties, we established an approach with NMR, crystallography, and MD simulations focused on the ubiquitous phosphotransferase adenylate kinase (AK) isolated from Odinarchaeota (OdinAK). Odinarchaeota belongs to the Asgard archaeal phylum that is believed to be the closest known ancestor to eukaryotes. We show that OdinAK is a hyperthermophilic trimer that, contrary to other AK family members, can use all NTPs for its phosphorylation reaction. Crystallographic structures of OdinAK-NTP complexes revealed a universal NTP-binding motif, while 19F NMR experiments uncovered a conserved and rate-limiting dynamic signature. As a consequence of trimerization, the active site of OdinAK was found to be lacking a critical catalytic residue and is therefore considered to be "atypical." On the basis of discovered relationships with human monomeric homologs, our findings are discussed in terms of evolution of enzymatic substrate specificity and cold adaptation.
Collapse
Affiliation(s)
- Apoorv Verma
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - Tobias Sparrman
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - Per Rogne
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - Ronnie Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Uwe H. Sauer
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Lars Backman
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | |
Collapse
|
15
|
Lu J, Scheerer D, Haran G, Li W, Wang W. Role of Repeated Conformational Transitions in Substrate Binding of Adenylate Kinase. J Phys Chem B 2022; 126:8188-8201. [PMID: 36222098 PMCID: PMC9589722 DOI: 10.1021/acs.jpcb.2c05497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The catalytic cycle of the enzyme adenylate kinase involves large conformational motions between open and closed states. A previous single-molecule experiment showed that substrate binding tends to accelerate both the opening and the closing rates and that a single turnover event often involves multiple rounds of conformational switching. In this work, we showed that the repeated conformational transitions of adenylate kinase are essential for the relaxation of incorrectly bound substrates into the catalytically competent conformation by combining all-atom and coarse-grained molecular simulations. In addition, free energy calculations based on all-atom and coarse-grained models demonstrated that the enzyme with incorrectly bound substrates has much a lower free energy barrier for domain opening compared to that with the correct substrate conformation, which may explain the the acceleration of the domain opening rate by substrate binding. The results of this work provide mechanistic understanding to previous experimental observations and shed light onto the interplay between conformational dynamics and enzyme catalysis.
Collapse
Affiliation(s)
- Jiajun Lu
- Department
of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing210093, China,Wenzhou
Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325000, China
| | - David Scheerer
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot761001, Israel
| | - Gilad Haran
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot761001, Israel,
| | - Wenfei Li
- Department
of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing210093, China,Wenzhou
Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325000, China,
| | - Wei Wang
- Department
of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing210093, China,
| |
Collapse
|
16
|
Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble. Sci Rep 2022; 12:10018. [PMID: 35705565 PMCID: PMC9200820 DOI: 10.1038/s41598-022-13714-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
Proteins exist in several different conformations. These structural changes are often associated with fluctuations at the residue level. Recent findings show that co-evolutionary analysis coupled with machine-learning techniques improves the precision by providing quantitative distance predictions between pairs of residues. The predicted statistical distance distribution from Multi Sequence Analysis reveals the presence of different local maxima suggesting the flexibility of key residue pairs. Here we investigate the ability of the residue-residue distance prediction to provide insights into the protein conformational ensemble. We combine deep learning approaches with mechanistic modeling to a set of proteins that experimentally showed conformational changes. The predicted protein models were filtered based on energy scores, RMSD clustering, and the centroids selected as the lowest energy structure per cluster. These models were compared to the experimental-Molecular Dynamics (MD) relaxed structure by analyzing the backbone residue torsional distribution and the sidechain orientations. Our pipeline allows to retrieve the experimental structural dynamics experimentally represented by different X-ray conformations for the same sequence as well the conformational space observed with the MD simulations. We show the potential correlation between the experimental structure dynamics and the predicted model ensemble demonstrating the susceptibility of the current state-of-the-art methods in protein folding and dynamics prediction and pointing out the areas of improvement.
Collapse
|
17
|
Kim H, Jeong M, Na DH, Ryu SH, Jeong EI, Jung K, Kang J, Lee HJ, Sim T, Yu DY, Yu HC, Cho BH, Jung YK. AK2 is an AMP-sensing negative regulator of BRAF in tumorigenesis. Cell Death Dis 2022; 13:469. [PMID: 35585049 PMCID: PMC9117275 DOI: 10.1038/s41419-022-04921-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
The RAS-BRAF signaling is a major pathway of cell proliferation and their mutations are frequently found in human cancers. Adenylate kinase 2 (AK2), which modulates balance of adenine nucleotide pool, has been implicated in cell death and cell proliferation independently of its enzyme activity. Recently, the role of AK2 in tumorigenesis was in part elucidated in some cancer types including lung adenocarcinoma and breast cancer, but the underlying mechanism is not clear. Here, we show that AK2 is a BRAF-suppressor. In in vitro assays and cell model, AK2 interacted with BRAF and inhibited BRAF activity and downstream ERK phosphorylation. Energy-deprived conditions in cell model and the addition of AMP to cell lysates strengthened the AK2-BRAF interaction, suggesting that AK2 is involved in the regulation of BRAF activity in response to cell metabolic state. AMP facilitated the AK2-BRAF complex formation through binding to AK2. In a panel of HCC cell lines, AK2 expression was inversely correlated with ERK/MAPK activation, and AK2-knockdown or -knockout increased BRAF activity and promoted cell proliferation. Tumors from HCC patients showed low-AK2 protein expression and increased ERK activation compared to non-tumor tissues and the downregulation of AK2 was also verified by two microarray datasets (TCGA-LIHC and GSE14520). Moreover, AK2/BRAF interaction was abrogated by RAS activation in in vitro assay and cell model and in a mouse model of HRASG12V-driven HCC, and AK2 ablation promoted tumor growth and BRAF activity. AK2 also bound to BRAF inhibitor-insensitive BRAF mutants and attenuated their activities. These findings indicate that AK2 monitoring cellular AMP levels is indeed a negative regulator of BRAF, linking the metabolic status to tumor growth.
