1
|
Woo JKK, Zimnicka AM, Federle MJ, Freitag NE. Novel motif associated with carbon catabolite repression in two major Gram-positive pathogen virulence regulatory proteins. Microbiol Spectr 2024; 12:e0048524. [PMID: 39387597 PMCID: PMC11537053 DOI: 10.1128/spectrum.00485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/07/2024] [Indexed: 10/15/2024] Open
Abstract
Carbon catabolite repression (CCR) is a widely conserved regulatory process that ensures enzymes and transporters of less-preferred carbohydrates are transcriptionally repressed in the presence of a preferred carbohydrate. This phenomenon can be regulated via a CcpA-dependent or CcpA-independent mechanism. The CcpA-independent mechanism typically requires a transcriptional regulator harboring a phosphotransferase regulatory domain (PRD) that interacts with phosphotransferase system (PTS) components. PRDs contain a conserved histidine residue that is phosphorylated by the PTS-associated HPr-His15~P protein. PRD-containing regulators often harbor additional domains that resemble PTS-associated EIIB protein domains with a conserved cysteine residue that can be phosphorylated by cognate PTS components. We noted that Mga, the PRD-containing central virulence regulator of Streptococcus pyogenes, has an EIIBGat domain containing a cysteine that, based on the presence of a similar motif in glycerol kinase, could be a target for phosphorylation. Using site-directed mutagenesis, we constructed phospho-ablative and phospho-mimetic substitutions of this cysteine and found that these substitutions modify the CCR of the Rgg2/3 quorum-sensing system. Moreover, we provide genetic evidence that the phospho-donor of this cysteine residue is likely to be ManL, the EIIA/B subunit of the mannose PTS system. Interestingly, a structurally distinct virulence gene regulator, PrfA of Listeria monocytogenes, harbors a similar cysteine-containing motif, and phospho-ablative and phospho-mimetic substitutions of the cysteine-altered CCR of PrfA-dependent virulence gene expression. Collectively, our data suggest that phosphorylation of a cysteine within the shared novel motif in Mga and PrfA may be a heretofore missing link between cellular metabolism and virulence.IMPORTANCEIn this study, we identified a novel cysteine-containing motif within the amino acid sequence of two structurally distinct transcriptional regulators of virulence in two Gram-positive pathogens that appears to link carbon metabolism with virulence gene expression. The results also highlight the potential post-translational modification of cysteine in bacterial species, a rare and understudied modification.
Collapse
Affiliation(s)
- Jerry K. K. Woo
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Adriana M. Zimnicka
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael J. Federle
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nancy E. Freitag
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Na TU, Sander V, Davidson AJ, Lin R, Hermant YO, Hardie Boys MT, Pletzer D, Campbell G, Ferguson SA, Cook GM, Allison JR, Brimble MA, Northrop BH, Cameron AJ. Allenamides as a Powerful Tool to Incorporate Diversity: Thia-Michael Lipidation of Semisynthetic Peptides and Access to β-Keto Amides. Angew Chem Int Ed Engl 2024; 63:e202407764. [PMID: 38932510 DOI: 10.1002/anie.202407764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties. Utilising an allenamide, we report the first semisynthesis of antimicrobial lipopeptides leveraging a highly efficient thia-Michael addition of chemically diverse lipophilic thiols. Using chemoenzymatically prepared polymyxin B nonapeptide (PMBN) as a model scaffold, an optimised allenamide-mediated thia-Michael addition effected rapid and near quantitative lipidation, affording vinyl sulfide-linked lipopeptide derivatives. Harnessing the utility of this new methodology, 22 lipophilic thiols of unprecedented chemical diversity were introduced to the PMBN framework. These included alkyl thiols, substituted aromatic thiols, heterocyclic thiols and those bearing additional functional groups (e.g., amines), ultimately yielding analogues with potent Gram-negative antimicrobial activity and substantially attenuated nephrotoxicity. Furthermore, we report facile routes to transform the allenamide into a β-keto amide on unprotected peptides, offering a powerful "jack-of-all-trades" synthetic intermediate to enable further peptide modification.
