1
|
Nemsick S, Hansen AS. Molecular models of bidirectional promoter regulation. Curr Opin Struct Biol 2024; 87:102865. [PMID: 38905929 PMCID: PMC11550790 DOI: 10.1016/j.sbi.2024.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 06/23/2024]
Abstract
Approximately 11% of human genes are transcribed by a bidirectional promoter (BDP), defined as two genes with <1 kb between their transcription start sites. Despite their evolutionary conservation and enrichment for housekeeping genes and oncogenes, the regulatory role of BDPs remains unclear. BDPs have been suggested to facilitate gene coregulation and/or decrease expression noise. This review discusses these potential regulatory functions through the context of six prospective underlying mechanistic models: a single nucleosome free region, shared transcription factor/regulator binding, cooperative negative supercoiling, bimodal histone marks, joint activation by enhancer(s), and RNA-mediated recruitment of regulators. These molecular mechanisms may act independently and/or cooperatively to facilitate the coregulation and/or decreased expression noise predicted of BDPs.
Collapse
Affiliation(s)
- Sarah Nemsick
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Zinani OQH, Keseroğlu K, Özbudak EM. Regulatory mechanisms ensuring coordinated expression of functionally related genes. Trends Genet 2022; 38:73-81. [PMID: 34376301 PMCID: PMC8678166 DOI: 10.1016/j.tig.2021.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
Coordinated spatiotemporal expression of large sets of genes is required for the development and homeostasis of organisms. To achieve this goal, organisms use myriad strategies where they form operons, utilize bidirectional promoters, cluster genes, share enhancers among genes by DNA looping, and form topologically associated domains and transcriptional condensates. Coexpression achieved by these different strategies is hypothesized to have functional importance in minimizing gene expression variability, establishing dosage balance to ensure stoichiometry of protein complexes, and minimizing accumulation of toxic intermediate metabolites. By combining gene-editing tools with computational modeling, recent studies tested the advantages of adjacent genes located in pairs and clusters. We propose that with the advancement of gene editing, single-cell sequencing, and imaging tools, one could readily test the functional importance of different coexpression strategies in a variety of biological processes.
Collapse
Affiliation(s)
- Oriana Q H Zinani
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kemal Keseroğlu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ertuğrul M Özbudak
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
3
|
Andrieux G, Chakraborty S, Das T, Boerries M. Alteration of Proteotranscriptomic Landscape Reveals the Transcriptional Regulatory Circuits Controlling Key-Signaling Pathways and Metabolic Reprogramming During Tumor Evolution. Front Cell Dev Biol 2021; 8:586479. [PMID: 33384992 PMCID: PMC7769845 DOI: 10.3389/fcell.2020.586479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/20/2020] [Indexed: 11/15/2022] Open
Abstract
The proteotranscriptomic landscape depends on the transcription, mRNA-turnover, translation, and regulated-destruction of proteins. Gene-specific mRNA-to-protein correlation is the consequence of the dynamic interplays of the different regulatory processes of proteotranscriptomic landscape. So far, the critical impact of mRNA and protein stability on their subsequent correlation on a global scale remained unresolved. Whether the mRNA-to-protein correlations are constrained by their stability and conserved across mammalian species including human is unknown. Moreover, whether the stability-dependent correlation pattern is altered in the tumor has not been explored. To establish the quantitative relationship between stability and correlation between mRNA and protein levels, we performed a multi-omics data integration study across mammalian systems including diverse types of human tissues and cell lines in a genome-wide manner. The current study illuminated an important aspect of the mammalian proteotranscriptomic landscape by providing evidence that stability-constrained mRNA-to-protein correlation follows a hierarchical pattern that remains conserved across different tissues and mammalian species. By analyzing the tumor and non-tumor tissues, we further illustrated that mRNA-to-protein correlations deviate in tumor tissues. By gene-centric analysis, we harnessed the hierarchical correlation patterns to identify altered mRNA-to-protein correlation in tumors and characterized the tumor correlation-enhancing and -repressing genes. We elucidated the transcriptional regulatory circuits controlling the correlation-enhancing and -repressing genes that are associated with metabolic reprogramming and cancer-associated pathways in tumor tissue. By tightly controlling the mRNA-to-protein correlation of specific genes, the transcriptional regulatory circuits may enable the tumor cells to evolve in varying tumor microenvironment. The mRNA-to-protein correlation analysis thus can serve as a unique approach to identify the pathways prioritized by the tumor cells at different clinical stages. The component of transcriptional regulatory circuits identified by the current study can serve as potential candidates for stage-dependent anticancer therapy.