Collapse
Affiliation(s)
- Hyunjoo Kim
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Muhah Jeong
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Do-Hyeong Na
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Shin-Hyeon Ryu
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Eun Il Jeong
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Kwangmin Jung
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Jaemin Kang
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| | - Ho-June Lee
- grid.418158.10000 0004 0534 4718Departments of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080 USA
| | - Taebo Sim
- grid.35541.360000000121053345Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul, 02792 Korea
| | - Dae-Yeul Yu
- grid.249967.70000 0004 0636 3099Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hee Chul Yu
- grid.411545.00000 0004 0470 4320Department of Surgery, Chonbuk National University Medical School, Jeonju, 561-180 Korea
| | - Baik-Hwan Cho
- grid.411545.00000 0004 0470 4320Department of Surgery, Chonbuk National University Medical School, Jeonju, 561-180 Korea
| | - Yong-Keun Jung
- grid.31501.360000 0004 0470 5905School of Biological Science, Seoul National University, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
18
|
Kanao E, Nakano K, Kamei R, Hosomi T, Ishihama Y, Adachi J, Kubo T, Otsuka K, Yanagida T. Moderate molecular recognitions on ZnO m-plane and their selective capture/release of bio-related phosphoric acids. NANOSCALE ADVANCES 2022; 4:1649-1658. [PMID: 36134362 PMCID: PMC9417451 DOI: 10.1039/d1na00865j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/16/2022] [Indexed: 05/25/2023]
Abstract
Herein, we explore the hidden molecular recognition abilities of ZnO nanowires uniformly grown on the inner surface of an open tubular fused silica capillary via liquid chromatography. Chromatographic evaluation revealed that ZnO nanowires showed a stronger intermolecular interaction with phenylphosphoric acid than any other monosubstituted benzene. Furthermore, ZnO nanowires specifically recognized the phosphate groups present in nucleotides even in the aqueous mobile phase, and the intermolecular interaction increased with the number of phosphate groups. This discrimination of phosphate groups in nucleotides was unique to the rich (101̄0) m-plane of ZnO nanowires with a moderate hydrophilicity and negative charge. The discrimination could be evidenced by the changes in the infrared bands of the phosphate groups on nucleotides on ZnO nanowires. Finally, as an application of the molecular recognition, nucleotides were separated by the number of phosphate groups, utilizing optimized gradient elution on ZnO nanowire column. Thus, the present results elucidate the unique and versatile molecular selectivity of well-known ZnO nanostructures for the capture and separation of biomolecules.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan +81-75-753-4601 +81-75-753-4565
- National Institutes of Bio Medical Innovation, Health and Nutrition Ibaraki Osaka 567-0085 Japan
| | - Katsuya Nakano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2450 +81-75-383-2448
| | - Ryoma Kamei
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan +81-75-753-4601 +81-75-753-4565
- National Institutes of Bio Medical Innovation, Health and Nutrition Ibaraki Osaka 567-0085 Japan
| | - Jun Adachi
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku Kyoto 606-8501 Japan +81-75-753-4601 +81-75-753-4565
- National Institutes of Bio Medical Innovation, Health and Nutrition Ibaraki Osaka 567-0085 Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2450 +81-75-383-2448
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2450 +81-75-383-2448
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8654 Japan
| |
Collapse
|
19
|
Orädd F, Ravishankar H, Goodman J, Rogne P, Backman L, Duelli A, Nors Pedersen M, Levantino M, Wulff M, Wolf-Watz M, Andersson M. Tracking the ATP-binding response in adenylate kinase in real time. SCIENCE ADVANCES 2021; 7:eabi5514. [PMID: 34788091 PMCID: PMC8597995 DOI: 10.1126/sciadv.abi5514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/27/2021] [Indexed: 05/25/2023]
Abstract
The biological function of proteins is critically dependent on dynamics inherent to the native structure. Such structural dynamics obey a predefined order and temporal timing to execute the specific reaction. Determination of the cooperativity of key structural rearrangements requires monitoring protein reactions in real time. In this work, we used time-resolved x-ray solution scattering (TR-XSS) to visualize structural changes in the Escherichia coli adenylate kinase (AdK) enzyme upon laser-induced activation of a protected ATP substrate. A 4.3-ms transient intermediate showed partial closing of both the ATP- and AMP-binding domains, which indicates a cooperative closing mechanism. The ATP-binding domain also showed local unfolding and breaking of an Arg131-Asp146 salt bridge. Nuclear magnetic resonance spectroscopy data identified similar unfolding in an Arg131Ala AdK mutant, which refolded in a closed, substrate-binding conformation. The observed structural dynamics agree with a “cracking mechanism” proposed to underlie global structural transformation, such as allostery, in proteins.
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Harsha Ravishankar
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Jack Goodman
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Lars Backman
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Annette Duelli
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Martin Nors Pedersen
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Matteo Levantino
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Michael Wulff
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Magnus Wolf-Watz
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Magnus Andersson
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| |
Collapse
|
20
|
Baeta T, Giandoreggio-Barranco K, Ayala I, Moura ECCM, Sperandeo P, Polissi A, Simorre JP, Laguri C. The lipopolysaccharide-transporter complex LptB 2FG also displays adenylate kinase activity in vitro dependent on the binding partners LptC/LptA. J Biol Chem 2021; 297:101313. [PMID: 34673027 PMCID: PMC8633020 DOI: 10.1016/j.jbc.2021.101313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/02/2023] Open
Abstract
Lipopolysaccharide (LPS) is an essential glycolipid that covers the surface of gram-negative bacteria. The transport of LPS involves a dedicated seven-protein transporter system called the lipopolysaccharide transport system (Lpt) machinery that physically spans the entire cell envelope. The LptB2FG complex is an ABC transporter that hydrolyzes ATP to extract LPS from the inner membrane for transport to the outer membrane. Here, we extracted LptB2FG directly from the inner membrane with its original lipid environment using styrene-maleic acid polymers. We found that styrene-maleic acid polymers–LptB2FG in nanodiscs display not only ATPase activity but also a previously uncharacterized adenylate kinase (AK) activity, as it catalyzed phosphotransfer between two ADP molecules to generate ATP and AMP. The ATPase and AK activities of LptB2FG were both stimulated by the interaction on the periplasmic side with the periplasmic LPS transport proteins LptC and LptA and inhibited by the presence of the LptC transmembrane helix. We determined that the isolated ATPase module (LptB) had weak AK activity in the absence of transmembrane proteins LptF and LptG, and one mutation in LptB that weakens its affinity for ADP led to AK activity similar to that of fully assembled complex. Thus, we conclude that LptB2FG is capable of producing ATP from ADP, depending on the assembly of the Lpt bridge, and that this AK activity might be important to ensure efficient LPS transport in the fully assembled Lpt system.
