1
|
Kim S, Im J, Wang SX, Lee JR. Design and Validation of Specific Oligonucleotide Probes on Planar Magnetic Biosensors. Anal Chem 2024; 96:19447-19455. [PMID: 39576756 DOI: 10.1021/acs.analchem.4c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Planar DNA biosensors employ surface-tethered oligonucleotide probes to capture target molecules for diagnostic applications. To improve the sensitivity and specificity of biosensing, hybridization affinities should be enhanced, and cross-hybridization with off-targets must be minimized. To this end, assays can be designed using the thermodynamic properties of hybridization between probes and on-targets or off-targets based on Gibbs free energies and melting temperatures. However, the nature of heterogeneous hybridization between the probes on the surface and the targets in a solution imposes challenges in predicting precise hybridization affinities and the degree of cross-hybridization due to indeterminable thermodynamic penalties induced by the solid surface and its status. Herein, we suggest practical and convenient guidelines for designing oligonucleotide probes based on data obtained from planar magnetic biosensors and thermodynamic properties calculated by using easily accessible solution-phase prediction. The suggested requirements comprised Gibbs free energy ≥ -7.5 kcal mol-1 and melting temperature ≤10 °C below the hybridization temperature, and we validated for the absence of cross-hybridization. Additionally, the effects of secondary structures such as hairpins and homodimers were investigated for better oligonucleotide probe designs. We believe that these practical guidelines will assist researchers in developing planar magnetic biosensors with high sensitivity and specificity for the detection of new targets.
Collapse
Affiliation(s)
- Songeun Kim
- Department of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jisoo Im
- Department of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jung-Rok Lee
- Department of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Li F, Yang R, Xu J, Xu G, Wu Y. Detecting N-Phenyl-2-Naphthylamine, L-Arabinose, D-Mannose, L-Phenylalanine, L-Methionine, and D-Trehalose via Photocurrent Measurement. Gels 2024; 10:808. [PMID: 39727566 DOI: 10.3390/gels10120808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The concentration of small molecules reflects the normality of physiological processes in the human body, making the development of simple and efficient detection equipment essential. In this work, inspired by a facile strategy in point-of-care detection, two devices were fabricated to detect small molecules via photocurrent measurement. A linear response of the photocurrent against the concentration of the small molecules was found. In the first device, metal ions were introduced into gel substrates made by xanthan gum to enhance photocurrent response. N-phenyl-2-naphthylamine was measured when iron or manganese ions were used. L-Phenylalanine was measured when the gel was modified by samarium, iron, cerium, or ytterbium ions. L-(+)-Arabinose was detected via the gels modified by iron or holmium ions. D-(+)-Mannose was detected when the gel was modified by ytterbium, manganese, chromium, or sodium ions. L-Methionine was detected in the gels modified by samarium, zinc, or chromium ions. The second device was based on a paper sheet. A sugar-like molecule was first synthesized, which was then used to modify the paper. The detection was possible since the photocurrent showed a linear trend against the concentration of D-Trehalose. A linear fit was conducted to derive the sensitivity, whose value was found to be 5542.4. This work offers a novel, simple, and environmentally sustainable platform that is potentially useful in remote areas lacking medical devices.
Collapse
Affiliation(s)
- Feng Li
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Ruoxi Yang
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Jian Xu
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Guohai Xu
- Key Laboratory of Jiangxi University for Functional Materials Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ye Wu
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
3
|
Zheng X, Zhu H, Zhao X, Wang J, Li Q, Zhao X. Emerging affinity methods for protein-drug interaction analysis. J Pharm Biomed Anal 2024; 249:116371. [PMID: 39047466 DOI: 10.1016/j.jpba.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The study of protein-drug interaction plays a crucial role in understanding drug mechanisms, identifying new drug targets and biomarkers, and facilitating drug development and disease treatment. In recent years, significant progress has been made in various protein-drug interaction research methods due to the rapid development and in-depth application of mass spectrometry, nuclear magnetic resonance, Raman spectroscopy, and other technologies. The progress has enhanced the sensitivity, precision, accuracy, and applicability of analytical methods, enabling the establishment of drug-protein interaction networks. This review discusses various emerging research methods, such as native mass spectrometry, infrared spectroscopy, nuclear magnetic resonance and spectrum, biosensor technologies employing surface enhanced Raman, electrochemistry, and magneto resistive signals, as well as affinity magnetic levitation and affinity chromatography. The article also delves into the principles, applications, advantages, and limitations of these technologies.
