1
|
Vismarra F, Fernández-Villoria F, Mocci D, González-Vázquez J, Wu Y, Colaizzi L, Holzmeier F, Delgado J, Santos J, Bañares L, Carlini L, Castrovilli MC, Bolognesi P, Richter R, Avaldi L, Palacios A, Lucchini M, Reduzzi M, Borrego-Varillas R, Martín N, Martín F, Nisoli M. Few-femtosecond electron transfer dynamics in photoionized donor-π-acceptor molecules. Nat Chem 2024:10.1038/s41557-024-01620-y. [PMID: 39322782 DOI: 10.1038/s41557-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
The exposure of molecules to attosecond extreme-ultraviolet (XUV) pulses offers a unique opportunity to study the early stages of coupled electron-nuclear dynamics in which the role played by the different degrees of freedom is beyond standard chemical intuition. We investigate, both experimentally and theoretically, the first steps of charge-transfer processes initiated by prompt ionization in prototype donor-π-acceptor molecules, namely nitroanilines. Time-resolved measurement of this process is performed by combining attosecond XUV-pump/few-femtosecond infrared-probe spectroscopy with advanced many-body quantum chemistry calculations. We show that a concerted nuclear and electronic motion drives electron transfer from the donor group on a sub-10-fs timescale. This is followed by a sub-30-fs relaxation process due to the probing of the continuously spreading nuclear wave packet in the excited electronic states of the molecular cation. These findings shed light on the role played by electron-nuclear coupling in donor-π-acceptor systems in response to photoionization.
Collapse
Grants
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 951224 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20173B72NB Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA182 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
- CA1822 European Cooperation in Science and Technology (COST)
Collapse
Affiliation(s)
- Federico Vismarra
- Department of Physics, Politecnico di Milano, Milan, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, Milan, Italy
| | - Francisco Fernández-Villoria
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniele Mocci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | - Yingxuan Wu
- Department of Physics, Politecnico di Milano, Milan, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, Milan, Italy
| | | | | | - Jorge Delgado
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Santos
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química Orgánica I, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Bañares
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Carlini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Rome, Italy
| | | | - Paola Bolognesi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Rome, Italy
| | - Robert Richter
- Sincrotrone Trieste, Area Science Park, Basovizza, Trieste, Italy
| | - Lorenzo Avaldi
- Istituto di Struttura della Materia-CNR (ISM-CNR), Rome, Italy
| | - Alicia Palacios
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain
| | - Matteo Lucchini
- Department of Physics, Politecnico di Milano, Milan, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, Milan, Italy
| | | | | | - Nazario Martín
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain
- Departamento de Química Orgánica I, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Martín
- Instituto Madrileño de Estudios Avanzados en Nanociencia, Madrid, Spain.
- Departamento de Química, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Mauro Nisoli
- Department of Physics, Politecnico di Milano, Milan, Italy.
- Institute for Photonics and Nanotechnologies, IFN-CNR, Milan, Italy.
| |
Collapse
|
2
|
Dreimann M, Wahlert F, Roling S, Treusch R, Plönjes E, Zacharias H. Development and performance simulations of a soft X-ray and XUV split-and-delay unit at beamlines FL23/24 at FLASH2 for time-resolved two-color pump-probe experiments. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1168-1178. [PMID: 39102362 PMCID: PMC11371028 DOI: 10.1107/s160057752400609x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/23/2024] [Indexed: 08/07/2024]
Abstract
The split-and-delay unit (SDU) at FLASH2 will be upgraded to enable the simultaneous operation of two temporally, spatially and spectrally separated probe beams when the free-electron laser undulators are operated in a two-color scheme. By means of suitable thin filters and an optical grating beam path a wide range of combinations of photon energies in the spectral range from 150 eV to 780 eV can be chosen. In this paper, simulations of the spectral transmission and performance parameters of the filter technique are discussed, along with a monochromator with dispersion compensation presently under construction.
Collapse
Affiliation(s)
- Matthias Dreimann
- Center for Soft NanoscienceUniversität MünsterBusso-Peus-Strasse 1048149MünsterGermany
| | - Frank Wahlert
- Physikalisches InstitutUniversität MünsterWilhelm-Klemm-Strasse 1048149MünsterGermany
| | - Sebastian Roling
- Physikalisches InstitutUniversität MünsterWilhelm-Klemm-Strasse 1048149MünsterGermany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Elke Plönjes
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Helmut Zacharias
- Center for Soft NanoscienceUniversität MünsterBusso-Peus-Strasse 1048149MünsterGermany
| |
Collapse
|
3
|
Liu J, Li Y, Hou Y, Wu J, Yuan J. Transient responses of double core-holes generation in all-attosecond pump-probe spectroscopy. Sci Rep 2024; 14:1950. [PMID: 38253674 PMCID: PMC11226462 DOI: 10.1038/s41598-024-52197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Double core-holes (DCHs) show remarkable and sensitive effects for understanding electron correlations and coherence. With advanced modulation of x-ray free-electron laser (XFEL) facility, we propose the forthcoming all-attosecond XFEL pump-probe spectroscopy can decipher the hidden photon-initiated dynamics of DCHs. The benchmark case of neon is investigated, and norm-nonconserving Monte-Carlo wavefunction method simulates non-Hermitian dynamics among vast states, which shows superiority in efficiency and reliability. In our scheme, population transfer to DCHs is sequentially irradiated by pump and probe laser. By varying time delay, Stark shifts and quantum path interference of resonant lines sensitively emerge at specific interval of two pulses. These ubiquitous multi-channel effects are also observed in phase-fluctuating pulses, derived from extra phases of impulsive Raman processes by pump laser. Non-perturbation absorption/emission verifies the uniquely interchangeable role of two pules in higher intensity. Our results reveal sensitive and robust responses on pulse parameters, which show potential capacity for XFEL attosecond pulse diagnosis and further attosecond-timescale chemical analysis.
Collapse
Affiliation(s)
- Jianpeng Liu
- College of Science, National University of Defense Technology, Changsha, 410073, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, 410073, China
| | - Yongqiang Li
- College of Science, National University of Defense Technology, Changsha, 410073, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, 410073, China
| | - Yong Hou
- College of Science, National University of Defense Technology, Changsha, 410073, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, 410073, China
| | - Jianhua Wu
- College of Science, National University of Defense Technology, Changsha, 410073, China.
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, 410073, China.
| | - Jianmin Yuan
- Department of Physics, Graduate School of China Academy of Engineering Physics, Beijing, 100193, China.
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Weakly RB, Liekhus-Schmaltz CE, Poulter BI, Biasin E, Alonso-Mori R, Aquila A, Boutet S, Fuller FD, Ho PJ, Kroll T, Loe CM, Lutman A, Zhu D, Bergmann U, Schoenlein RW, Govind N, Khalil M. Revealing core-valence interactions in solution with femtosecond X-ray pump X-ray probe spectroscopy. Nat Commun 2023; 14:3384. [PMID: 37291130 DOI: 10.1038/s41467-023-39165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Femtosecond pump-probe spectroscopy using ultrafast optical and infrared pulses has become an essential tool to discover and understand complex electronic and structural dynamics in solvated molecular, biological, and material systems. Here we report the experimental realization of an ultrafast two-color X-ray pump X-ray probe transient absorption experiment performed in solution. A 10 fs X-ray pump pulse creates a localized excitation by removing a 1s electron from an Fe atom in solvated ferro- and ferricyanide complexes. Following the ensuing Auger-Meitner cascade, the second X-ray pulse probes the Fe 1s → 3p transitions in resultant novel core-excited electronic states. Careful comparison of the experimental spectra with theory, extracts +2 eV shifts in transition energies per valence hole, providing insight into correlated interactions of valence 3d with 3p and deeper-lying electrons. Such information is essential for accurate modeling and predictive synthesis of transition metal complexes relevant for applications ranging from catalysis to information storage technology. This study demonstrates the experimental realization of the scientific opportunities possible with the continued development of multicolor multi-pulse X-ray spectroscopy to study electronic correlations in complex condensed phase systems.
