1
|
Bærentsen C, Fedorov SA, Østfeldt C, Balabas MV, Zeuthen E, Polzik ES. Squeezed light from an oscillator measured at the rate of oscillation. Nat Commun 2024; 15:4146. [PMID: 38755123 PMCID: PMC11099115 DOI: 10.1038/s41467-024-47906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Sufficiently fast continuous measurements of the position of an oscillator approach measurements projective on position eigenstates. We evidence the transition into the projective regime for a spin oscillator within an ensemble of 2 × 1010 room-temperature atoms by observing correlations between the quadratures of the meter light field. These correlations squeeze the fluctuations of one light quadrature below the vacuum level. When the measurement is slower than the oscillation, we generate 11 . 5 - 1.5 + 2.5 dB and detect 8 . 5 - 0.1 + 0.1 dB of squeezing in a tunable band that is a fraction of the resonance frequency. When the measurement is as fast as the oscillation, we detect 4.7 dB of squeezing that spans more than one decade of frequencies below the resonance. Our results demonstrate a new regime of continuous quantum measurements on material oscillators, and set a new benchmark for the performance of a linear quantum sensor.
Collapse
Affiliation(s)
| | - Sergey A Fedorov
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | | | | | - Emil Zeuthen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eugene S Polzik
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Thomas RA, Østfeldt C, Bærentsen C, Parniak M, Polzik ES. Calibration of spin-light coupling by coherently induced Faraday rotation. OPTICS EXPRESS 2021; 29:23637-23653. [PMID: 34614626 DOI: 10.1364/oe.425613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Calibrating the strength of the light-matter interaction is an important experimental task in quantum information and quantum state engineering protocols. The strength of the off-resonant light-matter interaction in multi-atom spin oscillators can be characterized by the readout rate ΓS. Here we introduce the method named Coherently Induced FAraday Rotation (CIFAR) for determining the readout rate. The method is suited for both continuous and pulsed readout of the spin oscillator, relying only on applying a known polarization modulation to the probe laser beam and detecting a known optical polarization component. Importantly, the method does not require changes to the optical and magnetic fields performing the state preparation and probing. The CIFAR signal is also independent of the probe beam photo-detection quantum efficiency, and allows direct extraction of other parameters of the interaction, such as the tensor coupling ζS, and the damping rate γS. We verify this method in the continuous wave regime, probing a strongly coupled spin oscillator prepared in a warm cesium atomic vapour.
Collapse
|
3
|
Dideriksen KB, Schmieg R, Zugenmaier M, Polzik ES. Room-temperature single-photon source with near-millisecond built-in memory. Nat Commun 2021; 12:3699. [PMID: 34140508 PMCID: PMC8211654 DOI: 10.1038/s41467-021-24033-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
Non-classical photon sources are a crucial resource for distributed quantum networks. Photons generated from matter systems with memory capability are particularly promising, as they can be integrated into a network where each source is used on-demand. Among all kinds of solid state and atomic quantum memories, room-temperature atomic vapours are especially attractive due to their robustness and potential scalability. To-date room-temperature photon sources have been limited either in their memory time or the purity of the photonic state. Here we demonstrate a single-photon source based on room-temperature memory. Following heralded loading of the memory, a single photon is retrieved from it after a variable storage time. The single-photon character of the retrieved field is validated by the strong suppression of the two-photon component with antibunching as low as [Formula: see text]. Non-classical correlations between the heralding and the retrieved photons are maintained for up to [Formula: see text], more than two orders of magnitude longer than previously demonstrated with other room-temperature systems. Correlations sufficient for violating Bell inequalities exist for up to τBI = (0.15 ± 0.03) ms.
Collapse
Affiliation(s)
| | - Rebecca Schmieg
- Niels Bohr Institute, University of Copenhagen, Copenhagen Ø, Denmark
| | | | - Eugene S Polzik
- Niels Bohr Institute, University of Copenhagen, Copenhagen Ø, Denmark.
| |
Collapse
|
4
|
Lu X, Cao W, Yi W, Shen H, Xiao Y. Nonreciprocity and Quantum Correlations of Light Transport in Hot Atoms via Reservoir Engineering. PHYSICAL REVIEW LETTERS 2021; 126:223603. [PMID: 34152162 DOI: 10.1103/physrevlett.126.223603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
The breaking of reciprocity is a topic of great interest in fundamental physics and optical information processing applications. We demonstrate nonreciprocal light transport in a quantum system of hot atoms by engineering the dissipative atomic reservoir. Our scheme is based on the phase-sensitive light transport in a multichannel photon-atom interaction configuration, where the phase of collective atomic excitations is tunable through external driving fields. Remarkably, we observe interchannel quantum correlations that originate from interactions with the judiciously engineered reservoir. The nonreciprocal transport in a quantum optical atomic system constitutes a new paradigm for atom-based nonreciprocal optics and offers opportunities for quantum simulations with coupled optical channels.