Collapse
Affiliation(s)
- Tae-Ung Na
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Veronika Sander
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Alan J Davidson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Rolland Lin
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Madeleine T Hardie Boys
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Daniel Pletzer
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Georgia Campbell
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Scott A Ferguson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Gregory M Cook
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- Department of Microbiology and Immunology, School of Medical Sciences, The University of Otago, 720 Cumberland Street, Dunedin, 9054, New Zealand
| | - Jane R Allison
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Brian H Northrop
- Department of Chemistry, Wesleyan University, 52 Lawn Ave., Middletown, CT 06459, U.S.A
| | - Alan J Cameron
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland, 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
3
|
Allen MC, Karplus PA, Mehl RA, Cooley RB. Genetic Encoding of Phosphorylated Amino Acids into Proteins. Chem Rev 2024; 124:6592-6642. [PMID: 38691379 DOI: 10.1021/acs.chemrev.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.
Collapse
Affiliation(s)
- Michael C Allen
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331 United States
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331 United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331 United States
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331 United States
| |
Collapse
|
4
|
Hussain F, Ahmed S, Padder AH, Ahmed QN. Synthesis of mixed phosphorotrithioates via thiol coupling with bis(diisopropylamino)chlorophosphine and sulphenyl chloride. Org Biomol Chem 2024; 22:284-288. [PMID: 38086736 DOI: 10.1039/d3ob01668d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this study, we report a novel and efficient one-pot synthesis of mixed phosphorotrithioates under mild conditions at ambient temperature, obviating the requirement for supplementary additives. The method's versatility stems from its utilization of diverse thiols as nucleophilic reactants, 1-chloro-N,N,N',N'-tetraisopropylphosphanediamine [bis(diisopropylamino)chlorophosphine] as the phosphorus precursor, and various sulphenyl chlorides as sources of electrophilic sulfur. Notably, our investigation extends beyond mixed phosphorotrithioates to encompass the synthesis of phosphoroselenodithioates, underscoring the broad applicability of this synthetic protocol.
Collapse
Affiliation(s)
- Feroze Hussain
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sajjad Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ashiq Hussain Padder
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
5
|
Brown NW, Schlomach SK, Marmelstein AM, Fiedler D. Chemoselective Labeling and Immobilization of Phosphopeptides with Phosphorimidazolide Reagents. Chembiochem 2023; 24:e202200407. [PMID: 36166450 DOI: 10.1002/cbic.202200407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/21/2022] [Indexed: 11/11/2022]
Abstract
Protein phosphorylation is one of the most ubiquitous post-translational modifications, regulating numerous essential processes in cells. Accordingly, the large-scale annotation of phosphorylation sites continues to provide central insight into the regulation of signaling networks. The global analysis of the phosphoproteome typically relies on mass spectrometry analysis of phosphopeptides, with an enrichment step necessary due to the sub-stoichiometric nature of phosphorylation. Several affinity-based methods and chemical modification strategies have been developed to date, but the choice of enrichment method can have a considerable impact on the results. Here, we show that a biotinylated, photo-cleavable phosphorimidazolide reagent permits the immobilization and subsequent cleavage of phosphopeptides. The method is capable of the capture and release of phosphopeptides of varying characteristics, and this mild and selective strategy expands the current repertoire for phosphopeptide chemical modification with the potential to enrich and identify new phosphorylation sites in the future.