Collapse
Affiliation(s)
- Robert B Weakly
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | | | - Benjamin I Poulter
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Andrew Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Franklin D Fuller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Phay J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Caroline M Loe
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Alberto Lutman
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Diling Zhu
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Robert W Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
5
|
Dreimann M, Wahlert F, Eckermann D, Rosenthal F, Roling S, Reiker T, Kuhlmann M, Toleikis S, Brachmanski M, Treusch R, Plönjes E, Siemer B, Zacharias H. The soft X-ray and XUV split-and-delay unit at beamlines FL23/24 at FLASH2. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:479-489. [PMID: 36891862 PMCID: PMC10000806 DOI: 10.1107/s1600577523000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
A split-and-delay unit for the extreme ultraviolet and soft X-ray spectral regions has been built which enables time-resolved experiments at beamlines FL23 and FL24 at the Free-electron LASer in Hamburg (FLASH). Geometric wavefront splitting at a sharp edge of a beam splitting mirror is applied to split the incoming soft X-ray pulse into two beams. Ni and Pt coatings at grazing incidence angles have been chosen in order to cover the whole spectral range of FLASH2 and beyond, up to hν = 1800 eV. In the variable beam path with a grazing incidence angle of ϑd = 1.8°, the total transmission (T) ranges are of the order of 0.48 < T < 0.84 for hν < 100 eV and T > 0.50 for 100 eV < hν < 650 eV with the Ni coating, and T > 0.06 for hν < 1800 eV for the Pt coating. For a fixed beam path with a grazing incidence angle of ϑf = 1.3°, a transmission of T > 0.61 with the Ni coating and T > 0.23 with a Pt coating is achieved. Soft X-ray pump/soft X-ray probe experiments are possible within a delay range of -5 ps < Δt < +18 ps with a nominal time resolution of tr = 66 as and a measured timing jitter of tj = 121 ± 2 as. First experiments with the split-and-delay unit determined the averaged coherence time of FLASH2 to be τc = 1.75 fs at λ = 8 nm, measured at a purposely reduced coherence of the free-electron laser.
Collapse
Affiliation(s)
- Matthias Dreimann
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Frank Wahlert
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Dennis Eckermann
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Felix Rosenthal
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Sebastian Roling
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Tobias Reiker
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Marion Kuhlmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sven Toleikis
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Maciej Brachmanski
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Elke Plönjes
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Björn Siemer
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Helmut Zacharias
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| |
Collapse
|
6
|
Observation of site-selective chemical bond changes via ultrafast chemical shifts. Nat Commun 2022; 13:7170. [PMID: 36418902 PMCID: PMC9684563 DOI: 10.1038/s41467-022-34670-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
The concomitant motion of electrons and nuclei on the femtosecond time scale marks the fate of chemical and biological processes. Here we demonstrate the ability to initiate and track the ultrafast electron rearrangement and chemical bond breaking site-specifically in real time for the carbon monoxide diatomic molecule. We employ a local resonant x-ray pump at the oxygen atom and probe the chemical shifts of the carbon core-electron binding energy. We observe charge redistribution accompanying core-excitation followed by Auger decay, eventually leading to dissociation and hole trapping at one site of the molecule. The presented technique is general in nature with sensitivity to chemical environment changes including transient electronic excited state dynamics. This work provides a route to investigate energy and charge transport processes in more complex systems by tracking selective chemical bond changes on their natural timescale.
Collapse
|
7
|
Artificial intelligence for online characterization of ultrashort X-ray free-electron laser pulses. Sci Rep 2022; 12:17809. [PMID: 36280680 PMCID: PMC9592592 DOI: 10.1038/s41598-022-21646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
X-ray free-electron lasers (XFELs) as the world’s brightest light sources provide ultrashort X-ray pulses with a duration typically in the order of femtoseconds. Recently, they have approached and entered the attosecond regime, which holds new promises for single-molecule imaging and studying nonlinear and ultrafast phenomena such as localized electron dynamics. The technological evolution of XFELs toward well-controllable light sources for precise metrology of ultrafast processes has been, however, hampered by the diagnostic capabilities for characterizing X-ray pulses at the attosecond frontier. In this regard, the spectroscopic technique of photoelectron angular streaking has successfully proven how to non-destructively retrieve the exact time–energy structure of XFEL pulses on a single-shot basis. By using artificial intelligence techniques, in particular convolutional neural networks, we here show how this technique can be leveraged from its proof-of-principle stage toward routine diagnostics even at high-repetition-rate XFELs, thus enhancing and refining their scientific accessibility in all related disciplines.
Collapse
|
8
|
Andersen JH, Nanda KD, Krylov AI, Coriani S. Cherry-Picking Resolvents: Recovering the Valence Contribution in X-ray Two-Photon Absorption within the Core-Valence-Separated Equation-of-Motion Coupled-Cluster Response Theory. J Chem Theory Comput 2022; 18:6189-6202. [PMID: 36084326 DOI: 10.1021/acs.jctc.2c00541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calculations of first-order response wave functions in the X-ray regime often diverge within correlated frameworks such as equation-of-motion coupled-cluster singles and doubles (EOM-CCSD), a consequence of the coupling with the valence ionization continuum. Here, we extend our strategy of introducing a hierarchy of approximations to the EOM-EE-CCSD resolvent (or, inversely, the model Hamiltonian) involved in the response equations for the calculation of X-ray two-photon absorption (X2PA) cross sections. We exploit the frozen-core core-valence separation (fc-CVS) scheme to first decouple the core and valence Fock spaces, followed by a separate approximate treatment of the valence resolvent. We demonstrate the robust convergence of X-ray response calculations within this framework and compare X2PA spectra of small benchmark molecules with the previously reported density functional theory results.
Collapse
Affiliation(s)
- Josefine H Andersen
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | - Kaushik D Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Forbes R, Hockett P, Powis I, Bozek JD, Pratt ST, Holland DMP. Auger electron angular distributions following excitation or ionization from the Xe 3d and F 1s levels in xenon difluoride. Phys Chem Chem Phys 2021; 24:1367-1379. [PMID: 34951418 DOI: 10.1039/d1cp04797c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linearly polarized synchrotron radiation has been used to record polarization dependent, non-resonant Auger electron spectra of XeF2, encompassing the bands due to the xenon M45N1N45, M45N23N45, M45N45N45 and M45N45V and fluorine KVV transitions. Resonantly excited Auger spectra have been measured at photon energies coinciding with the Xe 3d5/2 → σ* and the overlapped Xe 3d3/2/F 1s → σ* excitations in XeF2. The non-resonant and resonantly excited spectra have enabled the Auger electron angular distributions, as characterized by the βA parameter, to be determined for the M45N45N45 transitions. In the photon energy range over which the Auger electron angular distributions were measured, theoretical results indicate that transitions into the εf continuum channel dominate the Xe 3d photoionization in XeF2. In this limit, the theoretical value of the atomic alignment parameter (A20) characterizing the core ionized state becomes constant. This theoretical value has been used to obtain the Auger electron intrinsic anisotropy parameters (α2) from the βA parameters extracted from our non-resonant Auger spectra. For a particular Auger transition, the electron kinetic energy measured in the resonantly excited spectrum is higher than that in the directly ionized spectrum, due to the screening provided by the electron promoted into the σ* orbital. The interpretation of the F KVV Auger band in XeF2 has been discussed in relation to previously published one-site populations of the doubly charged ions (XeF22+). The experimental results show that the ionization energies of the doubly charged states predominantly populated in the decay of a vacancy in the F 1s orbital in XeF2 tend to be higher than those populated in the decay of a vacancy in the Xe 4d level in XeF2.