Collapse
Affiliation(s)
- Xingda Lu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Wanxia Cao
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Wei Yi
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
| | - Heng Shen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Yanhong Xiao
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
5
|
Thomas RA, Parniak M, Østfeldt C, Møller CB, Bærentsen C, Tsaturyan Y, Schliesser A, Appel J, Zeuthen E, Polzik ES. Entanglement between distant macroscopic mechanical and spin systems. NATURE PHYSICS 2021; 17:228-233. [PMID: 0 DOI: 10.1038/s41567-020-1031-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/06/2020] [Indexed: 05/24/2023]
|
6
|
Sun J, Zhang X, Qu W, Mikhailov EE, Novikova I, Shen H, Xiao Y. Spatial Multiplexing of Squeezed Light by Coherence Diffusion. PHYSICAL REVIEW LETTERS 2019; 123:203604. [PMID: 31809119 DOI: 10.1103/physrevlett.123.203604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 06/10/2023]
Abstract
Spatially splitting nonclassical light beams is in principle prohibited due to noise contamination during beam splitting. We propose a platform based on thermal motion of atoms to realize spatial multiplexing of squeezed light. Light channels of separate spatial modes in an antirelaxation coated vapor cell share the same long-lived atomic coherence jointly created by all channels through the coherent diffusion of atoms, which in turn enhances the individual channel's nonlinear process responsible for light squeezing. Consequently, it behaves as squeezed light in one optical channel transferring to other distant channels even with laser powers below the threshold for squeezed light generation. An array of squeezed light beams is created with low laser power ∼ milliwatt. This approach holds great promise for applications in a multinode quantum network and quantum enhanced technologies such as quantum imaging and sensing.
Collapse
Affiliation(s)
- Jian Sun
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Xichang Zhang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Weizhi Qu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Eugeniy E Mikhailov
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - Irina Novikova
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - Heng Shen
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Yanhong Xiao
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Nonvolatile nuclear spin memory enables sensor-unlimited nanoscale spectroscopy of small spin clusters. Nat Commun 2017; 8:834. [PMID: 29018203 PMCID: PMC5635067 DOI: 10.1038/s41467-017-00964-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/09/2017] [Indexed: 11/17/2022] Open
Abstract
In nanoscale metrology, dissipation of the sensor limits its performance. Strong dissipation has a negative impact on sensitivity, and sensor–target interaction even causes relaxation or dephasing of the latter. The weak dissipation of nitrogen-vacancy (NV) sensors in room temperature diamond enables detection of individual target nuclear spins, yet limits the spectral resolution of nuclear magnetic resonance (NMR) spectroscopy to several hundred Hertz, which typically prevents molecular recognition. Here, we use the NV intrinsic nuclear spin as a nonvolatile classical memory to store NMR information, while suppressing sensor back-action on the target using controlled decoupling of sensor, memory, and target. We demonstrate memory lifetimes up to 4 min and apply measurement and decoupling protocols, which exploit such memories efficiently. Our universal NV-based sensor device records single-spin NMR spectra with 13 Hz resolution at room temperature. Dissipation of the sensor is a limiting factor in metrology. Here, Pfender et al. suppress this effect employing the nuclear spin of an NV centre for robust intermediate storage of classical NMR information, allowing then to record single-spin NMR spectra with 13 Hz resolution at room temperature.
Collapse
|
8
|
Wolters J, Buser G, Horsley A, Béguin L, Jöckel A, Jahn JP, Warburton RJ, Treutlein P. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons. PHYSICAL REVIEW LETTERS 2017; 119:060502. [PMID: 28949634 DOI: 10.1103/physrevlett.119.060502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 06/07/2023]
Abstract
Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δf=0.66 GHz, the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure η_{e2e}^{50 ns}=3.4(3)% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency η_{int}=17(3)%. Straightforward technological improvements can boost the end-to-end-efficiency to η_{e2e}≈35%; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9×10^{-3} photons is dominated by atomic fluorescence, and for input pulses containing on average μ_{1}=0.27(4) photons, the signal to noise level would be unity.
Collapse
Affiliation(s)
- Janik Wolters
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Gianni Buser
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Andrew Horsley
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Lucas Béguin
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Andreas Jöckel
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Jan-Philipp Jahn
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Richard J Warburton
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Philipp Treutlein
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| |
Collapse
|
9
|
Møller CB, Thomas RA, Vasilakis G, Zeuthen E, Tsaturyan Y, Balabas M, Jensen K, Schliesser A, Hammerer K, Polzik ES. Quantum back-action-evading measurement of motion in a negative mass reference frame. Nature 2017; 547:191-195. [DOI: 10.1038/nature22980] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 05/19/2017] [Indexed: 11/09/2022]
|
10
|
Silveri MP, Tuorila JA, Thuneberg EV, Paraoanu GS. Quantum systems under frequency modulation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:056002. [PMID: 28379844 DOI: 10.1088/1361-6633/aa5170] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We review the physical phenomena that arise when quantum mechanical energy levels are modulated in time. The dynamics resulting from changes in the transition frequency is a problem studied since the early days of quantum mechanics. It has been of constant interest both experimentally and theoretically since, with the simple two-state model providing an inexhaustible source of novel concepts. When the transition frequency of a quantum system is modulated, several phenomena can be observed, such as Landau-Zener-Stückelberg-Majorana interference, motional averaging and narrowing, and the formation of dressed states with the appearance of sidebands in the spectrum. Adiabatic changes result in the accumulation of geometric phases, which can be used to create topological states. In recent years, an exquisite experimental control in the time domain was gained through the parameters entering the Hamiltonian, and high-fidelity readout schemes allowed the state of the system to be monitored non-destructively. These developments were made in the field of quantum devices, especially in superconducting qubits, as a well as in atomic physics, in particular in ultracold gases. As a result of these advances, it became possible to demonstrate many of the fundamental effects that arise in a quantum system when its transition frequencies are modulated. The purpose of this review is to present some of these developments, from two-state atoms and harmonic oscillators to multilevel and many-particle systems.
Collapse
Affiliation(s)
- M P Silveri
- Department of Physics, University of Oulu, PO Box 3000, FI-90014, Finland. Department of Physics, Yale University, New Haven, CT 06520, United States of America
| | | | | | | |
Collapse
|