Collapse
Affiliation(s)
- Nathaniel W Brown
- Department of Chemical Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry, Princeton University, Washington Rd., Princeton, NJ 08544, USA
| | - Sandra K Schlomach
- Department of Chemical Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Alan M Marmelstein
- Department of Chemical Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry, Princeton University, Washington Rd., Princeton, NJ 08544, USA
| | - Dorothea Fiedler
- Department of Chemical Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
6
|
Wohlgemuth R. Advances in the Synthesis and Analysis of Biologically Active Phosphometabolites. Int J Mol Sci 2023; 24:3150. [PMID: 36834560 PMCID: PMC9961378 DOI: 10.3390/ijms24043150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Phosphorus-containing metabolites cover a large molecular diversity and represent an important domain of small molecules which are highly relevant for life and represent essential interfaces between biology and chemistry, between the biological and abiotic world. The large but not unlimited amount of phosphate minerals on our planet is a key resource for living organisms on our planet, while the accumulation of phosphorus-containing waste is associated with negative effects on ecosystems. Therefore, resource-efficient and circular processes receive increasing attention from different perspectives, from local and regional levels to national and global levels. The molecular and sustainability aspects of a global phosphorus cycle have become of much interest for addressing the phosphorus biochemical flow as a high-risk planetary boundary. Knowledge of balancing the natural phosphorus cycle and the further elucidation of metabolic pathways involving phosphorus is crucial. This requires not only the development of effective new methods for practical discovery, identification, and high-information content analysis, but also for practical synthesis of phosphorus-containing metabolites, for example as standards, as substrates or products of enzymatic reactions, or for discovering novel biological functions. The purpose of this article is to review the advances which have been achieved in the synthesis and analysis of phosphorus-containing metabolites which are biologically active.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland; or
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
| |
Collapse
|
7
|
Poulou E, Hackenberger CPR. Staudinger Ligation and Reactions – From Bioorthogonal Labeling to Next‐Generation Biopharmaceuticals. Isr J Chem 2022. [DOI: 10.1002/ijch.202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eleftheria Poulou
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
- Department of Chemistry Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
- Department of Chemistry Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
8
|
Hussain F, Dar TA, Ahmed QN. Coupling of 1-Chloro- N, N-diisopropylphosphanamine-Based Reagents with Alcohols and Thiosulfonates: A Precise Construction of O-P(O)-S Bonds. Org Lett 2022; 24:5324-5328. [PMID: 35833826 DOI: 10.1021/acs.orglett.2c01947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we present the first mild, one-step direct synthesis of mixed phosphorothioates through selective generation of O-P(O)-S bonds at rt under additive-free condition. Further, reactions of different model natural products with 1,1-dichloro-N,N-diisopropylphosphanamine helped to present an alternative dimerization strategy. The synthetic utility of the methodology was extended for the synthesis of mixed phosphoroselenoates as well. The potential of the reaction was further demonstrated for the synthesis of mixed phosphorothioate bearing two different alcohols.
Collapse
Affiliation(s)
- Feroze Hussain
- Natural Products & Medicinal Chemistry Division, Indian Institute of Integrative Medicine (IIIM), 180001, Canal Road, Jammu, Jammu and Kashmir, India.,Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, 180001 Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), 201002 Ghaziabad, India
| | - Tariq Ahmad Dar
- Tariq Ahmad Dar, Natural Products & Medicinal Chemistry Division, Indian Institute of Integrative Medicine (IIIM), 180001, Canal Road, Jammu, Jammu & Kashmir, India.,Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, 180001 Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), 201002 Ghaziabad, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, 180001 Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), 201002 Ghaziabad, India
| |
Collapse
|
9
|
Kasper M, Lassak L, Vogl AM, Mai I, Helma J, Schumacher D, Hackenberger CPR. Bis‐ethynylphosphonamidates as an Modular Conjugation Platform to Generate Multi‐Functional Protein‐ and Antibody‐Drug‐Conjugates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marc‐André Kasper
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
- Department of Chemistry Humboldt Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
- Tubulis GmbH Butenandtstraße 1 81377 München Germany
| | - Lukas Lassak
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
- Department of Chemistry Humboldt Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | | | - Isabelle Mai
- Tubulis GmbH Butenandtstraße 1 81377 München Germany
| | - Jonas Helma
- Tubulis GmbH Butenandtstraße 1 81377 München Germany