Collapse
Affiliation(s)
- Xinxin Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Huiting Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
4
|
Ng E, Choi C, Wang SX. Longitudinal analysis of anti-SARS-CoV-2 neutralizing antibody (NAb) titers in vaccinees using a novel giant magnetoresistive (GMR) assay. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 387:133773. [PMID: 37056483 PMCID: PMC10072976 DOI: 10.1016/j.snb.2023.133773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic has highlighted the need to monitor important correlates of immunity on a population-wide level. To this end, we have developed a competitive assay to assess neutralizing antibody (NAb) titer on the giant magnetoresistive (GMR) biosensor platform. We compared the clinical performance of our biosensor with established techniques such as Ortho's VITROS Anti-SARS-CoV-2 IgG Quantitative Antibody test. Results obtained between the VITROS test and the GMR assay showed correlation (r = -0.93). We then validated the assay with patient plasma samples that had been tested using focus reduction neutralization testing (FRNT). The results obtained from our GMR assay exhibit a previously identified trend of increased NAb titers 2 weeks post-vaccination. We further evaluated NAb titers 6 months post-vaccination and observed waning neutralizing antibody titers over that time in vaccinated patients. In addition, we calibrated our assay to an arbitrary unit (IU/mL) using World Health Organization (WHO) reference plasma provided by the National Institute of Biological Standards and Control (NIBSC). Our biosensor provides highly specific and sensitive results in serum and plasma with analytical, clinical, and point-of-care (POC) applications due to quick turnaround times on samples and the cost-effectiveness of the platform.
Collapse
Affiliation(s)
- Elaine Ng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Christopher Choi
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Ngan Ngo TK, Kuo CH, Tu TY. Recent advances in microfluidic-based cancer immunotherapy-on-a-chip strategies. BIOMICROFLUIDICS 2023; 17:011501. [PMID: 36647540 PMCID: PMC9840534 DOI: 10.1063/5.0108792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Despite several extraordinary improvements in cancer immunotherapy, its therapeutic effectiveness against many distinct cancer types remains mostly limited and requires further study. Different microfluidic-based cancer immunotherapy-on-a-chip (ITOC) systems have been developed to help researchers replicate the tumor microenvironment and immune system. Numerous microfluidic platforms can potentially be used to perform various on-chip activities related to early clinical cancer immunotherapy processes, such as improving immune checkpoint blockade therapy, studying immune cell dynamics, evaluating cytotoxicity, and creating vaccines or organoid models from patient samples. In this review, we summarize the most recent advancements in the development of various microfluidic-based ITOC devices for cancer treatment niches and present future perspectives on microfluidic devices for immunotherapy research.
Collapse
Affiliation(s)
- Thi Kim Ngan Ngo
- Biomedical Engineering Department, College of Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yuan Tu
- Author to whom correspondence should be addressed:
| |
Collapse
|
6
|
Kim S, Kim J, Im J, Kim M, Kim T, Wang SX, Kim D, Lee JR. Magnetic supercluster particles for highly sensitive magnetic biosensing of proteins. Mikrochim Acta 2022; 189:256. [PMID: 35697882 PMCID: PMC9192248 DOI: 10.1007/s00604-022-05354-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
Abstract
A strategy is reported to improve the detection limits of current giant magnetoresistance (GMR) biosensors by augmenting the effective magnetic moment that the magnetic tags on the biosensors can exert. Magnetic supercluster particles (MSPs), each of which consists of ~ 1000 superparamagnetic cores, are prepared by a wet-chemical technique and are utilized to improve the limit of detection of GMR biosensors down to 17.6 zmol for biotin as a target molecule. This value is more than four orders of magnitude lower than that of the conventional colorimetric assay performed using the same set of reagents except for the signal transducer. The applicability of MSPs in immunoassay is further demonstrated by simultaneously detecting vascular endothelial growth factor (VEGF) and C-reactive protein (CRP) in a duplex assay format. MSPs outperform commercially available magnetic nanoparticles in terms of signal intensity and detection limit.
Collapse
Affiliation(s)
- Songeun Kim
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Junyoung Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jisoo Im
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Minah Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Taehyeong Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea.
- Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
7
|
Urban VA, Nazarenko PS, Perepechko SA, Veresov VG. Using PD-L1 full-length structure, enhanced induced fit docking and molecular dynamics simulations for structural insights into inhibition of PD-1/PD-L1 interaction by small-molecule ligands. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2080824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Viktor A. Urban
- Department of Immunology and Cell Biophysics, Institute of Biophysics and Cell Engineering of NAS of Belarus, Minsk, Belarus
| | | | | | - Valery G. Veresov
- Department of Immunology and Cell Biophysics, Institute of Biophysics and Cell Engineering of NAS of Belarus, Minsk, Belarus
| |
Collapse
|
8
|
Affiliation(s)
- Gungun Lin
- Institute for Biomedical Materials and Devices Faculty of Science University of Technology Sydney Ultimo New South Wales Australia
- ARC Research Hub for Integrated Device for End‐User Analysis at Low Levels Faculty of Science University of Technology Sydney Sydney New South Wales Australia
| |
Collapse
|
9
|
Cao S, Peterson SM, Müller S, Reichelt M, McRoberts Amador C, Martinez-Martin N. A membrane protein display platform for receptor interactome discovery. Proc Natl Acad Sci U S A 2021; 118:e2025451118. [PMID: 34531301 PMCID: PMC8488672 DOI: 10.1073/pnas.2025451118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Cell surface receptors are critical for cell signaling and constitute a quarter of all human genes. Despite their importance and abundance, receptor interaction networks remain understudied because of difficulties associated with maintaining membrane proteins in their native conformation and their typically weak interactions. To overcome these challenges, we developed an extracellular vesicle-based method for membrane protein display that enables purification-free and high-throughput detection of receptor-ligand interactions in membranes. We demonstrate that this platform is broadly applicable to a variety of membrane proteins, enabling enhanced detection of extracellular interactions over a wide range of binding affinities. We were able to recapitulate and expand the interactome for prominent members of the B7 family of immunoregulatory proteins such as PD-L1/CD274 and B7-H3/CD276. Moreover, when applied to the orphan cancer-associated fibroblast protein, LRRC15, we identified a membrane-dependent interaction with the tumor stroma marker TEM1/CD248. Furthermore, this platform enabled profiling of cellular receptors for target-expressing as well as endogenous extracellular vesicles. Overall, this study presents a sensitive and easy to use screening platform that bypasses membrane protein purification and enables characterization of interactomes for any cell surface-expressed target of interest in its native state.
Collapse
Affiliation(s)
- Shengya Cao
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080;
| | - Sean M Peterson
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080
| | - Sören Müller
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080
| | - Mike Reichelt
- Pathology Labs, Genentech, South San Francisco, CA 94080
| | | | - Nadia Martinez-Martin
- Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080;
- Biologics, Almirall, 08022 Barcelona, Spain
| |
Collapse
|
10
|
Chauhan A, Khan T, Omri A. Design and Encapsulation of Immunomodulators onto Gold Nanoparticles in Cancer Immunotherapy. Int J Mol Sci 2021; 22:8037. [PMID: 34360803 PMCID: PMC8347387 DOI: 10.3390/ijms22158037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of cancer immunotherapy is to reactivate autoimmune responses to combat cancer cells. To stimulate the immune system, immunomodulators, such as adjuvants, cytokines, vaccines, and checkpoint inhibitors, are extensively designed and studied. Immunomodulators have several drawbacks, such as drug instability, limited half-life, rapid drug clearance, and uncontrolled immune responses when used directly in cancer immunotherapy. Several strategies have been used to overcome these limitations. A simple and effective approach is the loading of immunomodulators onto gold-based nanoparticles (GNPs). As gold is highly biocompatible, GNPs can be administered intravenously, which aids in increasing cancer cell permeability and retention time. Various gold nanoplatforms, including nanospheres, nanoshells, nanorods, nanocages, and nanostars have been effectively used in cancer immunotherapy. Gold nanostars (GNS) are one of the most promising GNP platforms because of their unusual star-shaped geometry, which significantly increases light absorption and provides high photon-to-heat conversion efficiency due to the plasmonic effect. As a result, GNPs are a useful vehicle for delivering antigens and adjuvants that support the immune system in killing tumor cells by facilitating or activating cytotoxic T lymphocytes. This review represents recent progress in encapsulating immunomodulators into GNPs for utility in a cancer immunotherapeutic regimen.
Collapse
Affiliation(s)
- Akshita Chauhan
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
11
|
Wojtowicz WM, Vielmetter J, Fernandes RA, Siepe DH, Eastman CL, Chisholm GB, Cox S, Klock H, Anderson PW, Rue SM, Miller JJ, Glaser SM, Bragstad ML, Vance J, Lam AW, Lesley SA, Zinn K, Garcia KC. A Human IgSF Cell-Surface Interactome Reveals a Complex Network of Protein-Protein Interactions. Cell 2021; 182:1027-1043.e17. [PMID: 32822567 PMCID: PMC7440162 DOI: 10.1016/j.cell.2020.07.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/19/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
Cell-surface protein-protein interactions (PPIs) mediate cell-cell communication, recognition, and responses. We executed an interactome screen of 564 human cell-surface and secreted proteins, most of which are immunoglobulin superfamily (IgSF) proteins, using a high-throughput, automated ELISA-based screening platform employing a pooled-protein strategy to test all 318,096 PPI combinations. Screen results, augmented by phylogenetic homology analysis, revealed ∼380 previously unreported PPIs. We validated a subset using surface plasmon resonance and cell binding assays. Observed PPIs reveal a large and complex network of interactions both within and across biological systems. We identified new PPIs for receptors with well-characterized ligands and binding partners for “orphan” receptors. New PPIs include proteins expressed on multiple cell types and involved in diverse processes including immune and nervous system development and function, differentiation/proliferation, metabolism, vascularization, and reproduction. These PPIs provide a resource for further biological investigation into their functional relevance and may offer new therapeutic drug targets.