Collapse
Affiliation(s)
- Geoffroy Andrieux
- Faculty of Medicine, Medical Center-University of Freiburg, Institute of Medical Bioinformatics and Systems Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sajib Chakraborty
- Molecular Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Tonmoy Das
- Molecular Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Melanie Boerries
- Faculty of Medicine, Medical Center-University of Freiburg, Institute of Medical Bioinformatics and Systems Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Zinani OQH, Keseroğlu K, Ay A, Özbudak EM. Pairing of segmentation clock genes drives robust pattern formation. Nature 2020; 589:431-436. [PMID: 33361814 PMCID: PMC7932681 DOI: 10.1038/s41586-020-03055-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Gene expression is an inherently stochastic process 1,2; however, organismal development and homeostasis require that cells spatiotemporally coordinate the expression of large sets of genes. Coexpressed gene pairs in metazoans often reside in the same chromosomal neighborhood, with gene pairs representing 10% - 50% of all genes depending on species 3–6. As shared upstream regulators can ensure correlated gene expression, the selective advantage of maintaining adjacent gene pairs remains unknown 6. Here, using two linked zebrafish segmentation clock genes, her1 and her7, and combining single-cell transcript counting, genetic engineering, real-time imaging and computational modeling, we reveal that gene pairing boosts correlated transcription and provides phenotypic robustness for developmental pattern formation. Our results demonstrate that disrupting gene pairing disrupts oscillations and segmentation, identifying the selective pressure retaining correlated transcription to sustain a robust and rapid developmental clock. We anticipate that these findings will inspire investigating advantages of gene pairing in other systems and engineering precise synthetic clocks in embryos and organoids.
Collapse
Affiliation(s)
- Oriana Q H Zinani
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kemal Keseroğlu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ahmet Ay
- Department of Biology, Colgate University, Hamilton, NY, USA.,Department of Mathematics, Colgate University, Hamilton, NY, USA
| | - Ertuğrul M Özbudak
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Gilet J, Conte R, Torchet C, Benard L, Lafontaine I. Additional Layer of Regulation via Convergent Gene Orientation in Yeasts. Mol Biol Evol 2020; 37:365-378. [PMID: 31580446 PMCID: PMC6993858 DOI: 10.1093/molbev/msz221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Convergent gene pairs can produce transcripts with complementary sequences. We had shown that mRNA duplexes form in vivo in Saccharomyces cerevisiae via interactions of mRNA overlapping 3′-ends and can lead to posttranscriptional regulatory events. Here we show that mRNA duplex formation is restricted to convergent genes separated by short intergenic distance, independently of their 3′-untranslated region (UTR) length. We disclose an enrichment in genes involved in biological processes related to stress among these convergent genes. They are markedly conserved in convergent orientation in budding yeasts, meaning that this mode of posttranscriptional regulation could be shared in these organisms, conferring an additional level for modulating stress response. We thus investigated the mechanistic advantages potentially conferred by 3′-UTR mRNA interactions. Analysis of genome-wide transcriptome data revealed that Pat1 and Lsm1 factors, having 3′-UTR binding preference and participating to the remodeling of messenger ribonucleoprotein particles, bind differently these messenger-interacting mRNAs forming duplexes in comparison to mRNAs that do not interact (solo mRNAs). Functionally, messenger-interacting mRNAs show limited translational repression upon stress. We thus propose that mRNA duplex formation modulates the regulation of mRNA expression by limiting their access to translational repressors. Our results thus show that posttranscriptional regulation is an additional factor that determines the order of coding genes.