| | | | - Christian P. R. Hackenberger
- Chemical Biology Department Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
- Department of Chemistry Humboldt Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
10
|
Rather SA, Bhat MY, Hussain F, Ahmed QN. Sulfonyl-Promoted Michaelis-Arbuzov-Type Reaction: An Approach to S/Se-P Bonds. J Org Chem 2021; 86:13644-13663. [PMID: 34516111 DOI: 10.1021/acs.joc.1c01681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
By facilitating the chemical conversion of thiols to thiosulfonates, phosphoramidite/phosphite bearing sp3-hybridized carbon serves as an ideal coupling material to forge new connections at room temperature. In this work, a functional group-induced, additive-free, novel, S-P bond-forming approach is presented. This protocol exhibits good functional group tolerance with wide applications that include phosphorylation of cysteine derivatives, development of a one-pot approach to mixed unsymmetrical thiophosphonates, and extension of the concept to different Se-P bonds. Meticulously, our reaction also generated a S-P bond against cyclic 1,2-dithiane-1-dioxide in a byproduct-free manner. These Michaelis-Arbuzov-type reactions are easy to conduct, work efficiently in a reduced reaction time, and are applicable to gram-scale preparation as well.
Collapse
Affiliation(s)
- Suhail A Rather
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammad Yaqoob Bhat
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Feroze Hussain
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
12
|
Conibear AC. Deciphering protein post-translational modifications using chemical biology tools. Nat Rev Chem 2020; 4:674-695. [PMID: 37127974 DOI: 10.1038/s41570-020-00223-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Proteins carry out a wide variety of catalytic, regulatory, signalling and structural functions in living systems. Following their assembly on ribosomes and throughout their lifetimes, most eukaryotic proteins are modified by post-translational modifications; small functional groups and complex biomolecules are conjugated to amino acid side chains or termini, and the protein backbone is cleaved, spliced or cyclized, to name just a few examples. These modifications modulate protein activity, structure, location and interactions, and, thereby, control many core biological processes. Aberrant post-translational modifications are markers of cellular stress or malfunction and are implicated in several diseases. Therefore, gaining an understanding of which proteins are modified, at which sites and the resulting biological consequences is an important but complex challenge requiring interdisciplinary approaches. One of the key challenges is accessing precisely modified proteins to assign functional consequences to specific modifications. Chemical biologists have developed a versatile set of tools for accessing specifically modified proteins by applying robust chemistries to biological molecules and developing strategies for synthesizing and ligating proteins. This Review provides an overview of these tools, with selected recent examples of how they have been applied to decipher the roles of a variety of protein post-translational modifications. Relative advantages and disadvantages of each of the techniques are discussed, highlighting examples where they are used in combination and have the potential to address new frontiers in understanding complex biological processes.
Collapse
|
13
|
Hauser A, Hwang S, Sun H, Hackenberger CPR. Combining free energy calculations with tailored enzyme activity assays to elucidate substrate binding of a phospho-lysine phosphatase. Chem Sci 2020; 11:12655-12661. [PMID: 34094459 PMCID: PMC8163145 DOI: 10.1039/d0sc03930f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Studying enzymes that are involved in the regulation of dynamic post-translational modifications (PTMs) is of key importance in proteomics research. Such investigations can be particularly challenging when the modification itself is intrinsically labile. In this article, we elucidate the enzymatic activity of Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase (LHPP) towards different O- and N-phosphorylated peptides by a combined experimental and computational approach. LHPP has been previously described to hydrolyze the phosphoramidate bonds in different small molecule substrates, including phosphorylated lysine (pLys). Taking the instability of the phosphoramidate bond into account, we conducted a carefully adjusted enzymatic assay with various pLys pentapeptides to confirm enzymatic phosphatase activity with LHPP. Molecular docking was employed to explore possible binding poses of the substrates in complex with the enzyme. Molecular dynamics based free energy calculations, which are unique in their accuracy and solid theoretical basis, were further applied to predict relative binding affinity of different substrates. Comparison of simulations with experiments clearly suggested a distinct binding motif of pLys peptides as well as a very narrow promiscuity of LHPP. We believe this integrated approach can be widely adopted to study the structure and interaction of poorly characterized enzyme-substrate complexes, in particular with synthetically challenging or labile substrates.