Collapse
Affiliation(s)
- Ruaridh Forbes
- PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Paul Hockett
- National Research Council of Canada, 100 Sussex Dr. Ottawa, ON K1A 0R6, Canada
| | - Ivan Powis
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - John D Bozek
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Stephen T Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | | |
Collapse
|
10
|
Coutinho LH, de A Ribeiro F, Tenorio BNC, Coriani S, Dos Santos ACF, Nicolas C, Milosavljevic AR, Bozek JD, Wolff W. NEXAFS and MS-AES spectroscopy of the C 1s and Cl 2p excitation and ionization of chlorobenzene: Production of dicationic species. Phys Chem Chem Phys 2021; 23:27484-27497. [PMID: 34873605 DOI: 10.1039/d1cp03121j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on single- and double-charge photofragment formation by synchrotron radiation, following C 1s core excitation and ionization and Cl 2p inner excitation and ionization of chlorobenzene, C6H5Cl. From a comparison of experimental near-edge X-ray absorption fine structure spectra and theoretical ab initio calculations, the nature of various core and inner shell transitions of the molecule and pure atomic features were identified. To shed light on the normal Auger processes following excitation or ionization of the molecule at the Cl 2p or C 1s sites, we addressed the induced ionic species formation. With energy resolved electron spectra and ion time-of-flight spectra coincidence measurements, the ionic species were correlated with binding energy regions and initial states of vacancies. We explored the formation of the molecular dication C6H5Cl2+, the analogue benzene dication C6H42+, and the singly charged species produced by single loss of a carbon atom, C5HnCl+. The appearance and intensities of the spectral features associated with these ionic species are shown to be strongly site selective and dependent on the energy ranges of the Auger electron emission. Unexpected intensities for the analogue double charged benzene C6H42+ ion were observed with fast Auger electrons. The transitions leading to C6H5Cl2+ were identified from the binding energy representation of high resolution electron energy spectra. Most C6H5Cl2+ ions decay into two singly charged moieties, but intermediate channels are opened leading to other heavy dicationic species, C6H42+ and C6H4Cl2+, the channel leading to the first of these being much more favored than the other.
Collapse
Affiliation(s)
- Lúcia H Coutinho
- Physics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil.
| | | | - Bruno N C Tenorio
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Antonio C F Dos Santos
- Physics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil.
| | | | | | - John D Bozek
- Synchrotron SOLEIL, Gif-sur-Yvette, 91192, France
| | - Wania Wolff
- Physics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil.
| |
Collapse
|
11
|
Forbes R, Hockett P, Powis I, Bozek JD, Holland DMP, Pratt ST. Photoionization from the Xe 4d orbitals of XeF 2. J Chem Phys 2021; 155:194301. [PMID: 34800957 DOI: 10.1063/5.0068530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a comparison of the photoionization dynamics of the 4d shell of XeF2 from threshold to 250 eV to those of the prototypical 4d shell of atomic Xe. The new experimental data include spin-orbit and ligand-field-resolved partial cross sections, photoelectron angular distributions, branching fractions, and lifetime widths for the 4d-hole states. The spin-orbit branching fractions and angular distributions are remarkably similar to the corresponding distributions from atomic Xe across a broad energy interval that includes both the intense shape resonance in the f continuum and a Cooper minimum in the same channel. The angular distributions and branching fractions are also in reasonably good agreement with our first-principles theoretical calculations on XeF2. Data are also presented on the lifetime widths of the substate-resolved 4d-hole states of XeF2. While the trends in the widths are similar to those in the earlier experimental and theoretical work, the linewidths are considerably smaller than in the previous measurements, which may require some reinterpretation of the decay mechanism. Finally, we present new data and an analysis of the Auger electron spectra for ionization above the 4d thresholds and resonant Auger spectra for several pre-edge features.
Collapse
Affiliation(s)
- R Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - P Hockett
- National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - I Powis
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - J D Bozek
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - D M P Holland
- Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, United Kingdom
| | - S T Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
12
|
Ilchen M, Schmidt P, Novikovskiy NM, Hartmann G, Rupprecht P, Coffee RN, Ehresmann A, Galler A, Hartmann N, Helml W, Huang Z, Inhester L, Lutman AA, MacArthur JP, Maxwell T, Meyer M, Music V, Nuhn HD, Osipov T, Ray D, Wolf TJA, Bari S, Walter P, Li Z, Moeller S, Knie A, Demekhin PV. Site-specific interrogation of an ionic chiral fragment during photolysis using an X-ray free-electron laser. Commun Chem 2021; 4:119. [PMID: 36697819 PMCID: PMC9814667 DOI: 10.1038/s42004-021-00555-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 01/28/2023] Open
Abstract
Short-wavelength free-electron lasers with their ultrashort pulses at high intensities have originated new approaches for tracking molecular dynamics from the vista of specific sites. X-ray pump X-ray probe schemes even allow to address individual atomic constituents with a 'trigger'-event that preludes the subsequent molecular dynamics while being able to selectively probe the evolving structure with a time-delayed second X-ray pulse. Here, we use a linearly polarized X-ray photon to trigger the photolysis of a prototypical chiral molecule, namely trifluoromethyloxirane (C3H3F3O), at the fluorine K-edge at around 700 eV. The created fluorine-containing fragments are then probed by a second, circularly polarized X-ray pulse of higher photon energy in order to investigate the chemically shifted inner-shell electrons of the ionic mother-fragment for their stereochemical sensitivity. We experimentally demonstrate and theoretically support how two-color X-ray pump X-ray probe experiments with polarization control enable XFELs as tools for chiral recognition.
Collapse
Affiliation(s)
- Markus Ilchen
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany ,Stanford PULSE Institute, Menlo Park, CA USA
| | - Philipp Schmidt
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Nikolay M. Novikovskiy
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.182798.d0000 0001 2172 8170Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
| | - Gregor Hartmann
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.424048.e0000 0001 1090 3682Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Patrick Rupprecht
- grid.419604.e0000 0001 2288 6103Max-Planck-Institut für Kernphysik Heidelberg, Heidelberg, Germany
| | - Ryan N. Coffee
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Arno Ehresmann
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| | - Andreas Galler
- grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Nick Hartmann
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Wolfram Helml
- grid.5675.10000 0001 0416 9637Fakultät für Physik, Technische Universität Dortmund, Dortmund, Germany
| | - Zhirong Huang
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Ludger Inhester
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Alberto A. Lutman
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - James P. MacArthur
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Timothy Maxwell
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Michael Meyer
- grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Valerija Music
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Heinz-Dieter Nuhn
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Timur Osipov
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Dipanwita Ray
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Thomas J. A. Wolf
- Stanford PULSE Institute, Menlo Park, CA USA ,grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Sadia Bari
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Peter Walter
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Zheng Li
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Stefan Moeller
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - André Knie
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| | - Philipp V. Demekhin
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| |
Collapse
|
13
|
Fouda AEA, Ho PJ. Site-specific generation of excited state wavepackets with high-intensity attosecond x rays. J Chem Phys 2021; 154:224111. [PMID: 34241215 DOI: 10.1063/5.0050891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
High-intensity attosecond x rays can produce coherent superpositions of valence-excited states through two-photon Raman transitions. The broad-bandwidth, high-field nature of the pulses results in a multitude of accessible excited states. Multiconfigurational quantum chemistry with the time-dependent Schrödinger equation is used to examine population transfer dynamics in stimulated x-ray Raman scattering of the nitric oxide oxygen and nitrogen K-edges. Two pulse schemes initiate wavepackets of different characters and demonstrate how chemical differences between core-excitation pathways affect the dynamics. The population transfer to valence-excited states is found to be sensitive to the electronic structure and pulse conditions, highlighting complexities attributed to the Rabi frequency. The orthogonally polarized two-color-pulse setup has increased selectivity while facilitating longer, less intense pulses than the one-pulse setup. Population transfer in the 1s → Rydberg region is more effective but less selective at the nitrogen K-edge; the selectivity is reduced by double core-excited states. Result interpretation is aided by resonant inelastic x-ray scattering maps.
Collapse
Affiliation(s)
- Adam E A Fouda
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, USA
| | - Phay J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, USA
| |
Collapse
|
14
|
Ho PJ, Fouda AEA, Li K, Doumy G, Young L. Ultraintense, ultrashort pulse X-ray scattering in small molecules. Faraday Discuss 2021; 228:139-160. [PMID: 33576361 DOI: 10.1039/d0fd00106f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examine X-ray scattering from an isolated organic molecule from the linear to nonlinear absorptive regime. In the nonlinear regime, we explore the importance of both the coherent and incoherent channels and observe the onset of nonlinear behavior as a function of pulse duration and energy. In the linear regime, we test the sensitivity of the scattering signal to molecular bonding and electronic correlation via calculations using the independent atom model (IAM), Hartree-Fock (HF) and density functional theory (DFT). Finally, we describe how coherent X-ray scattering can be used to directly visualize femtosecond charge transfer and dissociation within a single molecule undergoing X-ray multiphoton absorption.