Collapse
Affiliation(s)
- Tiago Baeta
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Isabel Ayala
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Elisabete C C M Moura
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paola Sperandeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Polissi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | | | - Cedric Laguri
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France.
| |
Collapse
|
21
|
Milligram scale expression, refolding, and purification of Bombyx mori cocoonase using a recombinant E. coli system. Protein Expr Purif 2021; 186:105919. [PMID: 34044132 DOI: 10.1016/j.pep.2021.105919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/28/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
Silk is one of the most versatile biomaterials with signature properties of outstanding mechanical strength and flexibility. A potential avenue for developing more environmentally friendly silk production is to make use of the silk moth (Bombyx mori) cocoonase, this will at the same time increase the possibility for using the byproduct, sericin, as a raw material for other applications. Cocoonase is a serine protease utilized by the silk moth to soften the cocoon to enable its escape after completed metamorphosis. Cocoonase selectively degrades the glue protein of the cocoon, sericin, without affecting the silk-fiber made of the protein fibroin. Cocoonase can be recombinantly produced in E. coli, however, it is exclusively found as insoluble inclusion bodies. To solve this problem and to be able to utilize the benefits associated with an E. coli based expression system, we have developed a protocol that enables the production of soluble and functional protease in the milligram/liter scale. The core of the protocol is refolding of the protein in a buffer with a redox potential that is optimized for formation of native and intramolecular di-sulfide bridges. The redox potential was balanced with defined concentrations of reduced and oxidized glutathione. This E.coli based production protocol will, in addition to structure determination, also enable modification of cocoonase both in terms of catalytic function and stability. These factors will be valuable components in the development of alternate silk production methodology.
Collapse
|
22
|
Miller MD, Phillips GN. Moving beyond static snapshots: Protein dynamics and the Protein Data Bank. J Biol Chem 2021; 296:100749. [PMID: 33961840 PMCID: PMC8164045 DOI: 10.1016/j.jbc.2021.100749] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/02/2023] Open
Abstract
Proteins are the molecular machines of living systems. Their dynamics are an intrinsic part of their evolutionary selection in carrying out their biological functions. Although the dynamics are more difficult to observe than a static, average structure, we are beginning to observe these dynamics and form sound mechanistic connections between structure, dynamics, and function. This progress is highlighted in case studies from myoglobin and adenylate kinase to the ribosome and molecular motors where these molecules are being probed with a multitude of techniques across many timescales. New approaches to time-resolved crystallography are allowing simple “movies” to be taken of proteins in action, and new methods of mapping the variations in cryo-electron microscopy are emerging to reveal a more complete description of life’s machines. The results of these new methods are aided in their dissemination by continual improvements in curation and distribution by the Protein Data Bank and their partners around the world.
Collapse
Affiliation(s)
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas, USA; Department of Chemistry, Rice University, Houston, Texas, USA.
| |
Collapse
|
23
|
Vant JW, Sarkar D, Streitwieser E, Fiorin G, Skeel R, Vermaas JV, Singharoy A. Data-guided Multi-Map variables for ensemble refinement of molecular movies. J Chem Phys 2020; 153:214102. [PMID: 33291927 PMCID: PMC7714525 DOI: 10.1063/5.0022433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Driving molecular dynamics simulations with data-guided collective variables offer a promising strategy to recover thermodynamic information from structure-centric experiments. Here, the three-dimensional electron density of a protein, as it would be determined by cryo-EM or x-ray crystallography, is used to achieve simultaneously free-energy costs of conformational transitions and refined atomic structures. Unlike previous density-driven molecular dynamics methodologies that determine only the best map-model fits, our work employs the recently developed Multi-Map methodology to monitor concerted movements within equilibrium, non-equilibrium, and enhanced sampling simulations. Construction of all-atom ensembles along the chosen values of the Multi-Map variable enables simultaneous estimation of average properties, as well as real-space refinement of the structures contributing to such averages. Using three proteins of increasing size, we demonstrate that biased simulation along the reaction coordinates derived from electron densities can capture conformational transitions between known intermediates. The simulated pathways appear reversible with minimal hysteresis and require only low-resolution density information to guide the transition. The induced transitions also produce estimates for free energy differences that can be directly compared to experimental observables and population distributions. The refined model quality is superior compared to those found in the Protein Data Bank. We find that the best quantitative agreement with experimental free-energy differences is obtained using medium resolution density information coupled to comparatively large structural transitions. Practical considerations for probing the transitions between multiple intermediate density states are also discussed.
Collapse
Affiliation(s)
- John W. Vant
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, USA
| | | | - Ellen Streitwieser
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, USA
| | - Giacomo Fiorin
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, USA
| | - Robert Skeel
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85281, USA
| | - Josh V. Vermaas
- Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, USA
| |
Collapse
|
24
|
Grazioso R, García-Viñuales S, D'Abrosca G, Baglivo I, Pedone PV, Milardi D, Fattorusso R, Isernia C, Russo L, Malgieri G. The change of conditions does not affect Ros87 downhill folding mechanism. Sci Rep 2020; 10:21067. [PMID: 33273582 PMCID: PMC7713307 DOI: 10.1038/s41598-020-78008-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
Downhill folding has been defined as a unique thermodynamic process involving a conformations ensemble that progressively loses structure with the decrease of protein stability. Downhill folders are estimated to be rather rare in nature as they miss an energetically substantial folding barrier that can protect against aggregation and proteolysis. We have previously demonstrated that the prokaryotic zinc finger protein Ros87 shows a bipartite folding/unfolding process in which a metal binding intermediate converts to the native structure through a delicate barrier-less downhill transition. Significant variation in folding scenarios can be detected within protein families with high sequence identity and very similar folds and for the same sequence by varying conditions. For this reason, we here show, by means of DSC, CD and NMR, that also in different pH and ionic strength conditions Ros87 retains its partly downhill folding scenario demonstrating that, at least in metallo-proteins, the downhill mechanism can be found under a much wider range of conditions and coupled to other different transitions. We also show that mutations of Ros87 zinc coordination sphere produces a different folding scenario demonstrating that the organization of the metal ion core is determinant in the folding process of this family of proteins.
Collapse
Affiliation(s)
- Rinaldo Grazioso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | | | - Gianluca D'Abrosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Danilo Milardi
- Institute of Crystallography-CNR, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy.