Collapse
Affiliation(s)
- Anett Hauser
- Department of Chemical Biology II, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
- Institute for Chemistry, Humboldt-Universität zu Berlin Berlin Germany
| | - Songhwan Hwang
- Group of Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
| | - Han Sun
- Group of Structural Chemistry and Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
| | - Christian P R Hackenberger
- Department of Chemical Biology II, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin Germany
- Institute for Chemistry, Humboldt-Universität zu Berlin Berlin Germany
| |
Collapse
|
14
|
Unremitting progresses for phosphoprotein synthesis. Curr Opin Chem Biol 2020; 58:96-111. [PMID: 32889414 DOI: 10.1016/j.cbpa.2020.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/03/2023]
Abstract
Phosphorylation, one of the important protein post-translational modifications, is involved in many essential cellular processes. Site-specifical and homogeneous phosphoproteins can be used as probes for elucidating the protein phosphorylation network and as potential therapeutics for interfering their involved biological events. However, the generation of phosphoproteins has been challenging owing to the limitation of chemical synthesis and protein expression systems. Despite the pioneering discoveries in phosphoprotein synthesis, over the past decade, great progresses in this field have also been made to promote the biofunctional exploration of protein phosphorylation largely. Therefore, in this review, we mainly summarize recent advances in phosphoprotein synthesis, which includes five sections: 1) synthesis of the nonhydrolyzable phosphorylated amino acid mimetic building blocks, 2) chemical total and semisynthesis strategy, 3) in-cell and in vitro genetic code expansion strategy, 4) the late-stage modification strategy, 5) nonoxygen phosphoprotein synthesis.
Collapse
|
15
|
Baumann AL, Schwagerus S, Broi K, Kemnitz-Hassanin K, Stieger CE, Trieloff N, Schmieder P, Hackenberger CPR. Chemically Induced Vinylphosphonothiolate Electrophiles for Thiol–Thiol Bioconjugations. J Am Chem Soc 2020; 142:9544-9552. [DOI: 10.1021/jacs.0c03426] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Alice L. Baumann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Sergej Schwagerus
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kevin Broi
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Kristin Kemnitz-Hassanin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian E. Stieger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Nils Trieloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
16
|
Arisawa M, Fukumoto K, Yamaguchi M. Rhodium-catalyzed phosphorylation reaction of water-soluble disulfides using hypodiphosphoric acid tetraalkyl esters in water. RSC Adv 2020; 10:13820-13823. [PMID: 35492965 PMCID: PMC9051538 DOI: 10.1039/d0ra02377a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022] Open
Abstract
RhCl3catalyzed the phosphorylation reaction of water-soluble disulfides, including unprotected glutathione disulfide, with hypodiphosphoric acid tetraalkyl esters in homogeneous water.
Collapse
Affiliation(s)
- Mieko Arisawa
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai
- Japan
| | - Kohei Fukumoto
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai
- Japan
| | - Masahiko Yamaguchi
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai
- Japan
| |
Collapse
|
17
|
Penkert M, Hauser A, Harmel R, Fiedler D, Hackenberger CPR, Krause E. Electron Transfer/Higher Energy Collisional Dissociation of Doubly Charged Peptide Ions: Identification of Labile Protein Phosphorylations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1578-1585. [PMID: 31111417 DOI: 10.1007/s13361-019-02240-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
In recent years, labile phosphorylation sites on arginine, histidine, cysteine, and lysine as well as pyrophosphorylation of serine and threonine have gained more attention in phosphoproteomic studies. However, the analysis of these delicate posttranslational modifications via tandem mass spectrometry remains a challenge. Common fragmentation techniques such as collision-induced dissociation (CID) and higher energy collisional dissociation (HCD) are limited due to extensive phosphate-related neutral loss. Electron transfer dissociation (ETD) has shown to preserve labile modifications, but is restricted to higher charge states, missing the most prevalent doubly charged peptides. Here, we report the ability of electron transfer/higher energy collisional dissociation (EThcD) to fragment doubly charged phosphorylated peptides without losing the labile modifications. Using synthetic peptides that contain phosphorylated arginine, histidine, cysteine, and lysine as well as pyrophosphorylated serine residues, we evaluated the optimal fragmentation conditions, demonstrating that EThcD is the method of choice for unambiguous assignment of tryptic, labile phosphorylated peptides. Graphical Abstract.