Collapse
Affiliation(s)
- Phay J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Adam E A Fouda
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Kai Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
15
|
Wang J, Bulanov SV, Chen M, Lei B, Zhang Y, Zagidullin R, Zorina V, Yu W, Leng Y, Li R, Zepf M, Rykovanov SG. Relativistic slingshot: A source for single circularly polarized attosecond x-ray pulses. Phys Rev E 2021; 102:061201. [PMID: 33466060 DOI: 10.1103/physreve.102.061201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
We propose a mechanism to generate a single intense circularly polarized attosecond x-ray pulse from the interaction of a circularly polarized relativistic few-cycle laser pulse with an ultrathin foil at normal incidence. Analytical modeling and particle-in-cell simulation demonstrate that a huge charge-separation field can be produced when all the electrons are displaced from the target by the incident laser, resulting in a high-quality relativistic electron mirror that propagates against the tail of the laser pulse. The latter is efficiently reflected as well as compressed into an attosecond pulse that is also circularly polarized.
Collapse
Affiliation(s)
- Jingwei Wang
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China.,Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sergei V Bulanov
- Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague, Czech Republic
| | - Min Chen
- Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bifeng Lei
- Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany.,Faculty of Physics and Astronomy, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Yuxue Zhang
- Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany.,Faculty of Physics and Astronomy, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Rishat Zagidullin
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Veronika Zorina
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Wei Yu
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Yuxin Leng
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Ruxin Li
- State Key Laboratory of High Field Laser Physics, CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences (CAS), Shanghai 201800, China
| | - Matt Zepf
- Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany.,Faculty of Physics and Astronomy, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Sergey G Rykovanov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
16
|
Electron-ion coincidence measurements of molecular dynamics with intense X-ray pulses. Sci Rep 2021; 11:505. [PMID: 33436816 PMCID: PMC7804145 DOI: 10.1038/s41598-020-79818-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Molecules can sequentially absorb multiple photons when irradiated by an intense X-ray pulse from a free-electron laser. If the time delay between two photoabsorption events can be determined, this enables pump-probe experiments with a single X-ray pulse, where the absorption of the first photon induces electronic and nuclear dynamics that are probed by the absorption of the second photon. Here we show a realization of such a single-pulse X-ray pump-probe scheme on N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_2$$\end{document}2 molecules, using the X-ray induced dissociation process as an internal clock that is read out via coincident detection of photoelectrons and fragment ions. By coincidence analysis of the kinetic energies of the ionic fragments and photoelectrons, the transition from a bound molecular dication to two isolated atomic ions is observed through the energy shift of the inner-shell electrons. Via ab-initio simulations, we are able to map characteristic features in the kinetic energy release and photoelectron spectrum to specific delay times between photoabsorptions. In contrast to previous studies where nuclear motions were typically revealed by measuring ion kinetics, our work shows that inner-shell photoelectron energies can also be sensitive probes of nuclear dynamics, which adds one more dimension to the study of light-matter interactions with X-ray pulses.
Collapse
|
17
|
Allum F, Anders N, Brouard M, Bucksbaum P, Burt M, Downes-Ward B, Grundmann S, Harries J, Ishimura Y, Iwayama H, Kaiser L, Kukk E, Lee J, Liu X, Minns RS, Nagaya K, Niozu A, Niskanen J, O'Neal J, Owada S, Pickering J, Rolles D, Rudenko A, Saito S, Ueda K, Vallance C, Werby N, Woodhouse J, You D, Ziaee F, Driver T, Forbes R. Multi-channel photodissociation and XUV-induced charge transfer dynamics in strong-field-ionized methyl iodide studied with time-resolved recoil-frame covariance imaging. Faraday Discuss 2021; 228:571-596. [PMID: 33629700 DOI: 10.1039/d0fd00115e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photodissociation dynamics of strong-field ionized methyl iodide (CH3I) were probed using intense extreme ultraviolet (XUV) radiation produced by the SPring-8 Angstrom Compact free electron LAser (SACLA). Strong-field ionization and subsequent fragmentation of CH3I was initiated by an intense femtosecond infrared (IR) pulse. The ensuing fragmentation and charge transfer processes following multiple ionization by the XUV pulse at a range of pump-probe delays were followed in a multi-mass ion velocity-map imaging (VMI) experiment. Simultaneous imaging of a wide range of resultant ions allowed for additional insight into the complex dynamics by elucidating correlations between the momenta of different fragment ions using time-resolved recoil-frame covariance imaging analysis. The comprehensive picture of the photodynamics that can be extracted provides promising evidence that the techniques described here could be applied to study ultrafast photochemistry in a range of molecular systems at high count rates using state-of-the-art advanced light sources.
Collapse
Affiliation(s)
- Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Nils Anders
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Philip Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Michael Burt
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Briony Downes-Ward
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Sven Grundmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - James Harries
- QST, SPring-8, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
| | - Yudai Ishimura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Hiroshi Iwayama
- UVSOR Synchrotron Facility, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Leon Kaiser
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jason Lee
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Xiaojing Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Russell S Minns
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Kiyonobu Nagaya
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Akinobu Niozu
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Johannes Niskanen
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jordan O'Neal
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | | | - James Pickering
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Shu Saito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Claire Vallance
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Nicholas Werby
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Joanne Woodhouse
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Farzaneh Ziaee
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Taran Driver
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Ruaridh Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| |
Collapse
|
18
|
O'Neal JT, Champenois EG, Oberli S, Obaid R, Al-Haddad A, Barnard J, Berrah N, Coffee R, Duris J, Galinis G, Garratt D, Glownia JM, Haxton D, Ho P, Li S, Li X, MacArthur J, Marangos JP, Natan A, Shivaram N, Slaughter DS, Walter P, Wandel S, Young L, Bostedt C, Bucksbaum PH, Picón A, Marinelli A, Cryan JP. Electronic Population Transfer via Impulsive Stimulated X-Ray Raman Scattering with Attosecond Soft-X-Ray Pulses. PHYSICAL REVIEW LETTERS 2020; 125:073203. [PMID: 32857563 DOI: 10.1103/physrevlett.125.073203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/21/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Free-electron lasers provide a source of x-ray pulses short enough and intense enough to drive nonlinearities in molecular systems. Impulsive interactions driven by these x-ray pulses provide a way to create and probe valence electron motions with high temporal and spatial resolution. Observing these electronic motions is crucial to understand the role of electronic coherence in chemical processes. A simple nonlinear technique for probing electronic motion, impulsive stimulated x-ray Raman scattering (ISXRS), involves a single impulsive interaction to produce a coherent superposition of electronic states. We demonstrate electronic population transfer via ISXRS using broad bandwidth (5.5 eV full width at half maximum) attosecond x-ray pulses produced by the Linac Coherent Light Source. The impulsive excitation is resonantly enhanced by the oxygen 1s→2π^{*} resonance of nitric oxide (NO), and excited state neutral molecules are probed with a time-delayed UV laser pulse.