Collapse
Affiliation(s)
- Jules Gilet
- Institut de Biologie Physico-Chimique, UMR7141 Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, CNRS, Sorbonne Université, Paris, France.,Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Romain Conte
- Institut de Biologie Physico-Chimique, UMR7141 Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, CNRS, Sorbonne Université, Paris, France.,Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Claire Torchet
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Lionel Benard
- Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - Ingrid Lafontaine
- Institut de Biologie Physico-Chimique, UMR7141 Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, CNRS, Sorbonne Université, Paris, France.,Institut de Biologie Physico-Chimique, FRC 550, CNRS, Paris, France
| |
Collapse
|
6
|
Häkkinen A, Oliveira SMD, Neeli-Venkata R, Ribeiro AS. Transcription closed and open complex formation coordinate expression of genes with a shared promoter region. J R Soc Interface 2019; 16:20190507. [PMID: 31822223 DOI: 10.1098/rsif.2019.0507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many genes are spaced closely, allowing coordination without explicit control through shared regulatory elements and molecular interactions. We study the dynamics of a stochastic model of a gene-pair in a head-to-head configuration, sharing promoter elements, which accounts for the rate-limiting steps in transcription initiation. We find that only in specific regions of the parameter space of the rate-limiting steps is orderly coexpression exhibited, suggesting that successful cooperation between closely spaced genes requires the coevolution of compatible rate-limiting step configuration. The model predictions are validated using in vivo single-cell, single-RNA measurements of the dynamics of pairs of genes sharing promoter elements. Our results suggest that, in E. coli, the kinetics of the rate-limiting steps in active transcription can play a central role in shaping the dynamics of gene-pairs sharing promoter elements.
Collapse
Affiliation(s)
- Antti Häkkinen
- BioMediTech Institute and Department of Signal Processing, Tampere University of Technology, PO Box 553 33101, Tampere, Finland
| | - Samuel M D Oliveira
- BioMediTech Institute and Department of Signal Processing, Tampere University of Technology, PO Box 553 33101, Tampere, Finland
| | - Ramakanth Neeli-Venkata
- BioMediTech Institute and Department of Signal Processing, Tampere University of Technology, PO Box 553 33101, Tampere, Finland
| | - Andre S Ribeiro
- BioMediTech Institute and Department of Signal Processing, Tampere University of Technology, PO Box 553 33101, Tampere, Finland
| |
Collapse
|
7
|
Du M, Kodner S, Bai L. Enhancement of LacI binding in vivo. Nucleic Acids Res 2019; 47:9609-9618. [PMID: 31396617 PMCID: PMC6765135 DOI: 10.1093/nar/gkz698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/11/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022] Open
Abstract
Transcription factors (TFs) bind to specific sequences in DNA to regulate transcription. Despite extensive measurements of TFs’ dissociation constant (Kd) in vitro, their apparent Kdin vivo are usually unknown. LacI, a bacterial TF, is often used to artificially recruit proteins onto eukaryotic genomes. As LacI binds tightly to its recognition site (LacO) in vitro with a Kd about 10 picomolar (pM), it is often assumed that LacI also has high affinity to LacO in vivo. In this work, we measured LacI binding in living yeast cells using a fluorescent repressor operator system and found an apparent Kd of ∼0.6 μM, four orders of magnitude higher than that in vitro. By genetically altering (i) GFP-LacI structure, (ii) GFP-LacI stability, (iii) chromosome accessibility and (iv) LacO sequence, we reduced the apparent Kd to <10 nM. It turns out that the GFP tagging location and the fusion protein stability have a large effect on LacI binding, but surprisingly, chromosome accessibility only plays a mild role. These findings contribute to our quantitative understanding of the features that affect the apparent Kd of TF in cells. They also provide guidance for future design of more specific chromosomal recruitment through high-affinity TFs.
Collapse
Affiliation(s)
- Manyu Du
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Seth Kodner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Existence, Transition, and Propagation of Intermediate Silencing States in Ribosomal DNA. Mol Cell Biol 2019; 39:MCB.00146-19. [PMID: 31527077 DOI: 10.1128/mcb.00146-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/10/2019] [Indexed: 11/20/2022] Open
Abstract
The MET3 promoter (MET3pr) inserted into the silenced chromosome in budding yeast can overcome Sir2-dependent silencing upon induction and activate transcription in every single cell among a population. Despite the fact that MET3pr is turned on in all the cells, its activity still shows very high cell-to-cell variability. To understand the nature of such "gene expression noise," we followed the dynamics of the MET3pr-GFP expression inserted into ribosomal DNA (rDNA) using time-lapse microscopy. We found that the noisy "on" state is comprised of multiple substable states with discrete expression levels. These intermediate states stochastically transition between each other, with "up" transitions among different activated states occurring exclusively near the mitotic exit and "down" transitions occurring throughout the rest of the cell cycle. Such cell cycle dependence likely reflects the dynamic activity of the rDNA-specific RENT complex, as MET3pr-GFP expression in a telomeric locus does not have the same cell cycle dependence. The MET3pr-GFP expression in rDNA is highly correlated in mother and daughter cells after cell division, indicating that the silenced state in the mother cell is inherited in daughter cells. These states are disrupted by a brief repression and reset upon a second activation. Potential mechanisms behind these observations are further discussed.