Collapse
Affiliation(s)
- Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany.
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
| | - Anett Hauser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Robert Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle Str. 10, 13125, Berlin, Germany
| |
Collapse
|
18
|
Buchowiecka AK. Modified cysteine S-phosphopeptide standards for mass spectrometry-based proteomics. Amino Acids 2019; 51:1365-1375. [DOI: 10.1007/s00726-019-02773-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/18/2019] [Indexed: 02/06/2023]
|
19
|
Kasper MA, Glanz M, Oder A, Schmieder P, von Kries JP, Hackenberger CPR. Vinylphosphonites for Staudinger-induced chemoselective peptide cyclization and functionalization. Chem Sci 2019; 10:6322-6329. [PMID: 31341586 PMCID: PMC6598645 DOI: 10.1039/c9sc01345h] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
In this paper, we introduce vinylphosphonites for chemoselective Staudinger-phosphonite reactions (SPhR) with azides to form vinylphosphonamidates for the subsequent modification of cysteine residues in peptides and proteins. An electron-rich alkene is turned into an electron-deficient vinylphosphonamidate, thereby inducing electrophilic reactivity for a following thiol addition. We show that by varying the phosphonamidate ester substituent we can fine-tune the reactivity of the thiol addition and even control the functional properties of the final conjugate. Furthermore, we observed a drastic increase in thiol addition efficiency when the SPhR is carried out in the presence of a thiol substrate in a one-pot reaction. Hence, we utilize vinylphosphonites for the chemoselective intramolecular cyclization of peptides carrying an azide-containing amino acid and a cysteine in high yields. Our concept was demonstrated for the stapling of a cell-permeable peptidic inhibitor for protein-protein interaction (PPI) between BCL9 and beta-catenin, which is known to create a transcription factor complex playing a role in embryonic development and cancer origin, and for macrocyclization of cell-penetrating peptides (CPPs) to enhance the cellular uptake of proteins.
Collapse
Affiliation(s)
- Marc-André Kasper
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Chemical Biology Department , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany .
- Humboldt Universität zu Berlin , Department of Chemistry , Brook-Taylor-Str. 2 , 12489 Berlin , Germany
| | - Maria Glanz
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Chemical Biology Department , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany .
- Humboldt Universität zu Berlin , Department of Chemistry , Brook-Taylor-Str. 2 , 12489 Berlin , Germany
| | - Andreas Oder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Chemical Biology Department , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany .
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Chemical Biology Department , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany .
| | - Jens P von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Chemical Biology Department , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany .
| | - Christian P R Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) , Chemical Biology Department , Robert-Rössle-Strasse 10 , 13125 Berlin , Germany .
- Humboldt Universität zu Berlin , Department of Chemistry , Brook-Taylor-Str. 2 , 12489 Berlin , Germany
| |
Collapse
|
20
|
Yin H, Lu D, Wang S, Wang P. Development of Powerful Auxiliary-Mediated Ligation To Facilitate Rapid Protein Assembly. Org Lett 2019; 21:5138-5142. [PMID: 31247759 DOI: 10.1021/acs.orglett.9b01737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here, we describe an Se-auxiliary mediated ligation protocol capable of rapid native chemical ligations at sterically hindered junctions, followed by in situ auxiliary cleavage under neutral conditions without affecting unprotected Cys residues. This auxiliary, which is prepared from phenyl acetaldehyde in one step, can be conveniently attached to the N-terminal region of a peptide via a reductive amination or coupling reaction. We demonstrated this methodology by synthesizing two protein samples.