Collapse
Affiliation(s)
- Jordan T O'Neal
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Elio G Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Solène Oberli
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Razib Obaid
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Andre Al-Haddad
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Paul-Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Jonathan Barnard
- Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ryan Coffee
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Joseph Duris
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Gediminas Galinis
- Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - Douglas Garratt
- Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Phay Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Siqi Li
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Xiang Li
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - James MacArthur
- Department of Physics, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jon P Marangos
- Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - Adi Natan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Niranjan Shivaram
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel S Slaughter
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Peter Walter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Scott Wandel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Paul-Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Antonio Picón
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Agostino Marinelli
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
19
|
Inoue T, Matsuyama S, Yamada J, Nakamura N, Osaka T, Inoue I, Inubushi Y, Tono K, Yumoto H, Koyama T, Ohashi H, Yabashi M, Ishikawa T, Yamauchi K. Generation of an X-ray nanobeam of a free-electron laser using reflective optics with speckle interferometry. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:883-889. [PMID: 33565996 PMCID: PMC7336172 DOI: 10.1107/s1600577520006980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/22/2020] [Indexed: 05/30/2023]
Abstract
Ultimate focusing of an X-ray free-electron laser (XFEL) enables the generation of ultrahigh-intensity X-ray pulses. Although sub-10 nm focusing has already been achieved using synchrotron light sources, the sub-10 nm focusing of XFEL beams remains difficult mainly because the insufficient stability of the light source hinders the evaluation of a focused beam profile. This problem is specifically disadvantageous for the Kirkpatrick-Baez (KB) mirror focusing system, in which a slight misalignment of ∼300 nrad can degrade the focused beam. In this work, an X-ray nanobeam of a free-electron laser was generated using reflective KB focusing optics combined with speckle interferometry. The speckle profiles generated by 2 nm platinum particles were systematically investigated on a single-shot basis by changing the alignment of the multilayer KB mirror system installed at the SPring-8 Angstrom Compact Free-Electron Laser, in combination with computer simulations. It was verified that the KB mirror alignments were optimized with the required accuracy, and a focused vertical beam of 5.8 nm (±1.2 nm) was achieved after optimization. The speckle interferometry reported in this study is expected to be an effective tool for optimizing the alignment of nano-focusing systems and for generating an unprecedented intensity of up to 1022 W cm-2 using XFEL sources.
Collapse
Affiliation(s)
- Takato Inoue
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Satoshi Matsuyama
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Jumpei Yamada
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Nami Nakamura
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Taito Osaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ichiro Inoue
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yuichi Inubushi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hirokatsu Yumoto
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Takahisa Koyama
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Haruhiko Ohashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kazuto Yamauchi
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Zheng X, Liu J, Doumy G, Young L, Cheng L. Hetero-site Double Core Ionization Energies with Sub-electronvolt Accuracy from Delta-Coupled-Cluster Calculations. J Phys Chem A 2020; 124:4413-4426. [DOI: 10.1021/acs.jpca.0c00901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuechen Zheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junzi Liu
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
21
|
Inhester L, Greenman L, Rudenko A, Rolles D, Santra R. Detecting coherent core-hole wave-packet dynamics in N2 by time- and angle-resolved inner-shell photoelectron spectroscopy. J Chem Phys 2019. [DOI: 10.1063/1.5109867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ludger Inhester
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Loren Greenman
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Artem Rudenko
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Daniel Rolles
- Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| |
Collapse
|
22
|
Oberli S, González-Vázquez J, Rodríguez-Perelló E, Sodupe M, Martín F, Picón A. Site-selective-induced isomerization of formamide. Phys Chem Chem Phys 2019; 21:25626-25634. [DOI: 10.1039/c9cp04441h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We theoretically demonstrate the possibility to site-selectively induce and track isomerization in formamide by using a femtosecond X-ray-pump/X-ray-probe scheme.
Collapse
Affiliation(s)
- S. Oberli
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | | | | | - M. Sodupe
- Departament de Química
- Universitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - F. Martín
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia)
| | - A. Picón
- Departamento de Química
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
23
|
Abstract
This minireview aims at providing a complete survey concerning the use of X-ray absorption spectroscopy (XAS) for time-resolved studies of electrochemical and photoelectrochemical phenomena. We will see that time resolution can range from the femto-picosecond to the second (or more) scale and that this joins the valuable throughput typical of XAS, which allows for determining the oxidation state of the investigated element, together with its local structure. We will analyze four different techniques that use different approaches to exploit the in real time capabilities of XAS. These are quick-XAS, energy dispersive XAS, pump & probe XAS and fixed-energy X-ray absorption voltammetry. In the conclusions, we will analyze possible future perspectives for these techniques.
Collapse
|
24
|
Ilchen M, Hartmann G, Gryzlova EV, Achner A, Allaria E, Beckmann A, Braune M, Buck J, Callegari C, Coffee RN, Cucini R, Danailov M, De Fanis A, Demidovich A, Ferrari E, Finetti P, Glaser L, Knie A, Lindahl AO, Plekan O, Mahne N, Mazza T, Raimondi L, Roussel E, Scholz F, Seltmann J, Shevchuk I, Svetina C, Walter P, Zangrando M, Viefhaus J, Grum-Grzhimailo AN, Meyer M. Symmetry breakdown of electron emission in extreme ultraviolet photoionization of argon. Nat Commun 2018; 9:4659. [PMID: 30405105 PMCID: PMC6220192 DOI: 10.1038/s41467-018-07152-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022] Open
Abstract
Short wavelength free-electron lasers (FELs), providing pulses of ultrahigh photon intensity, have revolutionized spectroscopy on ionic targets. Their exceptional photon flux enables multiple photon absorptions within a single femtosecond pulse, which in turn allows for deep insights into the photoionization process itself as well as into evolving ionic states of a target. Here we employ ultraintense pulses from the FEL FERMI to spectroscopically investigate the sequential emission of electrons from gaseous, atomic argon in the neutral as well as the ionic ground state. A pronounced forward-backward symmetry breaking of the angularly resolved emission patterns with respect to the light propagation direction is experimentally observed and theoretically explained for the region of the Cooper minimum, where the asymmetry of electron emission is strongly enhanced. These findings aim to originate a better understanding of the fundamentals of photon momentum transfer in ionic matter.
Collapse
Affiliation(s)
- M Ilchen
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany. .,Institut für Physik, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany.
| | - G Hartmann
- Institut für Physik, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany.,Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - E V Gryzlova
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A Achner
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - E Allaria
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - A Beckmann
- X-Spectrum GmbH, Notkestraße 85, 22607, Hamburg, Germany
| | - M Braune
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - J Buck
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.,Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - C Callegari
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - R N Coffee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - R Cucini
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - M Danailov
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - A De Fanis
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - A Demidovich
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - E Ferrari
- Particle Accelerator Physics Laboratory, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - P Finetti
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - L Glaser
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - A Knie
- Institut für Physik, University of Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
| | - A O Lindahl
- Qamcom Research & Technology AB, Falkenbergsgatan 3, SE-412 85, Gothenburg, Sweden
| | - O Plekan
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - N Mahne
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - T Mazza
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - L Raimondi
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - E Roussel
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy
| | - F Scholz
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - J Seltmann
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - I Shevchuk
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - C Svetina
- Paul Scherrer Institut, 5232, Villingen PSI, Switzerland
| | - P Walter
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany.,SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M Zangrando
- Elettra-Sincrotrone Trieste SCpA, I-34149, Trieste, Italy.,CNR, IOM, Lab Nazl TASC, I-34149, Trieste, Italy
| | - J Viefhaus
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - A N Grum-Grzhimailo
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.,Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - M Meyer
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| |
Collapse
|
25
|
Chao YC, Qin W, Ding Y, Lutman AA, Maxwell T. Control of the Lasing Slice by Transverse Mismatch in an X-Ray Free-Electron Laser. PHYSICAL REVIEW LETTERS 2018; 121:064802. [PMID: 30141681 DOI: 10.1103/physrevlett.121.064802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 05/23/2023]
Abstract
We demonstrated selective slice-dependent lasing by controlling the matching to the undulator of different slices within an electron bunch. The slice-dependent mismatch was realized through quadrupole wakefield generated in a corrugated structure. A deterministic procedure based on empirical beam transport and phase space information is used to match selected slices by turns to lase in the undulator while keeping all other slices from lasing, thus staying fresh. Measurements of time-resolved electron bunch energy loss by a transverse deflecting cavity confirmed the predicted behavior.
Collapse
Affiliation(s)
- Yu-Chiu Chao
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Weilun Qin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yuantao Ding
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alberto A Lutman
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Timothy Maxwell
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
26
|
Lutman AA, Guetg MW, Maxwell TJ, MacArthur JP, Ding Y, Emma C, Krzywinski J, Marinelli A, Huang Z. High-Power Femtosecond Soft X Rays from Fresh-Slice Multistage Free-Electron Lasers. PHYSICAL REVIEW LETTERS 2018; 120:264801. [PMID: 30004769 DOI: 10.1103/physrevlett.120.264801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 06/08/2023]
Abstract
We demonstrate a novel multistage amplification scheme for self-amplified spontaneous-emission free electron lasers for the production of few femtosecond pulses with very high power in the soft x-ray regime. The scheme uses the fresh-slice technique to produce an x-ray pulse on the bunch tail, subsequently amplified in downstream undulator sections by fresh electrons. With three-stages amplification, x-ray pulses with an energy of hundreds of microjoules are produced in few femtoseconds. For single-spike spectra x-ray pulses the pulse power is increased more than an order of magnitude compared to other techniques in the same wavelength range.