Collapse
|
9
|
Xu H, Liu JJ, Liu Z, Li Y, Jin YS, Zhang J. Synchronization of stochastic expressions drives the clustering of functionally related genes. SCIENCE ADVANCES 2019; 5:eaax6525. [PMID: 31633028 PMCID: PMC6785257 DOI: 10.1126/sciadv.aax6525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/10/2019] [Indexed: 05/18/2023]
Abstract
Functionally related genes tend to be chromosomally clustered in eukaryotic genomes even after the exclusion of tandem duplicates, but the biological significance of this widespread phenomenon is unclear. We propose that stochastic expression fluctuations of neighboring genes resulting from chromatin dynamics are more or less synchronized such that their expression ratio is more stable than that for unlinked genes. Consequently, chromosomal clustering could be advantageous when the expression ratio of the clustered genes needs to stay constant, for example, because of the accumulation of toxic compounds when this ratio is altered. Evidence from manipulative experiments on the yeast GAL cluster, comprising three chromosomally adjacent genes encoding enzymes catalyzing consecutive reactions in galactose catabolism, unequivocally supports this hypothesis and elucidates how disorder in one biological phenomenon-gene expression noise-could prompt the emergence of order in another-genome organization.
Collapse
Affiliation(s)
- Haiqing Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhen Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ying Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Sun M, Zhang J. Chromosome-wide co-fluctuation of stochastic gene expression in mammalian cells. PLoS Genet 2019; 15:e1008389. [PMID: 31525198 PMCID: PMC6762216 DOI: 10.1371/journal.pgen.1008389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/26/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Gene expression is subject to stochastic noise, but to what extent and by which means such stochastic variations are coordinated among different genes are unclear. We hypothesize that neighboring genes on the same chromosome co-fluctuate in expression because of their common chromatin dynamics, and verify it at the genomic scale using allele-specific single-cell RNA-sequencing data of mouse cells. Unexpectedly, the co-fluctuation extends to genes that are over 60 million bases apart. We provide evidence that this long-range effect arises in part from chromatin co-accessibilities of linked loci attributable to three-dimensional proximity, which is much closer intra-chromosomally than inter-chromosomally. We further show that genes encoding components of the same protein complex tend to be chromosomally linked, likely resulting from natural selection for intracellular among-component dosage balance. These findings have implications for both the evolution of genome organization and optimal design of synthetic genomes in the face of gene expression noise.
Collapse
Affiliation(s)
- Mengyi Sun
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
11
|
Zou F, Bai L. Using time-lapse fluorescence microscopy to study gene regulation. Methods 2018; 159-160:138-145. [PMID: 30599195 DOI: 10.1016/j.ymeth.2018.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Time-lapse fluorescence microscopy is a powerful tool to study gene regulation. By probing fluorescent signals in single cells over extended period of time, this method can be used to study the dynamics, noise, movement, memory, inheritance, and coordination, of gene expression during cell growth, development, and differentiation. In combination with a flow-cell device, it can also measure gene regulation by external stimuli. Due to the single cell nature and the spatial/temporal capacity, this method can often provide information that is hard to get using other methods. Here, we review the standard experimental procedures and new technical developments in this field.
Collapse
Affiliation(s)
- Fan Zou
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, United States; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, United States
| | - Lu Bai
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, United States; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
12
|
Bunch H. Gene regulation of mammalian long non-coding RNA. Mol Genet Genomics 2017; 293:1-15. [PMID: 28894972 DOI: 10.1007/s00438-017-1370-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
RNA polymerase II (Pol II) transcribes two classes of RNAs, protein-coding and non-protein-coding (ncRNA) genes. ncRNAs are also synthesized by RNA polymerases I and III (Pol I and III). In humans, the number of ncRNA genes exceeds more than twice that of protein-coding genes. However, the history of studying Pol II-synthesized ncRNA is relatively short. Since early 2000s, important biological and pathological functions of these ncRNA genes have begun to be discovered and intensively studied. And transcription mechanisms of long non-coding RNA (lncRNA) have been recently reported. Transcription of lncRNAs utilizes some transcription factors and mechanisms shared in that of protein-coding genes. In addition, tissue specificity in lncRNA gene expression has been shown. LncRNAs play essential roles in regulating the expression of neighboring or distal genes through different mechanisms. This leads to the implication of lncRNAs in a wide variety of biological pathways and pathological development. In this review, the newly discovered transcription mechanisms, characteristics, and functions of lncRNA are discussed.