Collapse
Affiliation(s)
- Hongli Yin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Dan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| |
Collapse
|
21
|
Dai Y, Weng J, George J, Chen H, Lin Q, Wang J, Royzen M, Zhang Q. Three-Component Protein Modification Using Mercaptobenzaldehyde Derivatives. Org Lett 2019; 21:3828-3833. [PMID: 31058515 DOI: 10.1021/acs.orglett.9b01294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A chemoselective primary amine modification strategy that enables the three-component, one-pot bioconjugation is described. The specifically designed, mercaptobenzaldehyde-based bifunctional linker achieves highly selective and robust amine labeling under biocompatible conditions. This linker demonstrates wide functional group tolerance and is simple to prepare, which allowed facile payload incorporation. Finally, our studies have shown that the introduction of linker does not impair the function of modified protein such as insulin.
Collapse
Affiliation(s)
- Yuanwei Dai
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Jiaping Weng
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Justin George
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Huan Chen
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Qishan Lin
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Jun Wang
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Maksim Royzen
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| | - Qiang Zhang
- Department of Chemistry , University at Albany, State University of New York , 1400 Washington Avenue , Albany , New York 12222 , United States
| |
Collapse
|
22
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Affiliation(s)
- Clement
M. Potel
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Simone Lemeer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
24
|
Marmelstein AM, Morgan JAM, Penkert M, Rogerson DT, Chin JW, Krause E, Fiedler D. Pyrophosphorylation via selective phosphoprotein derivatization. Chem Sci 2018; 9:5929-5936. [PMID: 30079207 PMCID: PMC6050540 DOI: 10.1039/c8sc01233d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/08/2018] [Indexed: 01/13/2023] Open
Abstract
An important step in elucidating the function of protein post-translational modifications (PTMs) is gaining access to site-specifically modified, homogeneous samples for biochemical characterization. Protein pyrophosphorylation is a poorly characterized PTM, and here a chemical approach to obtain pyrophosphoproteins is reported. Photo-labile phosphorimidazolide reagents were developed for selective pyrophosphorylation, affinity-capture, and release of pyrophosphoproteins. Kinetic analysis of the reaction revealed rate constants between 9.2 × 10-3 to 0.58 M-1 s-1, as well as a striking proclivity of the phosphorimidazolides to preferentially react with phosphate monoesters over other nucleophilic side chains. Besides enabling the characterization of pyrophosphorylation on protein function, this work highlights the utility of phosphoryl groups as handles for selective protein modification for a variety of applications, such as phosphoprotein bioconjugation and enrichment.
Collapse
Affiliation(s)
- Alan M Marmelstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
- Department of Chemistry , Princeton University , Washington Road , Princeton , New Jersey 08544 , USA
| | - Jeremy A M Morgan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
| | - Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
- Institut für Chemie , Humboldt Universität zu Berlin , Brook-Taylor-Str. 2 , 12489 Berlin , Germany
| | - Daniel T Rogerson
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , UK
| | - Eberhard Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie , Robert-Rössle Str. 10 , 13125 Berlin , Germany .