Collapse
Affiliation(s)
- Alberto A Lutman
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Marc W Guetg
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Timothy J Maxwell
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - James P MacArthur
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Yuantao Ding
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Claudio Emma
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Jacek Krzywinski
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Agostino Marinelli
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| | - Zhirong Huang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA
| |
Collapse
|
27
|
Guetg MW, Lutman AA, Ding Y, Maxwell TJ, Huang Z. Dispersion-Based Fresh-Slice Scheme for Free-Electron Lasers. PHYSICAL REVIEW LETTERS 2018; 120:264802. [PMID: 30004747 DOI: 10.1103/physrevlett.120.264802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 05/23/2023]
Abstract
The fresh-slice technique improved the performance of several self-amplified spontaneous emission free-electron laser schemes by granting selective control on the temporal lasing slice without spoiling the other electron bunch slices. So far, the implementation has required a special insertion device to create the beam yaw, called a dechirper. We demonstrate a novel scheme to enable fresh-slice operation based on electron energy chirp and orbit dispersion that can be implemented at any free-electron laser facility without additional hardware.
Collapse
Affiliation(s)
- Marc W Guetg
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alberto A Lutman
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yuantao Ding
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Timothy J Maxwell
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zhirong Huang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
28
|
Lu W, Friedrich B, Noll T, Zhou K, Hallmann J, Ansaldi G, Roth T, Serkez S, Geloni G, Madsen A, Eisebitt S. Development of a hard X-ray split-and-delay line and performance simulations for two-color pump-probe experiments at the European XFEL. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:063121. [PMID: 29960553 DOI: 10.1063/1.5027071] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A hard X-ray Split-and-Delay Line (SDL) under construction for the Materials Imaging and Dynamics station at the European X-Ray Free-Electron Laser (XFEL) is presented. This device aims at providing pairs of X-ray pulses with a variable time delay ranging from -10 ps to 800 ps in a photon energy range from 5 to 10 keV for photon correlation and X-ray pump-probe experiments. A custom designed mechanical motion system including active feedback control ensures that the high demands for stability and accuracy can be met and the design goals achieved. Using special radiation configurations of the European XFEL's SASE-2 undulator (SASE: Self-Amplified Spontaneous Emission), two-color hard x-ray pump-probe schemes with varying photon energy separations have been proposed. Simulations indicate that more than 109 photons on the sample per pulse-pair and up to about 10% photon energy separation can be achieved in the hard X-ray region using the SDL.
Collapse
Affiliation(s)
- W Lu
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - B Friedrich
- Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, Germany
| | - T Noll
- Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, Germany
| | - K Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800 Shanghai, China
| | - J Hallmann
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - G Ansaldi
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - T Roth
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - S Serkez
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - G Geloni
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - A Madsen
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - S Eisebitt
- Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, Germany
| |
Collapse
|
29
|
Inhester L, Oostenrijk B, Patanen M, Kokkonen E, Southworth SH, Bostedt C, Travnikova O, Marchenko T, Son SK, Santra R, Simon M, Young L, Sorensen SL. Chemical Understanding of the Limited Site-Specificity in Molecular Inner-Shell Photofragmentation. J Phys Chem Lett 2018; 9:1156-1163. [PMID: 29444399 DOI: 10.1021/acs.jpclett.7b03235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In many cases fragmentation of molecules upon inner-shell ionization is very unspecific with respect to the initially localized ionization site. Often this finding is interpreted in terms of an equilibration of internal energy into vibrational degrees of freedom after Auger decay. We investigate the X-ray photofragmentation of ethyl trifluoroacetate upon core electron ionization at environmentally distinct carbon sites using photoelectron-photoion-photoion coincidence measurements and ab initio electronic structure calculations. For all four carbon ionization sites, the Auger decay weakens the same bonds and transfers the two charges to opposite ends of the molecule, which leads to a rapid dissociation into three fragments, followed by further fragmentation steps. The lack of site specificity is attributed to the character of the dicationic electronic states after Auger decay instead of a fast equilibration of internal energy.
Collapse
Affiliation(s)
- Ludger Inhester
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Bart Oostenrijk
- Department of Physics, Lund University , Box 118, 221 00 Lund, Sweden
| | - Minna Patanen
- Faculty of Science, Nano and Molecular Systems Research Unit, University of Oulu , Box 3000, FIN-90014 Oulu, Finland
| | - Esko Kokkonen
- Faculty of Science, Nano and Molecular Systems Research Unit, University of Oulu , Box 3000, FIN-90014 Oulu, Finland
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Department of Physics, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Oksana Travnikova
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, LCPMR , F-75005 Paris, France
| | - Tatiana Marchenko
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, LCPMR , F-75005 Paris, France
| | - Sang-Kil Son
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg , Jungiusstrasse 9, 20355 Hamburg, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, LCPMR , F-75005 Paris, France
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Department of Physics and James Franck Institute, The University of Chicago , Chicago, Illinois 60637, United States
| | - Stacey L Sorensen
- Department of Physics, Lund University , Box 118, 221 00 Lund, Sweden
| |
Collapse
|
30
|
Osipov T, Bostedt C, Castagna JC, Ferguson KR, Bucher M, Montero SC, Swiggers ML, Obaid R, Rolles D, Rudenko A, Bozek JD, Berrah N. The LAMP instrument at the Linac Coherent Light Source free-electron laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:035112. [PMID: 29604777 DOI: 10.1063/1.5017727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Laser Applications in Materials Processing (LAMP) instrument is a new end-station for soft X-ray imaging, high-field physics, and ultrafast X-ray science experiments that is available to users at the Linac Coherent Light Source (LCLS) free-electron laser. While the instrument resides in the Atomic, Molecular and Optical science hutch, its components can be used at any LCLS beamline. The end-station has a modular design that provides high flexibility in order to meet user-defined experimental requirements and specifications. The ultra-high-vacuum environment supports different sample delivery systems, including pulsed and continuous atomic, molecular, and cluster jets; liquid and aerosols jets; and effusive metal vapor beams. It also houses movable, large-format, high-speed pnCCD X-ray detectors for detecting scattered and fluorescent photons. Multiple charged-particle spectrometer options are compatible with the LAMP chamber, including a double-sided spectrometer for simultaneous and even coincident measurements of electrons, ions, and photons produced by the interaction of the high-intensity X-ray beam with the various samples. Here we describe the design and capabilities of the spectrometers along with some general aspects of the LAMP chamber and show some results from the initial instrument commissioning.
Collapse
Affiliation(s)
- Timur Osipov
- Physics Department, Western Michigan University, Kalamazoo, Michigan 49008, USA
| | - Christoph Bostedt
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J-C Castagna
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ken R Ferguson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Maximilian Bucher
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sebastian C Montero
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Michele L Swiggers
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Razib Obaid
- Physics Department, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Daniel Rolles
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Artem Rudenko
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - John D Bozek
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Nora Berrah
- Physics Department, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
31
|
Myhre RH, Wolf TJA, Cheng L, Nandi S, Coriani S, Gühr M, Koch H. A theoretical and experimental benchmark study of core-excited states in nitrogen. J Chem Phys 2018; 148:064106. [DOI: 10.1063/1.5011148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rolf H. Myhre
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| | - Thomas J. A. Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Saikat Nandi
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Århus C, Denmark
| | - Markus Gühr
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
32
|
Kobayashi A, Sekiguchi Y, Oroguchi T, Yamamoto M, Nakasako M. Shot-by-shot characterization of focused X-ray free electron laser pulses. Sci Rep 2018; 8:831. [PMID: 29339756 PMCID: PMC5770435 DOI: 10.1038/s41598-018-19179-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/22/2017] [Indexed: 11/09/2022] Open
Abstract
X-ray free electron lasers (XFEL) provide intense and almost coherent X-ray pulses. They are used for various experiments investigating physical and chemical properties in materials and biological science because of their complete coherence, high intensity, and very short pulse width. In XFEL experiments, specimens are irradiated by XFEL pulses focused by mirror optics. The focused pulse is too intense to measure its coherence by placing an X-ray detector on the focal spot. Previously, a method was proposed for evaluating the coherence of focused pulses from the visibility of the diffraction intensity of colloidal particles by the speckle visibility spectroscopy (SVS). However, the visibility cannot be determined exactly because the diffraction intensity is integrated into each finite size detector pixel. Here, we propose a method to evaluate the coherence of each XFEL pulse by using SVS in combination with a theory for exact sampling of the diffraction pattern and a technique of multiplying the diffraction data by a Gaussian masks, which reduces the influence of data missing in small-angle regions due to the presence of a direct beamstop. We also introduce a method for characterizing the shot-by-shot size of each XFEL pulse by analysing the X-ray irradiated area.