Human IgSF interactome reveals complex network of cell-surface protein interactions Phylogenetic homology analysis predicts protein-protein interactions ∼380 previously unknown protein-protein interactions identified Deorphanization of receptors and new binding partners for well-studied receptors
Collapse
Affiliation(s)
- Woj M Wojtowicz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Jost Vielmetter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ricardo A Fernandes
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dirk H Siepe
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catharine L Eastman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregory B Chisholm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarah Cox
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Heath Klock
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Paul W Anderson
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Sarah M Rue
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jessica J Miller
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Scott M Glaser
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Melisa L Bragstad
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Julie Vance
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Annie W Lam
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Scott A Lesley
- The Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Effects of serum matrix on molecular interactions between drugs and target proteins revealed by giant magneto-resistive bio-sensing techniques. J Pharm Biomed Anal 2021; 198:114015. [PMID: 33725588 DOI: 10.1016/j.jpba.2021.114015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
We demonstrated that effects of serum matrix on molecular interactions between drugs and target proteins can be investigated in real time using magnetic bio-sensing techniques. A giant magneto-resistive (GMR) sensor was used on which target proteins were fixed and superparamagnetic nanoparticles (diameter: 50 nm) conjugated with drug were used in phosphate buffer, with and without serum. In this study, the following drug-protein pairs were investigated: quercetin and cAMP-dependent protein kinase A (PKA), Infliximab and tumor necrosis factor alpha (TNFα), and Bevacizumab and vascular endothelial growth factor (VEGF). For the quercetin and PKA pair, the time profile of the signal from the GMR sensor due to binding between quercetin and PKA clearly changed before and after the addition of serum. Moreover, it was revealed that not only the association process, but also the dissociation process was influenced by the addition of serum, suggesting that the quercetin and PKA complex may partially contain serum proteins, which affect the formation and stability of the complex. For antibody drugs, little effects of serum matrix were observed on both the association and dissociation processes. These clear differences may be attributed to the hydrophobic and electrostatic character of the drug molecule, target protein, and serum proteins. The real-time monitoring of molecular interactions in a biological matrix enabled by the GMR bio-sensing technique is a powerful tool to investigate such complicated molecular interactions. Understanding the molecular interactions that occur in a biological matrix is indispensable for determining the mechanism of action of the drugs and pharmacokinetics/pharmacodynamics inside the body. Additionally, this method can be applied for the analysis of the influence of any kind of third molecule that may have some interaction between two molecules, for example, an inhibitor drug against the interaction between two kinds of proteins.
Collapse
|
13
|
Guiteras J, De Ramon L, Crespo E, Bolaños N, Barcelo-Batllori S, Martinez-Valenzuela L, Fontova P, Jarque M, Torija A, Bestard O, Resina D, Grinyó JM, Torras J. Dual and Opposite Costimulatory Targeting with a Novel Human Fusion Recombinant Protein Effectively Prevents Renal Warm Ischemia Reperfusion Injury and Allograft Rejection in Murine Models. Int J Mol Sci 2021; 22:ijms22031216. [PMID: 33530581 PMCID: PMC7865252 DOI: 10.3390/ijms22031216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Many studies have shown both the CD28-D80/86 costimulatory pathway and the PD-1-PD-L1/L2 coinhibitory pathway to be important signals in modulating or decreasing the inflammatory profile in ischemia-reperfusion injury (IRI) or in a solid organ transplant setting. The importance of these two opposing pathways and their potential synergistic effect led our group to design a human fusion recombinant protein with CTLA4 and PD-L2 domains named HYBRI. The objective of our study was to determine the HYBRI binding to the postulated ligands of CTLA4 (CD80) and PD-L2 (PD-1) using the Surface Plasmon Resonance technique and to evaluate the in vivo HYBRI effects on two representative kidney inflammatory models-rat renal IRI and allogeneic kidney transplant. The Surface Plasmon Resonance assay demonstrated the avidity and binding of HYBRI to its targets. HYBRI treatment in the models exerted a high functional and morphological improvement. HYBRI produced a significant amelioration of renal function on day one and two after bilateral warm ischemia and on days seven and nine after transplant, clearly prolonging the animal survival in a life-sustaining renal allograft model. In both models, a significant reduction in histological damage and CD3 and CD68 infiltrating cells was observed. HYBRI decreased the circulating inflammatory cytokines and enriched the FoxP3 peripheral circulating, apart from reducing renal inflammation. In conclusion, the dual and opposite costimulatory targeting with that novel protein offers a good microenvironment profile to protect the ischemic process in the kidney and to prevent the kidney rejection, increasing the animal's chances of survival. HYBRI largely prevents the progression of inflammation in these rat models.