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100, Caserta, Italy.
| |
Collapse
|
25
|
Yuan Y, Zhu Q, Song R, Ma J, Dong H. A Two-Ended Data-Driven Accelerated Sampling Method for Exploring the Transition Pathways between Two Known States of Protein. J Chem Theory Comput 2020; 16:4631-4640. [PMID: 32320614 DOI: 10.1021/acs.jctc.9b01184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conformational transitions of protein between different states are often associated with their biological functions. These dynamic processes, however, are usually not easy to be well characterized by experimental measurements, mainly because of inadequate temporal and spatial resolution. Meantime, sampling of configuration space with molecular dynamics (MD) simulations is still a challenge. Here we proposed a robust two-ended data-driven accelerated (teDA2) conformational sampling method, which drives the structural change in an adaptively updated feature space without introducing a bias potential. teDA2 was applied to explore adenylate kinase (ADK), a model with well characterized "open" and "closed" states. A single conformational transition event of ADK could be achieved within only a few or tens of nanoseconds sampled with teDA2. By analyzing hundreds of transition events, we reproduced different mechanisms and the associated pathways for domain motion of ADK reported in the literature. The multiroute characteristic of ADK was confirmed by the fact that some metastable states identified with teDA2 resemble available crystal structures determined at different conditions. This feature was further validated with Markov state modeling with independent MD simulations. Therefore, our work provides strong evidence for the conformational plasticity of protein, which is mainly due to the inherent degree of flexibility. As a reliable and efficient enhanced sampling protocol, teDA2 could be used to study the dynamics between functional states of various biomolecular machines.
Collapse
Affiliation(s)
- Yigao Yuan
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China
| | - Qiang Zhu
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China.,Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing China
| | - Ruiheng Song
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Giordano D, Boubeta FM, di Prisco G, Estrin DA, Smulevich G, Viappiani C, Verde C. Conformational Flexibility Drives Cold Adaptation in Pseudoalteromonas haloplanktis TAC125 Globins. Antioxid Redox Signal 2020; 32:396-411. [PMID: 31578873 DOI: 10.1089/ars.2019.7887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Significance: Temperature is one of the most important drivers in shaping protein adaptations. Many biochemical and physiological processes are influenced by temperature. Proteins and enzymes from organisms living at low temperature are less stable in comparison to high-temperature adapted proteins. The lower stability is generally due to greater conformational flexibility. Recent Advances: Adaptive changes in the structure of cold-adapted proteins may occur at subunit interfaces, distant from the active site, thus producing energy changes associated with conformational transitions transmitted to the active site by allosteric modulation, valid also for monomeric proteins in which tertiary structural changes may play an essential role. Critical Issues: Despite efforts, the current experimental and computational methods still fail to produce general principles on protein evolution, since many changes are protein and species dependent. Environmental constraints or other biological cellular signals may override the ancestral information included in the structure of the protein, thus introducing inaccuracy in estimates and predictions on the evolutionary adaptations of proteins in response to cold adaptation. Future Directions: In this review, we describe the studies and approaches used to investigate stability and flexibility in the cold-adapted globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. In fact, future research directions will be prescient on more detailed investigation of cold-adapted proteins and the role of fluctuations between different conformational states.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Fernando Martín Boubeta
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Cristiano Viappiani
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
27
|
Atkinson JT, Jones AM, Nanda V, Silberg JJ. Protein tolerance to random circular permutation correlates with thermostability and local energetics of residue-residue contacts. Protein Eng Des Sel 2019; 32:489-501. [PMID: 32626892 PMCID: PMC7462040 DOI: 10.1093/protein/gzaa012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 01/08/2023] Open
Abstract
Adenylate kinase (AK) orthologs with a range of thermostabilities were subjected to random circular permutation, and deep mutational scanning was used to evaluate where new protein termini were nondisruptive to activity. The fraction of circularly permuted variants that retained function in each library correlated with AK thermostability. In addition, analysis of the positional tolerance to new termini, which increase local conformational flexibility, showed that bonds were either functionally sensitive to cleavage across all homologs, differentially sensitive, or uniformly tolerant. The mobile AMP-binding domain, which displays the highest calculated contact energies, presented the greatest tolerance to new termini across all AKs. In contrast, retention of function in the lid and core domains was more dependent upon AK melting temperature. These results show that family permutation profiling identifies primary structure that has been selected by evolution for dynamics that are critical to activity within an enzyme family. These findings also illustrate how deep mutational scanning can be applied to protein homologs in parallel to differentiate how topology, stability, and local energetics govern mutational tolerance.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, 6100 Main Street, MS-180, Houston, TX 77005, USA
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, TX 77005, USA
| | - Alicia M Jones
- Biochemistry and Cell Biology Graduate Program, Rice University, 6100 Main Street, MS-140, Houston, TX 77005, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, TX 77005, USA
| |
Collapse
|
28
|
Abstract
Copper is a redox-active transition metal ion required for the function of many essential human proteins. For biosynthesis of proteins coordinating copper, the metal may bind before, during or after folding of the polypeptide. If the metal binds to unfolded or partially folded structures of the protein, such coordination may modulate the folding reaction. The molecular understanding of how copper is incorporated into proteins requires descriptions of chemical, thermodynamic, kinetic and structural parameters involved in the formation of protein-metal complexes. Because free copper ions are toxic, living systems have elaborate copper-transport systems that include particular proteins that facilitate efficient and specific delivery of copper ions to target proteins. Therefore, these pathways become an integral part of copper protein folding in vivo. This review summarizes biophysical-molecular in vitro work assessing the role of copper in folding and stability of copper-binding proteins as well as protein-protein copper exchange reactions between human copper transport proteins. We also describe some recent findings about the participation of copper ions and copper proteins in protein misfolding and aggregation reactions in vitro.
Collapse
|
29
|
Xu M, Zeng R, Xiang J, Yan Q. Shaping Protein Amphiphilic Assemblies via Allosteric Effect: From 1D Nanofilament to 2D Rectangular Nanosheet. J Am Chem Soc 2019; 141:13724-13728. [DOI: 10.1021/jacs.9b05946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory
of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Rongjin Zeng
- State Key Laboratory
of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Jun Xiang
- Department of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Yan
- State Key Laboratory
of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
30
|
Rogne P, Andersson D, Grundström C, Sauer-Eriksson E, Linusson A, Wolf-Watz M. Nucleation of an Activating Conformational Change by a Cation-π Interaction. Biochemistry 2019; 58:3408-3412. [PMID: 31339702 DOI: 10.1021/acs.biochem.9b00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a key molecule in biology, adenosine triphosphate (ATP) has numerous crucial functions in, for instance, energetics, post-translational modifications, nucleotide biosynthesis, and cofactor metabolism. Here, we have discovered an intricate interplay between the enzyme adenylate kinase and its substrate ATP. The side chain of an arginine residue was found to be an efficient sensor of the aromatic moiety of ATP through the formation of a strong cation-π interaction. In addition to recognition, the interaction was found to have dual functionality. First, it nucleates the activating conformational transition of the ATP binding domain and also affects the specificity in the distant AMP binding domain. In light of the functional consequences resulting from the cation-π interaction, it is possible that the mode of ATP recognition may be a useful tool in enzyme design.