Collapse
Affiliation(s)
- Heeyoun Bunch
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Agriculture & Life Sciences Building 1, Room 207, 80 Dae-Hak Ro, Daegu, Republic of Korea.
| |
Collapse
|
13
|
Du M, Zhang Q, Bai L. Three distinct mechanisms of long-distance modulation of gene expression in yeast. PLoS Genet 2017; 13:e1006736. [PMID: 28426659 PMCID: PMC5417705 DOI: 10.1371/journal.pgen.1006736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/04/2017] [Accepted: 04/05/2017] [Indexed: 12/04/2022] Open
Abstract
Recent Hi-C measurements have revealed numerous intra- and inter-chromosomal interactions in various eukaryotic cells. To what extent these interactions regulate gene expression is not clear. This question is particularly intriguing in budding yeast because it has extensive long-distance chromosomal interactions but few cases of gene regulation over-a-distance. Here, we developed a medium-throughput assay to screen for functional long-distance interactions that affect the average expression level of a reporter gene as well as its cell-to-cell variability (noise). We ectopically inserted an insulated MET3 promoter (MET3pr) flanked by ~1kb invariable sequences into thousands of genomic loci, allowing it to make contacts with different parts of the genome, and assayed the MET3pr activity in single cells. Changes of MET3pr activity in this case necessarily involve mechanisms that function over a distance. MET3pr has similar activities at most locations. However, at some locations, they deviate from the norm and exhibit three distinct patterns including low expression / high noise, low expression / low noise, and high expression / low noise. We provided evidence that these three patterns of MET3pr expression are caused by Sir2-mediated silencing, transcriptional interference, and 3D clustering. The clustering also occurs in the native genome and enhances the transcription of endogenous Met4-targeted genes. Overall, our results demonstrate that a small fraction of long-distance chromosomal interactions can affect gene expression in yeast. Eukaryotic transcription occurs within the nucleus where DNA is packaged into high order chromosome structures. Some long-distance chromosomal interactions play an important role in gene regulation in higher eukaryotic species, such as mouse and human. In budding yeast, gene expression is traditionally thought to be regulated over short distances because the upstream regulatory sequences (URSs) are usually located close to the core promoters. However, recent chromosome conformation capture experiments have detected numerous long-distance chromosomal interactions in the yeast genome. The function of these interactions in gene regulation remains unclear. Here, we developed a new assay to screen for long-distance interactions that affect the activity of a reporter gene. We found three regulatory mechanisms that act from a distance: silencing, transcriptional interference, and 3D clustering, which alter expression level of the reporter gene as well as its cell-to-cell variability. Our results demonstrate that transcription in budding yeast, similar to transcription in higher eukaryotes, can be regulated over long distances. We anticipate our assay can be used as a general platform to screen for functional long-distance chromosomal interactions that affect gene expression.
Collapse
Affiliation(s)
- Manyu Du
- Department of Biochemistry and Molecular Biology, the Pennsylvania State University, University Park, State College, PA, United States of America
- Center for Eukaryotic Gene Regulation, the Pennsylvania State University, University Park, PA, State College, United States of America
| | - Qian Zhang
- Department of Biochemistry and Molecular Biology, the Pennsylvania State University, University Park, State College, PA, United States of America
- Center for Eukaryotic Gene Regulation, the Pennsylvania State University, University Park, PA, State College, United States of America
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, the Pennsylvania State University, University Park, State College, PA, United States of America
- Center for Eukaryotic Gene Regulation, the Pennsylvania State University, University Park, PA, State College, United States of America
- Department of Physics, the Pennsylvania State University, University Park, State College, PA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Yao J. Imaging Transcriptional Regulation of Eukaryotic mRNA Genes: Advances and Outlook. J Mol Biol 2017; 429:14-31. [DOI: 10.1016/j.jmb.2016.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 01/07/2023]
|