Collapse
Affiliation(s)
- Jordi Guiteras
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
- Fundació Bosch i Gimpera, University of Barcelona, 08028 Barcelona, Spain
| | - Laura De Ramon
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Elena Crespo
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Nuria Bolaños
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Silvia Barcelo-Batllori
- Molecular Interactions Unit, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL) Scientific-Technical Services, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Laura Martinez-Valenzuela
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
- Nephrology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
| | - Pere Fontova
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Marta Jarque
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Alba Torija
- Experimental Nephrology Laboratory, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.G.); (L.D.R.); (E.C.); (N.B.); (L.M.-V.); (P.F.); (M.J.); (A.T.)
| | - Oriol Bestard
- Nephrology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - David Resina
- Bioingenium S.L., Barcelona Science Park, 08028 Barcelona, Spain;
| | - Josep M Grinyó
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence: (J.M.G.); (J.T.)
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital, L’Hospitalet de Llobregat, 08907 Barcelona, Spain;
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence: (J.M.G.); (J.T.)
| |
Collapse
|
14
|
Ng E, Le AK, Nguyen MH, Wang SX. Early Multiplexed Detection of Cirrhosis using Giant Magnetoresistive Biosensors with Protein Biomarkers. ACS Sens 2020; 5:3049-3057. [PMID: 32896123 DOI: 10.1021/acssensors.0c00232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver cirrhosis is one of the leading causes of death in adults worldwide. It is highly prevalent in developing countries and is growing in prevalence in developed countries mostly because of chronic liver diseases, such as chronic hepatitis B and C and alcoholic and nonalcoholic fatty liver disease. However, the prevalence of cirrhosis may be highly underestimated because early stages are asymptomatic and current early detection methods are inadequate. Here, we evaluate the potential of a set of novel cirrhotic protein biomarkers, including soluble intercellular adhesion molecule-1 and mac-2 binding protein glycosylation isomer, for early detection of cirrhosis in a multiplexed assay using our giant magnetoresistive (GMR) sensor arrays. We evaluated the diagnostic performance of the biomarkers, individually and in combination, using multivariate logistic regression and random forest in a blinded proof-of-concept retrospective case-controlled study. The biomarkers in combination exhibited high diagnostic performance in both logistic regression and random forest models, with an area under the curve of 0.98 (0.94-1.00). In addition, the combination of biomarkers resulted in a high sensitivity of 0.97 (0.95-1.00) and a high specificity of 1.00. We showed that the diagnostic performance of our novel set of cirrhotic protein biomarkers on our multiplexed GMR sensor arrays is higher than the performance of currently used clinical biomarkers and factors (i.e., age, sex, alanine aminotransferase, aspartate aminotransferase, etc.). With this combination of novel biomarkers and GMR technology, we could potentially boost the diagnostic power of early cirrhosis detection.
Collapse
Affiliation(s)
- Elaine Ng
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - An K. Le
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California 94305, United States
| | - Mindie H. Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California 94305, United States
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Li P, Gandhi D, Mutas M, Ran YF, Carr M, Rampini S, Hall W, Lee GU. Direct identification of the herpes simplex virus UL27 gene through single particle manipulation and optical detection using a micromagnetic array. NANOSCALE 2020; 12:3482-3490. [PMID: 31971211 DOI: 10.1039/c9nr10362g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnetophoretic lab on a chip technologies are rapidly evolving into integrated systems for the identification of biomarkers and cells with ultra-high sensitivity. We demonstrate the highly efficient detection of the Human herpes simplex virus type 1 (HSV) UL27 gene through the programmed assembly of superparamagnetic (SPM) nanoparticles based on oligonucleotide hybridization. The state of assembly of the SPM nanoparticles was determined by optical signature of the synchronized motion on the beads on a micromagnetic array (MMA). This technique has been used to identify <200 copies of the HSV UL27 gene without amplification in less than 20 minutes. The MAA can also be used to separate gene-SPM bead aggregates from millions of unreacted SPM beads based on nonlinear magnetophoresis (NLM). The MMA-optical detection system promises to enable highly sensitive, nucleic acid analysis to be performed without amplification and with the consumption of minimal amounts of reagent.