Collapse
Affiliation(s)
- Amane Kobayashi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Yuki Sekiguchi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Tomotaka Oroguchi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan. .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.
| |
Collapse
|
33
|
Rozzi CA, Troiani F, Tavernelli I. Quantum modeling of ultrafast photoinduced charge separation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:013002. [PMID: 29047450 DOI: 10.1088/1361-648x/aa948a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy. If properly mastered, these processes may also allow us to achieve a better command of information storage at the nanoscale, as required for the development of molecular electronics, optical switching, or quantum technologies, amongst others. In this Topical Review we survey recent progress in the understanding of ultrafast charge separation from photoexcited states. We report the state-of-the-art of the observation and theoretical description of charge separation phenomena in the ultrafast regime mainly focusing on molecular- and nano-sized solar energy conversion systems. In particular, we examine different proposed mechanisms driving ultrafast charge dynamics, with particular regard to the role of quantum coherence and electron-nuclear coupling, and link experimental observations to theoretical approaches based either on model Hamiltonians or on first principles simulations.
Collapse
|
34
|
Amini K, Savelyev E, Brauße F, Berrah N, Bomme C, Brouard M, Burt M, Christensen L, Düsterer S, Erk B, Höppner H, Kierspel T, Krecinic F, Lauer A, Lee JWL, Müller M, Müller E, Mullins T, Redlin H, Schirmel N, Thøgersen J, Techert S, Toleikis S, Treusch R, Trippel S, Ulmer A, Vallance C, Wiese J, Johnsson P, Küpper J, Rudenko A, Rouzée A, Stapelfeldt H, Rolles D, Boll R. Photodissociation of aligned CH 3I and C 6H 3F 2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2018; 5:014301. [PMID: 29430482 PMCID: PMC5785297 DOI: 10.1063/1.4998648] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/09/2017] [Indexed: 06/08/2023]
Abstract
We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.
Collapse
Affiliation(s)
- Kasra Amini
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Evgeny Savelyev
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Felix Brauße
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Cédric Bomme
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Faruk Krecinic
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Alexandra Lauer
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jason W L Lee
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Maria Müller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Erland Müller
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Terence Mullins
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Harald Redlin
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Nora Schirmel
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Jan Thøgersen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Sven Toleikis
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Anatoli Ulmer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Claire Vallance
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Joss Wiese
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Per Johnsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | | | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Arnaud Rouzée
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | | | | | - Rebecca Boll
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| |
Collapse
|
35
|
Goldberger D, Evlyukhin E, Cifligu P, Wang Y, Pravica M. Measurement of the Energy and High-Pressure Dependence of X-ray-Induced Decomposition of Crystalline Strontium Oxalate. J Phys Chem A 2017; 121:7108-7113. [PMID: 28872864 DOI: 10.1021/acs.jpca.7b05604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report measurements of the X-ray-induced decomposition of crystalline strontium oxalate (SrC2O4) as a function of energy and high pressure in two separate experiments. SrC2O4 at ambient conditions was irradiated with monochromatic synchrotron X-rays ranging in energy from 15 to 28 keV. A broad resonance of the decomposition yield was observed with a clear maximum when irradiating with ∼20 keV X-rays and ambient pressure. Little or no decomposition was observed at 15 keV, which is below the Sr K-shell energy of 16.12 keV, suggesting that excitation of core electrons may play an important role in the destabilization of the C2O42- anion. A second experiment was performed to investigate the high-pressure dependence of the X-ray-induced decomposition of strontium oxalate at fixed energy. SrC2O4 was compressed in a diamond anvil cell (DAC) in the pressure range from 0 to 7.6 GPa with 1 GPa increments and irradiated in situ with 20 keV X-rays. A marked pressure dependence of the decomposition yield of SrC2O4 was observed with a decomposition yield maximum at around 1 GPa, suggesting that different crystal structures of the material play an important role in the decomposition process. This may be due in part to a phase transition observed near this pressure.
Collapse
Affiliation(s)
- David Goldberger
- High-Pressure Science and Engineering Center (HiPSEC) and Department of Physics, University of Nevada Las Vegas (UNLV) , Las Vegas, Nevada 89154-4002, United States
| | - Egor Evlyukhin
- High-Pressure Science and Engineering Center (HiPSEC) and Department of Physics, University of Nevada Las Vegas (UNLV) , Las Vegas, Nevada 89154-4002, United States
| | - Petrika Cifligu
- High-Pressure Science and Engineering Center (HiPSEC) and Department of Physics, University of Nevada Las Vegas (UNLV) , Las Vegas, Nevada 89154-4002, United States
| | - Yonggang Wang
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington , 9700 South Cass Avenue, Argonne, Illinois 60437, United States
| | - Michael Pravica
- High-Pressure Science and Engineering Center (HiPSEC) and Department of Physics, University of Nevada Las Vegas (UNLV) , Las Vegas, Nevada 89154-4002, United States
| |
Collapse
|
36
|
|
37
|
Amini K, Boll R, Lauer A, Burt M, Lee JWL, Christensen L, Brauβe F, Mullins T, Savelyev E, Ablikim U, Berrah N, Bomme C, Düsterer S, Erk B, Höppner H, Johnsson P, Kierspel T, Krecinic F, Küpper J, Müller M, Müller E, Redlin H, Rouzée A, Schirmel N, Thøgersen J, Techert S, Toleikis S, Treusch R, Trippel S, Ulmer A, Wiese J, Vallance C, Rudenko A, Stapelfeldt H, Brouard M, Rolles D. Alignment, orientation, and Coulomb explosion of difluoroiodobenzene studied with the pixel imaging mass spectrometry (PImMS) camera. J Chem Phys 2017; 147:013933. [DOI: 10.1063/1.4982220] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kasra Amini
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Rebecca Boll
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Alexandra Lauer
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jason W. L. Lee
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | - Felix Brauβe
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Terence Mullins
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
| | - Evgeny Savelyev
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Utuq Ablikim
- J. R. Macdonald Laboratory, Department of Physics,
Kansas State University, Manhattan, Kansas 66506,
USA
| | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Cédric Bomme
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Hauke Höppner
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Institut für Physik, Carl von Ossietzky Universität, 26111 Oldenburg, Germany
| | - Per Johnsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Thomas Kierspel
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
- Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Faruk Krecinic
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
- Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Maria Müller
- Institut für Optik und Atomare Physik,
Technische Universität Berlin, 10623 Berlin,
Germany
| | - Erland Müller
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Harald Redlin
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Arnaud Rouzée
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Nora Schirmel
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Jan Thøgersen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Max Planck Institute for Biophysical Chemistry, 33077 Göttingen, Germany
- Institute for X-ray Physics, Göttingen University, 33077 Göttingen, Germany
| | - Sven Toleikis
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Sebastian Trippel
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
- Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Anatoli Ulmer
- Institut für Optik und Atomare Physik,
Technische Universität Berlin, 10623 Berlin,
Germany
| | - Joss Wiese
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
| | - Claire Vallance
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics,
Kansas State University, Manhattan, Kansas 66506,
USA
| | | | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Daniel Rolles
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- J. R. Macdonald Laboratory, Department of Physics,
Kansas State University, Manhattan, Kansas 66506,
USA
| |
Collapse
|
38
|
Sanchez-Gonzalez A, Micaelli P, Olivier C, Barillot TR, Ilchen M, Lutman AA, Marinelli A, Maxwell T, Achner A, Agåker M, Berrah N, Bostedt C, Bozek JD, Buck J, Bucksbaum PH, Montero SC, Cooper B, Cryan JP, Dong M, Feifel R, Frasinski LJ, Fukuzawa H, Galler A, Hartmann G, Hartmann N, Helml W, Johnson AS, Knie A, Lindahl AO, Liu J, Motomura K, Mucke M, O'Grady C, Rubensson JE, Simpson ER, Squibb RJ, Såthe C, Ueda K, Vacher M, Walke DJ, Zhaunerchyk V, Coffee RN, Marangos JP. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning. Nat Commun 2017; 8:15461. [PMID: 28580940 PMCID: PMC5465316 DOI: 10.1038/ncomms15461] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/30/2017] [Indexed: 11/09/2022] Open
Abstract
Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy, we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. This opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.