Collapse
Affiliation(s)
- Per Rogne
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - David Andersson
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | | | | | - Anna Linusson
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Magnus Wolf-Watz
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| |
Collapse
|
31
|
Pattaro Júnior JR, Caruso ÍP, de Lima Neto QA, Duarte Junior FF, dos Santos Rando F, Gerhardt ECM, Fernandez MA, Seixas FAV. Biophysical characterization and molecular phylogeny of human KIN protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:645-657. [DOI: 10.1007/s00249-019-01390-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 07/06/2019] [Indexed: 11/24/2022]
|
32
|
Abstract
This Feature Article presents a view of the protein folding transition based on the hypothesis that Nature has built features within the sequences that enable a Shortcut to efficient folding. Nature's Shortcut is proposed to be the early establishment of a set of nonlocal weak contacts, constituting protein loops that significantly constrain regions of the collapsed disordered protein into a native-like low-resolution fluctuating topology of major sections of the backbone. Nature's establishment of this scaffold of nonlocal contacts is claimed to bypass what would otherwise be a nearly hopeless unaided search for the final three-dimensional structure in proteins longer than ∼100 amino acids. To support this main contention of the Feature Article, the loop hypothesis (LH) description of early folding events is experimentally tested with time-resolved Förster resonance energy transfer techniques for adenylate kinase, and the data are shown to be consistent with theoretical predictions from the sequential collapse model (SCM). The experimentally based LH and the theoretically founded SCM are argued to provide a unified picture of the role of nonlocal contacts as constituting Nature's Shortcut to protein folding. Importantly, the SCM is shown to reliably predict key nonlocal contacts utilizing only primary sequence information. This view on Nature's Shortcut is open to the protein community for further detailed assessment, including its practical consequences, by suitable application of advanced experimental and computational techniques.
Collapse
Affiliation(s)
| | - Elisha Haas
- The Goodman Faculty of Life Sciences , Bar-Ilan University , Ramat Gan 52900 , Israel
| | | |
Collapse
|
33
|
Machado VB, Maróstica de Sá J, Miranda Prado AK, Alves de Toledo K, Regasini LO, Pereira de Souza F, Caruso ÍP, Fossey MA. Biophysical and flavonoid-binding studies of the G protein ectodomain of group A human respiratory syncytial virus. Heliyon 2019; 5:e01394. [PMID: 30976680 PMCID: PMC6439273 DOI: 10.1016/j.heliyon.2019.e01394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/17/2019] [Accepted: 03/18/2019] [Indexed: 02/02/2023] Open
Abstract
The human Respiratory Syncytial Virus (hRSV) is the major causative agent of lower respiratory tract diseases in infants, young children and elderly. The membrane protein G is embedded in the viral lipid envelope and plays an adhesion function of the virus to host cells. The present study reports the production of the group A hRSV recombinant G protein ectodomain (edG) and its characterization of secondary structure and thermal unfolding by circular dichroism (CD), as well as the binding investigation of flavonoids quercetin and morin to this protein by fluorescent quenching. CD data reveal that edG is composed mostly of β-structure and its melting temperature is of 325 K. Fluorescence quenching experiments of hRSV edG show that the dissociation constants for the flavonoids binding are micromolar and the binding affinity for the edG/quercetin complex is inversely dependent on rising temperature while is directly dependent for the edG/morin interaction. The thermodynamic parameters suggest that hydrophobic contacts are important for the edG/morin association while van der Waals forces and hydrogen bonds contribute to the stabilization of the edG/quercetin complex. Thus, data reported herein may contribute to the development of new treatment strategies that prevent the viral infection by hRSV.
Collapse
Affiliation(s)
- Vitor Brassolatti Machado
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Biology, São José do Rio Preto, SP, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Multiuser Center for Biomolecular Innovation, Laboratory of Molecular Biology, São José do Rio Preto, SP, Brazil
| | - Jéssica Maróstica de Sá
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Multiuser Center for Biomolecular Innovation, Laboratory of Molecular Biology, São José do Rio Preto, SP, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Physics, São José do Rio Preto, SP, Brazil
| | - Ana Karla Miranda Prado
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Multiuser Center for Biomolecular Innovation, Laboratory of Molecular Biology, São José do Rio Preto, SP, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Physics, São José do Rio Preto, SP, Brazil
| | - Karina Alves de Toledo
- Faculdade de Ciências e Letras, UNESP, Department of Biology Sciences, Assis, SP, Brazil
| | - Luis Octávio Regasini
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Chemistry and Environmental Sciences, São José do Rio Preto, SP, Brazil
| | - Fátima Pereira de Souza
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Multiuser Center for Biomolecular Innovation, Laboratory of Molecular Biology, São José do Rio Preto, SP, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Physics, São José do Rio Preto, SP, Brazil
| | - Ícaro Putinhon Caruso
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Multiuser Center for Biomolecular Innovation, Laboratory of Molecular Biology, São José do Rio Preto, SP, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Physics, São José do Rio Preto, SP, Brazil
- Corresponding author.
| | - Marcelo Andres Fossey
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Multiuser Center for Biomolecular Innovation, Laboratory of Molecular Biology, São José do Rio Preto, SP, Brazil
- Instituto de Biociências, Letras e Ciências Exatas, UNESP, Department of Physics, São José do Rio Preto, SP, Brazil
- Corresponding author.
| |
Collapse
|
34
|
Moon S, Kim J, Koo J, Bae E. Structural and mutational analyses of psychrophilic and mesophilic adenylate kinases highlight the role of hydrophobic interactions in protein thermal stability. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:024702. [PMID: 31111079 PMCID: PMC6498869 DOI: 10.1063/1.5089707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Protein thermal stability is an important field since thermally stable proteins are desirable in many academic and industrial settings. Information on protein thermal stabilization can be obtained by comparing homologous proteins from organisms living at distinct temperatures. Here, we report structural and mutational analyses of adenylate kinases (AKs) from psychrophilic Bacillus globisporus (AKp) and mesophilic Bacillus subtilis (AKm). Sequence and structural comparison showed suboptimal hydrophobic packing around Thr26 in the CORE domain of AKp, which was replaced with an Ile residue in AKm. Mutations that improved hydrophobicity of the Thr residue increased the thermal stability of the psychrophilic AKp, and the largest stabilization was observed for a Thr-to-Ile substitution. Furthermore, a reverse Ile-to-Thr mutation in the mesophilic AKm significantly decreased thermal stability. We determined the crystal structures of mutant AKs to confirm the impact of the residue substitutions on the overall stability. Taken together, our results provide a structural basis for the stability difference between psychrophilic and mesophilic AK homologues and highlight the role of hydrophobic interactions in protein thermal stability.