Collapse
Affiliation(s)
- Peng Li
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Dhruv Gandhi
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Marina Mutas
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Yin-Fen Ran
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Michael Carr
- UCD National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland and Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0020, Japan
| | - Stefano Rampini
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | - William Hall
- UCD National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gil U Lee
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
16
|
Abstract
In recent years, various reports related to sensing application research have suggested that combining the synergistic impacts of optical, electrical or magnetic properties in a single technique can lead to a new multitasking platform. Owing to their unique features of the magnetic moment, biocompatibility, ease of surface modification, chemical stability, high surface area, high mass transference, magnetic nanoparticles have found a wide range of applications in various fields, especially in sensing systems. The present review is comprehensive information about magnetic nanoparticles utilized in the optical sensing platform, broadly categorized into four types: surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence spectroscopy and near-infrared spectroscopy and imaging (NIRS) that are commonly used in various (bio) analytical applications. The review also includes some conclusions on the state of the art in this field and future aspects.
Collapse
|
17
|
Xu L, Lee JR, Hao S, Ling XB, Brooks JD, Wang SX, Gambhir SS. Improved detection of prostate cancer using a magneto-nanosensor assay for serum circulating autoantibodies. PLoS One 2019; 14:e0221051. [PMID: 31404106 PMCID: PMC6690541 DOI: 10.1371/journal.pone.0221051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose To develop a magneto-nanosensor (MNS) based multiplex assay to measure protein and autoantibody biomarkers from human serum for prostate cancer (CaP) diagnosis. Materials and methods A 4-panel MNS autoantibody assay and a MNS protein assay were developed and optimized in our labs. Using these assays, serum concentration of six biomarkers including prostate-specific antigen (PSA) protein, free/total PSA ratio, as well as four autoantibodies against Parkinson disease 7 (PARK7), TAR DNA-binding protein 43 (TARDBP), Talin 1 (TLN1), and Caldesmon 1 (CALD1) and were analyzed. Human serum samples from 99 patients (50 with non-cancer and 49 with clinically localized CaP) were evaluated. Results The MNS assay showed excellent performance characteristics and no cross-reactivity. All autoantibody assays showed a statistically significant difference between CaP and non-cancer samples except for PARK7. The most significant difference was the combination of the four autoantibodies as a panel in addition to the free/total PSA ratio. This combination had the highest area under the curve (AUC)– 0.916 in ROC analysis. Conclusions Our results suggest that this autoantibody panel along with PSA and free PSA have potential to segregate patients without cancer from those with prostate cancer with higher sensitivity and specificity than PSA alone.
Collapse
Affiliation(s)
- Lingyun Xu
- Department of Radiology, Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
| | - Shiying Hao
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
- Departments of Surgery, Stanford University, Stanford, California, United States of America
| | - Xuefeng Bruce Ling
- Clinical and Translational Research Program, Betty Irene Moore Children's Heart Center, Lucile Packard Children’s Hospital, Palo Alto, California, United States of America
- Departments of Surgery, Stanford University, Stanford, California, United States of America
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shan X. Wang
- Department of Materials Science & Engineering, Stanford University, Stanford, California, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wang Y, Sun J, Qiao J, Ouyang J, Na N. A "Soft" and "Hard" Ionization Method for Comprehensive Studies of Molecules. Anal Chem 2018; 90:14095-14099. [PMID: 30422630 DOI: 10.1021/acs.analchem.8b04437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ambient mass spectrometry can be rapidly and directly effective for molecular studies, while there still seems to be a gap between two major groups of electrospray ionization (ESI)- and atmospheric pressure chemical ionization (APCI)-related techniques, for detection of moderately polar to polar and low polar to nonpolar molecules in a relatively low mass range, respectively. Here, an extensively applicable "soft" and "hard" ionization method, spray-dependent plasma mass spectrometry (SDP MS), was established for detecting various molecules with diverse polarities or molecular weights. By SDP MS, both fragment ions and intact molecular ions can be obtained. Significantly, cluster ions of aggregates in high mass range formed by weak molecular interactions can also be well recorded, much softer than traditional ESI MS. By filling the gap between ESI-based and APCI-based ionization techniques, SDP MS would enhance MS performance for comprehensive molecular studies and be extensively applicable in fields of organic synthesis, biological chemistry, medical chemistry, and clinical diagnosis.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jianghui Sun
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jinping Qiao
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry , Beijing Normal University , Beijing 100875 , China
| |
Collapse
|
19
|
Song Y, Lin B, Tian T, Xu X, Wang W, Ruan Q, Guo J, Zhu Z, Yang C. Recent Progress in Microfluidics-Based Biosensing. Anal Chem 2018; 91:388-404. [DOI: 10.1021/acs.analchem.8b05007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bingqian Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tian Tian
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Xu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qingyu Ruan
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingjing Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
20
|
Yang J, Hu L. Immunomodulators targeting the PD-1/PD-L1 protein-protein interaction: From antibodies to small molecules. Med Res Rev 2018; 39:265-301. [PMID: 30215856 DOI: 10.1002/med.21530] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has made great strides in the recent decade, especially in the area of immune checkpoint blockade. The outstanding efficacy, prolonged durability of effect, and rapid assimilation of anti-PD-1 and anti-PD-L1 monoclonal antibodies in clinical practice have been nothing short of a medical breakthrough in the treatment of numerous malignancies. The major advantages of these therapeutic antibodies over their small molecule counterparts have been their high binding affinity and target specificity. However, antibodies do have their flaws including immune-related toxicities, inadequate pharmacokinetics and tumor penetration, and high cost burden to manufacturers and consumers. These limitations hinder broader clinical applications of the antibodies and have heightened interests in developing the alternative small molecule platform that includes peptidomimetics and peptides to target the PD-1/PD-L1 immune checkpoint system. The progress on these small molecule alternatives has been relatively slow compared to that of the antibodies. Fortunately, recent structural studies of the interactions among PD-1, PD-L1, and their respective antibodies have revealed key hotspots on PD-1 and PD-L1 that may facilitate drug discovery efforts for small molecule immunotherapeutics. This review is intended to discuss key concepts in immuno-oncology, describe the successes and shortcomings of PD-1/PD-L1 antibody-based therapies, and to highlight the recent development of small molecule inhibitors of the PD-1/PD-L1 protein-protein interaction.