Collapse
Affiliation(s)
| | - P Micaelli
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - C Olivier
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - T R Barillot
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - M Ilchen
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.,European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - A A Lutman
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Marinelli
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T Maxwell
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Achner
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - M Agåker
- Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden
| | - N Berrah
- Department of Physics, University of Connecticut, 2152 Hillside Road, U-3046, Storrs, Connecticut 06269, USA
| | - C Bostedt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.,Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - J D Bozek
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - J Buck
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - P H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.,Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA
| | - S Carron Montero
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.,Department of Physics, California Lutheran University, 60 West Olsen Road, Thousand Oaks, California 91360, USA
| | - B Cooper
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - J P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M Dong
- Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden
| | - R Feifel
- Department of Physics, University of Gothenburg, Origovägen 6B, 41296 Gothenburg, Sweden
| | - L J Frasinski
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - H Fukuzawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - A Galler
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - G Hartmann
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany.,Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str 40, 34132 Kassel, Germany
| | - N Hartmann
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - W Helml
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.,Physics Department E11, TU Munich, James-Franck-Str 1, 85748 Garching, Germany
| | - A S Johnson
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - A Knie
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str 40, 34132 Kassel, Germany
| | - A O Lindahl
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.,Department of Physics, University of Gothenburg, Origovägen 6B, 41296 Gothenburg, Sweden
| | - J Liu
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - M Mucke
- Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden
| | - C O'Grady
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J-E Rubensson
- Department of Physics and Astronomy, Uppsala University, Uppsala 75120, Sweden
| | - E R Simpson
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - R J Squibb
- Department of Physics, University of Gothenburg, Origovägen 6B, 41296 Gothenburg, Sweden
| | - C Såthe
- MAX IV Laboratory, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - K Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - M Vacher
- Department of Chemistry, Imperial College, London SW7 2AZ, UK.,Department of Chemistry-Ångtröm, Uppsala University, Uppsala 75120, Sweden
| | - D J Walke
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - V Zhaunerchyk
- Department of Physics, University of Gothenburg, Origovägen 6B, 41296 Gothenburg, Sweden
| | - R N Coffee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J P Marangos
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
39
|
Wang H, Bokarev SI, Aziz SG, Kühn O. Density matrix-based time-dependent configuration interaction approach to ultrafast spin-flip dynamics. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1294267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Huihui Wang
- Institut für Physik, Universität Rostock , Rostock, Germany
| | | | - Saadullah G. Aziz
- Chemistry Department, Faculty of Science, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Oliver Kühn
- Institut für Physik, Universität Rostock , Rostock, Germany
| |
Collapse
|
40
|
Gorgisyan I, Ischebeck R, Erny C, Dax A, Patthey L, Pradervand C, Sala L, Milne C, Lemke HT, Hauri CP, Katayama T, Owada S, Yabashi M, Togashi T, Abela R, Rivkin L, Juranić P. THz streak camera method for synchronous arrival time measurement of two-color hard X-ray FEL pulses. OPTICS EXPRESS 2017. [PMID: 29519055 DOI: 10.1364/oe.25.002080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The two-color operation of free electron laser (FEL) facilities allows the delivery of two FEL pulses with different energies, which opens new possibilities for user experiments. Measuring the arrival time of both FEL pulses relative to the external experimental laser and to each other improves the temporal resolution of the experiments using the two-color FEL beam and helps to monitor the performance of the machine itself. This work reports on the first simultaneous measurement of the arrival times of two hard X-ray FEL pulses with the THz streak camera. Measuring the arrival time of the two FEL pulses, the relative delay between them was calculated and compared to the set values. Furthermore, we present the first comparison of the THz streak camera method to the method of FEL induced transient transmission. The results indicate a good agreement between the two methods.
Collapse
|
41
|
Wang H, Bokarev SI, Aziz SG, Kühn O. Ultrafast Spin-State Dynamics in Transition-Metal Complexes Triggered by Soft-X-Ray Light. PHYSICAL REVIEW LETTERS 2017; 118:023001. [PMID: 28128607 DOI: 10.1103/physrevlett.118.023001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 06/06/2023]
Abstract
Recent advances in attosecond physics provide access to the correlated motion of valence and core electrons on their intrinsic timescales. For valence excitations, processes related to the electron spin are usually driven by nuclear motion. For core-excited states, where the core hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin flips on a much shorter time scale. Here, unprecedented short spin crossover is demonstrated for L-edge (2p→3d) excited states of a prototypical Fe(II) complex. It occurs on a time scale, which is faster than the core-hole lifetime of about 4 fs and can be manipulated by the excitation conditions. A detailed analysis of such phenomena will help to gain a fundamental understanding of spin-crossover processes and establish the basis for their control by light.
Collapse
Affiliation(s)
- Huihui Wang
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Sergey I Bokarev
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - Saadullah G Aziz
- Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Oliver Kühn
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| |
Collapse
|
42
|
Berrah N. A perspective for investigating photo-induced molecular dynamics from within with femtosecond free electron lasers. Phys Chem Chem Phys 2017; 19:19536-19544. [DOI: 10.1039/c7cp01996c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-induced molecular dynamics can now be investigated using free electron lasers (FELs) whose attributes are unprecedented brightness, few femtosecond pulses duration and in the near future few hundreds of attosecond pulse duration.
Collapse
Affiliation(s)
- Nora Berrah
- University of Connecticut
- Physics Department
- Storrs
- USA
| |
Collapse
|
43
|
Boll R, Erk B, Coffee R, Trippel S, Kierspel T, Bomme C, Bozek JD, Burkett M, Carron S, Ferguson KR, Foucar L, Küpper J, Marchenko T, Miron C, Patanen M, Osipov T, Schorb S, Simon M, Swiggers M, Techert S, Ueda K, Bostedt C, Rolles D, Rudenko A. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:043207. [PMID: 27051675 PMCID: PMC4808069 DOI: 10.1063/1.4944344] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/04/2016] [Indexed: 05/07/2023]
Abstract
Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I(21+). The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse.
Collapse
Affiliation(s)
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron (DESY) , 22607 Hamburg, Germany
| | - Ryan Coffee
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Sebastian Trippel
- Center for Free-Electron Laser Science, DESY , 22607 Hamburg, Germany
| | | | - Cédric Bomme
- Deutsches Elektronen-Synchrotron (DESY) , 22607 Hamburg, Germany
| | - John D Bozek
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Mitchell Burkett
- J.R. Macdonald Laboratory, Kansas State University , Manhattan, Kansas 66506, USA
| | - Sebastian Carron
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Ken R Ferguson
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Lutz Foucar
- Max Planck Institute for Medical Research , 69120 Heidelberg, Germany
| | | | - Tatiana Marchenko
- Sorbonne Universités , UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matiere et Rayonnement, F-75005 Paris, France
| | | | | | - Timur Osipov
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Sebastian Schorb
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Marc Simon
- Sorbonne Universités , UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matiere et Rayonnement, F-75005 Paris, France
| | - Michelle Swiggers
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | | | - Kiyoshi Ueda
- IMRAM, Tohoku University , 980-8577 Sendai, Japan
| | | | | | - Artem Rudenko
- J.R. Macdonald Laboratory, Kansas State University , Manhattan, Kansas 66506, USA
| |
Collapse
|