Collapse
Affiliation(s)
- Sojin Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Junhyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Jasung Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, South Korea
| | - Euiyoung Bae
- Author to whom correspondence should be addressed:. Telephone: +82-2-880-4648. Fax: +82-2-873-3112
| |
Collapse
|
35
|
Gorman SD, D'Amico RN, Winston DS, Boehr DD. Engineering Allostery into Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:359-384. [PMID: 31707711 PMCID: PMC7508002 DOI: 10.1007/978-981-13-8719-7_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our ability to engineer protein structure and function has grown dramatically over recent years. Perhaps the next level in protein design is to develop proteins whose function can be regulated in response to various stimuli, including ligand binding, pH changes, and light. Endeavors toward these goals have tested and expanded on our understanding of protein function and allosteric regulation. In this chapter, we provide examples from different methods for developing new allosterically regulated proteins. These methods range from whole insertion of regulatory domains into new host proteins, to covalent attachment of photoswitches to generate light-responsive proteins, and to targeted changes to specific amino acid residues, especially to residues identified to be important for relaying allosteric information across the protein framework. Many of the examples we discuss have already found practical use in medical and biotechnology applications.
Collapse
Affiliation(s)
- Scott D Gorman
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Dennis S Winston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
36
|
Yang H, Perrier J, Whitford PC. Disorder guides domain rearrangement in elongation factor Tu. Proteins 2018; 86:1037-1046. [DOI: 10.1002/prot.25575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/07/2018] [Accepted: 06/22/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Huan Yang
- Department of Physics Northeastern University Boston Massachusetts
| | - Jonathan Perrier
- Department of Physics Northeastern University Boston Massachusetts
| | - Paul C. Whitford
- Department of Physics Northeastern University Boston Massachusetts
| |
Collapse
|
37
|
Ho KC, Hamelberg D. Combinatorial Coarse-Graining of Molecular Dynamics Simulations for Detecting Relationships between Local Configurations and Overall Conformations. J Chem Theory Comput 2018; 14:6026-6034. [DOI: 10.1021/acs.jctc.8b00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ka Chun Ho
- Department of Chemistry and the Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Donald Hamelberg
- Department of Chemistry and the Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
38
|
Formation of a Secretion-Competent Protein Complex by a Dynamic Wrap-around Binding Mechanism. J Mol Biol 2018; 430:3157-3169. [DOI: 10.1016/j.jmb.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/20/2018] [Accepted: 07/10/2018] [Indexed: 11/18/2022]
|
39
|
Petrović D, Risso VA, Kamerlin SCL, Sanchez-Ruiz JM. Conformational dynamics and enzyme evolution. J R Soc Interface 2018; 15:20180330. [PMID: 30021929 PMCID: PMC6073641 DOI: 10.1098/rsif.2018.0330] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022] Open
Abstract
Enzymes are dynamic entities, and their dynamic properties are clearly linked to their biological function. It follows that dynamics ought to play an essential role in enzyme evolution. Indeed, a link between conformational diversity and the emergence of new enzyme functionalities has been recognized for many years. However, it is only recently that state-of-the-art computational and experimental approaches are revealing the crucial molecular details of this link. Specifically, evolutionary trajectories leading to functional optimization for a given host environment or to the emergence of a new function typically involve enriching catalytically competent conformations and/or the freezing out of non-competent conformations of an enzyme. In some cases, these evolutionary changes are achieved through distant mutations that shift the protein ensemble towards productive conformations. Multifunctional intermediates in evolutionary trajectories are probably multi-conformational, i.e. able to switch between different overall conformations, each competent for a given function. Conformational diversity can assist the emergence of a completely new active site through a single mutation by facilitating transition-state binding. We propose that this mechanism may have played a role in the emergence of enzymes at the primordial, progenote stage, where it was plausibly promoted by high environmental temperatures and the possibility of additional phenotypic mutations.
Collapse
Affiliation(s)
- Dušan Petrović
- Department of Chemistry, BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Valeria A Risso
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| | | | - Jose M Sanchez-Ruiz
- Departamento de Quimica Fisica, Facultad de Ciencias, University of Granada, 18071 Granada, Spain
| |
Collapse
|
40
|
Saavedra HG, Wrabl JO, Anderson JA, Li J, Hilser VJ. Dynamic allostery can drive cold adaptation in enzymes. Nature 2018; 558:324-328. [PMID: 29875414 PMCID: PMC6033628 DOI: 10.1038/s41586-018-0183-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/01/2018] [Indexed: 11/19/2022]
Abstract
Adaptation of organisms to environmental niches is a hallmark of evolution. One prevalent example is that of thermal adaptation, wherein two descendants evolve at different temperature extremes1,2. Underlying the physiological differences between such organisms are changes in enzymes catalyzing essential reactions3, with orthologues from each organism undergoing adaptive mutations that preserve similar catalytic rates at their respective physiological temperatures 4,5. The sequence changes responsible for these adaptive differences, however, are often at surface exposed sites distant from the substrate binding site, leaving the active site of the enzyme structurally unperturbed6,7. How such changes are allosterically propagated to the active site, to modulate activity, is not known. Here we show that entropy-tuning changes can be engineered into distal sites of Escherichia coli adenylate kinase (AK) to quantitatively assess the role of dynamics in determining affinity, turnover, and the role in driving adaptation. The results not only reveal a dynamics-based allosteric tuning mechanism, but also uncover a spatial separation of the control of key enzymatic parameters. Fluctuations in one mobile domain (i.e. the LID) control substrate affinity, while dynamic attenuation in the other (i.e. the AMPbd) affects rate-limiting conformational changes governing enzyme turnover. Dynamics-based regulation may thus represent an elegant, widespread, and previously unrealized evolutionary adaptation mechanism that fine-tunes biological function without altering the ground state structure. Furthermore, because rigid-body conformational changes in both domains were thought to be rate limiting for turnover8,9, these adaptation studies reveal a new paradigm for understanding the relationship between dynamics and turnover in AK.
Collapse
Affiliation(s)
- Harry G Saavedra
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - James O Wrabl
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy A Anderson
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jing Li
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA. .,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
41
|
Fox JM, Zhao M, Fink MJ, Kang K, Whitesides GM. The Molecular Origin of Enthalpy/Entropy Compensation in Biomolecular Recognition. Annu Rev Biophys 2018; 47:223-250. [DOI: 10.1146/annurev-biophys-070816-033743] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biomolecular recognition can be stubborn; changes in the structures of associating molecules, or the environments in which they associate, often yield compensating changes in enthalpies and entropies of binding and no net change in affinities. This phenomenon—termed enthalpy/entropy (H/S) compensation—hinders efforts in biomolecular design, and its incidence—often a surprise to experimentalists—makes interactions between biomolecules difficult to predict. Although characterizing H/S compensation requires experimental care, it is unquestionably a real phenomenon that has, from an engineering perspective, useful physical origins. Studying H/S compensation can help illuminate the still-murky roles of water and dynamics in biomolecular recognition and self-assembly. This review summarizes known sources of H/ S compensation (real and perceived) and lays out a conceptual framework for understanding and dissecting—and, perhaps, avoiding or exploiting—this phenomenon in biophysical systems.