Collapse
Affiliation(s)
- Jeffrey Yang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Longqin Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Cancer Pharmacology Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
21
|
Lee JR, Appelmann I, Miething C, Shultz TO, Ruderman D, Kim D, Mallick P, Lowe SW, Wang SX. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors. Theranostics 2018; 8:1389-1398. [PMID: 29507628 PMCID: PMC5835944 DOI: 10.7150/thno.20706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/12/2017] [Indexed: 01/23/2023] Open
Abstract
Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.
Collapse
Affiliation(s)
- Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
| | - Iris Appelmann
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Cornelius Miething
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Internal Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tyler O. Shultz
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Daniel Ruderman
- Ellison Institute of Transformative Medicine of USC, USC Keck School of Medicine, Los Angeles, California, USA
| | - Dokyoon Kim
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Parag Mallick
- Department of Medicine, Department of Radiology, Stanford University, Stanford, California, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
- Department of Medicine, Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
22
|
Hartshorn CM, Bradbury MS, Lanza GM, Nel AE, Rao J, Wang AZ, Wiesner UB, Yang L, Grodzinski P. Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care. ACS NANO 2018; 12:24-43. [PMID: 29257865 PMCID: PMC6589353 DOI: 10.1021/acsnano.7b05108] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ongoing research into the application of nanotechnology for cancer treatment and diagnosis has demonstrated its advantages within contemporary oncology as well as its intrinsic limitations. The National Cancer Institute publishes the Cancer Nanotechnology Plan every 5 years since 2005. The most recent iteration helped codify the ongoing basic and translational efforts of the field and displayed its breadth with several evolving areas. From merely a technological perspective, this field has seen tremendous growth and success. However, an incomplete understanding of human cancer biology persists relative to the application of nanoscale materials within contemporary oncology. As such, this review presents several evolving areas in cancer nanotechnology in order to identify key clinical and biological challenges that need to be addressed to improve patient outcomes. From this clinical perspective, a sampling of the nano-enabled solutions attempting to overcome barriers faced by traditional therapeutics and diagnostics in the clinical setting are discussed. Finally, a strategic outlook of the future is discussed to highlight the need for next-generation cancer nanotechnology tools designed to address critical gaps in clinical cancer care.
Collapse
Affiliation(s)
- Christopher M Hartshorn
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Corresponding Author,
| | - Michelle S Bradbury
- Department of Radiology and Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York, 10065, United States
| | - Gregory M Lanza
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63108, United States
| | - Andre E Nel
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jianghong Rao
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, California 94305, United States
| | - Andrew Z. Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ulrich B Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14843, United States
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Piotr Grodzinski
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Corresponding Author,
| |
Collapse
|
23
|
Lee JR, Chan CT, Ruderman D, Chuang HY, Gaster RS, Atallah M, Mallick P, Lowe SW, Gambhir SS, Wang SX. Longitudinal Monitoring of Antibody Responses against Tumor Cells Using Magneto-nanosensors with a Nanoliter of Blood. NANO LETTERS 2017; 17:6644-6652. [PMID: 28990786 PMCID: PMC5851288 DOI: 10.1021/acs.nanolett.7b02591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Each immunoglobulin isotype has unique immune effector functions. The contribution of these functions in the elimination of pathogens and tumors can be determined by monitoring quantitative temporal changes in isotype levels. Here, we developed a novel technique using magneto-nanosensors based on the effect of giant magnetoresistance (GMR) for longitudinal monitoring of total and antigen-specific isotype levels with high precision, using as little as 1 nL of serum. Combining in vitro serologic measurements with in vivo imaging techniques, we investigated the role of the antibody response in the regression of firefly luciferase (FL)-labeled lymphoma cells in spleen, kidney, and lymph nodes in a syngeneic Burkitt's lymphoma mouse model. Regression status was determined by whole body bioluminescent imaging (BLI). The magneto-nanosensors revealed that anti-FL IgG2a and total IgG2a were elevated and sustained in regression mice compared to non-regression mice (p < 0.05). This platform shows promise for monitoring immunotherapy, vaccination, and autoimmunity.