Collapse
Affiliation(s)
- Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - Mengxia Zhao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Michael J. Fink
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
- The Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
42
|
Nonnative Energetic Frustrations in Protein Folding at Residual Level: A Simulation Study of Homologous Immunoglobulin-like β-Sandwich Proteins. Int J Mol Sci 2018; 19:ijms19051515. [PMID: 29783701 PMCID: PMC5983731 DOI: 10.3390/ijms19051515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/16/2022] Open
Abstract
Nonnative interactions cause energetic frustrations in protein folding and were found to dominate key events in folding intermediates. However, systematically characterizing energetic frustrations that are caused by nonnative intra-residue interactions at residual resolution is still lacking. Recently, we studied the folding of a set of homologous all-α proteins and found that nonnative-contact-based energetic frustrations are highly correlated to topology of the protein native-contact network. Here, we studied the folding of nine homologous immunoglobulin-like (Ig-like) β-sandwich proteins, and examined nonnative-contact-based energetic frustrations Gō-like model. Our calculations showed that nonnative-interaction-based energetic frustrations in β-sandwich proteins are much more complicated than those in all-α proteins, and they exhibit highly heterogeneous effects on the folding of secondary structures. Further, the nonnative interactions introduced distinct correlations in the folding of different folding-patches of β-sandwich proteins. Taken together, a strong interplay might exist between nonnative-interaction energetic frustrations and the protein native-contact networks, which ensures that β-sandwich domains adopt a common folding mechanism.
Collapse
|
43
|
Molecular mechanism of ATP versus GTP selectivity of adenylate kinase. Proc Natl Acad Sci U S A 2018; 115:3012-3017. [PMID: 29507216 DOI: 10.1073/pnas.1721508115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Enzymatic substrate selectivity is critical for the precise control of metabolic pathways. In cases where chemically related substrates are present inside cells, robust mechanisms of substrate selectivity are required. Here, we report the mechanism utilized for catalytic ATP versus GTP selectivity during adenylate kinase (Adk) -mediated phosphorylation of AMP. Using NMR spectroscopy we found that while Adk adopts a catalytically competent and closed structural state in complex with ATP, the enzyme is arrested in a catalytically inhibited and open state in complex with GTP. X-ray crystallography experiments revealed that the interaction interfaces supporting ATP and GTP recognition, in part, are mediated by coinciding residues. The mechanism provides an atomic view on how the cellular GTP pool is protected from Adk turnover, which is important because GTP has many specialized cellular functions. In further support of this mechanism, a structure-function analysis enabled by synthesis of ATP analogs suggests that a hydrogen bond between the adenine moiety and the backbone of the enzyme is vital for ATP selectivity. The importance of the hydrogen bond for substrate selectivity is likely general given the conservation of its location and orientation across the family of eukaryotic protein kinases.
Collapse
|
44
|
Mazal H, Aviram H, Riven I, Haran G. Effect of ligand binding on a protein with a complex folding landscape. Phys Chem Chem Phys 2018; 20:3054-3062. [PMID: 28721412 DOI: 10.1039/c7cp03327c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ligand binding to a protein can stabilize it significantly against unfolding. The variation of the folding free energy, ΔΔG0, due to ligand binding can be derived from a simple reaction scheme involving exclusive binding to the native state. One obtains the following expression: , where Kd is the ligand dissociation constant and L is its concentration, R is the universal gas constant and T is the temperature. This expression has been shown to correctly describe experimental results on multiple proteins. In the current work we studied the effect of ligand binding on the stability of the multi-domain protein adenylate kinase from E. coli (AKE). Unfolding experiments were conducted using single-molecule FRET spectroscopy, which allowed us to directly obtain the fraction of unfolded protein in a model-free way from FRET efficiency histograms. Surprisingly, it was found that the effect of two inhibitors (Ap5A and AMPPNP) and a substrate (AMP) on the stability of AKE was much smaller than expected based on Kd values obtained independently using microscale thermophoresis. To shed light on this issue, we measured the Kd for Ap5A over a range of chemical denaturant concentrations where the protein is still folded. It was found that Kd increases dramatically over this range, likely due to the population of folding intermediates, whose binding to the ligand is much weaker than that of the native state. We propose that binding to folding intermediates may dominate the effect of ligands on the stability of multi-domain proteins, and could therefore have a strong impact on protein homeostasis in vivo.
Collapse
Affiliation(s)
- Hisham Mazal
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | | | | | | |
Collapse
|
45
|
Zheng Y, Cui Q. Multiple Pathways and Time Scales for Conformational Transitions in apo-Adenylate Kinase. J Chem Theory Comput 2018; 14:1716-1726. [PMID: 29378407 DOI: 10.1021/acs.jctc.7b01064] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The open/close transition in adenylate kinase (AK) is regarded as a representative example for large-scale conformational transition in proteins, yet its mechanism remains unclear despite numerous experimental and computational studies. Using extensive (∼50 μs) explicit solvent atomistic simulations and Markov state analysis, we shed new lights on the mechanism of this transition in the apo form of AK. The closed basin of apo AK features an open NMP domain while the LID domain closes and rotates toward it. Therefore, although the computed structural properties of the closed ensemble are consistent with previously reported FRET and PRE measurements, our simulations suggest that NMP closure is likely to follow AMP binding, in contrast to the previous interpretation of FRET and PRE data that the apo state was able to sample the fully closed conformation for "ligand selection". The closed state ensemble is found to be kinetically heterogeneous; multiple pathways and time scales are associated with the open/close transition, providing new clues to the disparate time scales observed in different experiments. Besides interdomain interactions, a novel mutual information analysis identifies specific intradomain interactions that correlate strongly to transition kinetics, supporting observations from previous chimera experiments. While our results underscore the role of internal domain properties in determining the kinetics of open/close transition in apo AK, no evidence is observed for any significant degree of local unfolding during the transition. These observations about AK have general implications to our view of conformational states, transition pathways, and time scales of conformational changes in proteins. The key features and time scales of observed transition pathways are robust and similar from simulations using two popular fixed charge force fields.