Collapse
Affiliation(s)
- Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul 03760, South Korea
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Carmel T. Chan
- Department of Medicine, Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Daniel Ruderman
- Ellison Institute of Transformative Medicine of USC, USC Keck School of Medicine, Los Angeles, California 90211, United States
| | - Hui-Yen Chuang
- Department of Medicine, Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Richard S. Gaster
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
- Pliant Therapeutics, Redwood City, California 94063, United States
| | - Michelle Atallah
- Cancer Biology Program, Stanford School of Medicine, Stanford, California 94305, United States
| | - Parag Mallick
- Department of Medicine, Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Sanjiv S. Gambhir
- Department of Medicine, Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Medicine, Department of Radiology, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
25
|
Lin G, Makarov D, Schmidt OG. Magnetic sensing platform technologies for biomedical applications. LAB ON A CHIP 2017; 17:1884-1912. [PMID: 28485417 DOI: 10.1039/c7lc00026j] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Detection and quantification of a variety of micro- and nanoscale entities, e.g. molecules, cells, and particles, are crucial components of modern biomedical research, in which biosensing platform technologies play a vital role. Confronted with the drastic global demographic changes, future biomedical research entails continuous development of new-generation biosensing platforms targeting even lower costs, more compactness, and higher throughput, sensitivity and selectivity. Among a wide choice of fundamental biosensing principles, magnetic sensing technologies enabled by magnetic field sensors and magnetic particles offer attractive advantages. The key features of a magnetic sensing format include the use of commercially available magnetic field sensing elements, e.g. magnetoresistive sensors which bear huge potential for compact integration, a magnetic field sensing mechanism which is free from interference by complex biomedical samples, and an additional degree of freedom for the on-chip handling of biochemical species rendered by magnetic labels. In this review, we highlight the historical basis, routes, recent advances and applications of magnetic biosensing platform technologies based on magnetoresistive sensors.
Collapse
Affiliation(s)
- Gungun Lin
- Institute for Integrative Nanosciences, IFW Dresden, Helmholzstr. 20, 01069, Dresden, Germany
| | | | | |
Collapse
|
26
|
Lee JR, Haddon DJ, Gupta N, Price JV, Credo GM, Diep VK, Kim K, Hall DA, Baechler EC, Petri M, Varma M, Utz PJ, Wang SX. High-Resolution Analysis of Antibodies to Post-Translational Modifications Using Peptide Nanosensor Microarrays. ACS NANO 2016; 10:10652-10660. [PMID: 27636738 PMCID: PMC5367622 DOI: 10.1021/acsnano.6b03786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Autoantibodies are a hallmark of autoimmune diseases such as lupus and have the potential to be used as biomarkers for diverse diseases, including immunodeficiency, infectious disease, and cancer. More precise detection of antibodies to specific targets is needed to improve diagnosis of such diseases. Here, we report the development of reusable peptide microarrays, based on giant magnetoresistive (GMR) nanosensors optimized for sensitively detecting magnetic nanoparticle labels, for the detection of antibodies with a resolution of a single post-translationally modified amino acid. We have also developed a chemical regeneration scheme to perform multiplex assays with a high level of reproducibility, resulting in greatly reduced experimental costs. In addition, we show that peptides synthesized directly on the nanosensors are approximately two times more sensitive than directly spotted peptides. Reusable peptide nanosensor microarrays enable precise detection of autoantibodies with high resolution and sensitivity and show promise for investigating antibody-mediated immune responses to autoantigens, vaccines, and pathogen-derived antigens as well as other fundamental peptide-protein interactions.
Collapse
Affiliation(s)
- Jung-Rok Lee
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - D. James Haddon
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California 94305, United States
| | - Nidhi Gupta
- Intel Corporation, Santa Clara, California 95052, United States
| | - Jordan V. Price
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, California 94720, United States
| | - Grace M. Credo
- Intel Corporation, Santa Clara, California 95052, United States
| | - Vivian K. Diep
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California 94305, United States
| | - Kyunglok Kim
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Drew A. Hall
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, United States
| | - Emily C. Baechler
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Madoo Varma
- Intel Corporation, Santa Clara, California 95052, United States
| | - Paul J. Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, California 94305, United States
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Corresponding Author.
| |
Collapse
|