Collapse
Affiliation(s)
- Yuqing Zheng
- Graduate Program in Biophysics and Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Qiang Cui
- Graduate Program in Biophysics and Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
46
|
Cooperativity and flexibility in enzyme evolution. Curr Opin Struct Biol 2018; 48:83-92. [DOI: 10.1016/j.sbi.2017.10.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022]
|
47
|
Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice. Acta Biomater 2018; 66:325-334. [PMID: 29203426 DOI: 10.1016/j.actbio.2017.11.045] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus comprises a multiple metabolic disorder that affects millions of people worldwide and consequentially poses challenges for clinical treatment. Among the various complications, diabetic ulcer constitutes the most prevalent associated disorder and leads to delayed wound healing. To enhance wound healing capacity, we developed structurally stabilized epidermal growth factor (ST-EGF) and basic fibroblast growth factor (ST-bFGF) to overcome limitations of commercially available EGF (CA-EGF) and bFGF (CA-bFGF), such as short half-life and loss of activity after loading onto a matrix. Neither ST-EGF nor ST-bFGF was toxic, and both were more stable at higher temperatures than CA-EGF and CA-bFGF. We loaded ST-EGF and ST-bFGF onto a hyaluronate-collagen dressing (HCD) matrix, a biocompatible carrier, and tested the effectiveness of this system in promoting wound healing in a mouse model of diabetes. Wounds treated with HCD matrix loaded with 0.3 μg/cm2 ST-EGF or 1 μg/cm2 ST-bFGF showed a more rapid rate of tissue repair as compared to the control in type I and II diabetes models. Our results indicate that an HDC matrix loaded with 0.3 μg/cm2 ST-EGF or 1 μg/cm2 ST-bFGF can promote wound healing in diabetic ulcers and are suitable for use in wound dressings owing to their stability for long periods at room temperature. STATEMENT OF SIGNIFICANCE Various types of dressing materials loaded with growth factors, such as VEGF, EGF, and bFGF, are widely used to effect wound repair. However, such growth factor-loaded materials have several limitations for use as therapeutic agents in healing-impaired diabetic wounds. To overcome these limitations, we have developed new materials containing structurally stabilized EGF (ST-EGF) and bFGF (ST-bFGF). To confirm the wound healing capacity of newly developed materials (ST-EGF and ST-bFGF-loaded hyaluronate-collagen dressing [HCD] matrix), we applied these matrices in type I and type II diabetic wounds. Notably, these matrices were able to accelerate wound healing including re-epithelialization, neovascularization, and collagen deposition. Consequentially, these ST-EGF and ST-bFGF-loaded HCD matrix may be used as future therapeutic agents in patients with diabetic foot ulcers.
Collapse
|
48
|
Mehaffey MR, Cammarata MB, Brodbelt JS. Tracking the Catalytic Cycle of Adenylate Kinase by Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2018; 90:839-846. [PMID: 29188992 PMCID: PMC5750083 DOI: 10.1021/acs.analchem.7b03591] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complex interplay of dynamic protein plasticity and specific side-chain interactions with substrate molecules that allows enzymes to catalyze reactions has yet to be fully unraveled. Top-down ultraviolet photodissociation (UVPD) mass spectrometry is used to track snapshots of conformational fluctuations in the phosphotransferase adenylate kinase (AK) throughout its active reaction cycle by characterization of complexes containing AK and each of four different adenosine phosphate ligands. Variations in efficiencies of UVPD backbone cleavages were consistently observed for three α-helices and the adenosine binding regions for AK complexes representing different steps of the catalytic cycle, implying that these stretches of the protein sample various structural microstates as the enzyme undergoes global open-to-closed transitions. Focusing on the conformational impact of recruiting or releasing the Mg2+ cofactor highlights two loop regions for which fragmentation increases upon UVPD, signaling an increase in loop flexibility as the metal cation disrupts the loop interactions with the substrate ligands. Additionally, the observation of holo ions and variations in UVPD backbone cleavage efficiency at R138 implicate this conserved active site residue in stabilizing the donor phosphoryl group during catalysis. This study showcases the utility of UVPD-MS to provide insight into conformational fluctuations of single residues for active enzymes.
Collapse
Affiliation(s)
- M. Rachel Mehaffey
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712
| | | | | |
Collapse
|
49
|
Ren W, Li W, Wang J, Zhang J, Wang W. Consequences of Energetic Frustration on the Ligand-Coupled Folding/Dimerization Dynamics of Allosteric Protein S100A12. J Phys Chem B 2017; 121:9799-9806. [DOI: 10.1021/acs.jpcb.7b06919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weitong Ren
- National
Laboratory of Solid State Microstructure, Department of Physics, and
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- National
Laboratory of Solid State Microstructure, Department of Physics, and
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun Wang
- National
Laboratory of Solid State Microstructure, Department of Physics, and
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jian Zhang
- National
Laboratory of Solid State Microstructure, Department of Physics, and
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National
Laboratory of Solid State Microstructure, Department of Physics, and
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
50
|
Palombo M, Bonucci A, Etienne E, Ciurli S, Uversky VN, Guigliarelli B, Belle V, Mileo E, Zambelli B. The relationship between folding and activity in UreG, an intrinsically disordered enzyme. Sci Rep 2017; 7:5977. [PMID: 28729736 PMCID: PMC5519622 DOI: 10.1038/s41598-017-06330-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/12/2017] [Indexed: 12/02/2022] Open
Abstract
A growing body of literature on intrinsically disordered proteins (IDPs) led scientists to rethink the structure-function paradigm of protein folding. Enzymes are often considered an exception to the rule of intrinsic disorder (ID), believed to require a unique structure for catalysis. However, recent studies revealed the presence of disorder in several functional native enzymes. In the present work, we address the importance of dynamics for catalysis, by investigating the relationship between folding and activity in Sporosarcina pasteurii UreG (SpUreG), a P-loop GTPase and the first discovered native ID enzyme, involved in the maturation of the nickel-containing urease. The effect of denaturants and osmolytes on protein structure and activity was analyzed using circular dichroism (CD), Site-Directed Spin Labeling (SDSL) coupled to EPR spectroscopy, and enzymatic assays. Our data show that SpUreG needs a "flexibility window" to be catalytically competent, with both too low and too high mobility being detrimental for its activity.
Collapse
Affiliation(s)
- Marta Palombo
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna, 40127, Italy
| | - Alessio Bonucci
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Emilien Etienne
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna, 40127, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, MDC07, USA
| | - Bruno Guigliarelli
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Valérie Belle
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France
| | - Elisabetta Mileo
- Aix-Marseille Univ, CNRS, IMM (FR 3479), BIP (UMR 7281), 31 chemin Joseph Aiguier, Marseille, 13402, France.
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna, 40127, Italy.
| |
Collapse
|