- Institut für Chemie , Humboldt Universität zu Berlin , Brook-Taylor-Str. 2 , 12489 Berlin , Germany
| |
Collapse
|
25
|
Smith NJ, Rohlfing K, Sawicki LA, Kharkar PM, Boyd SJ, Kloxin AM, Fox JM. Fast, irreversible modification of cysteines through strain releasing conjugate additions of cyclopropenyl ketones. Org Biomol Chem 2018. [PMID: 29521395 DOI: 10.1039/c8ob00166a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method of cysteine alkylation using cyclopropenyl ketones is described. Due to the significant release of cyclopropene strain energy, reactions of thiols with cyclopropenyl ketones are both fast and irreversible and give rise to stable conjugate addition adducts. The resulting cyclopropenyl ketones have a low molecular weight and allow for simple attachment of amides via N-hydroxysuccinimide (NHS)-esters. While cyclopropenyl ketones do display slow background reactivity toward water, labeling by thiols is much more rapid. The reaction of a cyclopropenyl ketone with glutathione (GSH) proceeds with a rate of 595 M-1 s-1 in PBS at pH 7.4, which is considerably faster than α-halocarbonyl labeling reagents, and competitive with maleimide/thiol couplings. The method has been demonstrated in protein conjugation, and an arylthiolate conjugate was shown to be stable upon prolonged incubation in either GSH or human plasma. Finally, cyclopropenyl ketones were used to create PEG-based hydrogels that are stable to prolonged incubation in a reducing environment.
Collapse
Affiliation(s)
- Natalee J Smith
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Katarina Rohlfing
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Lisa A Sawicki
- Departments of Chemical and Biomolecular Engineering and Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Prathamesh M Kharkar
- Departments of Chemical and Biomolecular Engineering and Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Samantha J Boyd
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - April M Kloxin
- Departments of Chemical and Biomolecular Engineering and Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Joseph M Fox
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
26
|
Hauser A, Penkert M, Hackenberger CPR. Chemical Approaches to Investigate Labile Peptide and Protein Phosphorylation. Acc Chem Res 2017; 50:1883-1893. [PMID: 28723107 DOI: 10.1021/acs.accounts.7b00170] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation is by far the most abundant and most studied post-translational modification (PTM). For a long time, phosphate monoesters of serine (pSer), threonine (pThr), and tyrosine (pTyr) have been considered as the only relevant forms of phosphorylation in organisms. Recently, several research groups have dedicated their efforts to the investigation of other, less characterized phosphoamino acids as naturally occurring PTMs. Such apparent peculiar phosphorylations include the phosphoramidates of histidine (pHis), arginine (pArg), and lysine (pLys), the phosphorothioate of cysteine (pCys), and the anhydrides of pyrophosphorylated serine (ppSer) and threonine (ppThr). Almost all of these phosphorylated amino acids show higher lability under physiological conditions than those of phosphate monoesters. Furthermore, they are prone to hydrolysis under acidic and sometimes basic conditions as well as at elevated temperatures, which renders their synthetic accessibility and proteomic analysis particularly challenging. In this Account, we illustrate recent chemical approaches to probe the occurrence and function of these labile phosphorylation events. Within these endeavors, the synthesis of site-selectively phosphorylated peptides, in particular in combination with chemoselective phosphorylation strategies, was crucial. With these well-defined standards in hand, the appropriate proteomic mass spectrometry-based analysis protocols for the characterization of labile phosphosites in biological samples could be developed. Another successful approach in this research field includes the design and synthesis of stable analogues of these labile PTMs, which were used for the generation of pHis- and pArg-specific antibodies for the detection and enrichment of endogenous phosphorylated samples. Finally, other selective enrichment techniques are described, which rely for instance on the unique chemical environment of a pyrophosphate or the selective interaction between a phosphoamino acid and its phosphatase. It is worth noting that many of those studies are still in their early stages, which is also reflected in the small number of identified phosphosites compared to that of phosphate monoesters. Thus, many challenges need to be mastered to fully understand the biological role of these poorly characterized and rather uncommon phosphorylations. Taken together, this overview exemplifies recent efforts in a flourishing field of functional proteomic analysis and furthermore manifests the power of modern peptide synthesis to address unmet questions in the life sciences.
Collapse
Affiliation(s)
- Anett Hauser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Martin Penkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, 13125 Berlin, Germany
- Institute
of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| |
Collapse
|
27
|
Piggott MJ, Attwood PV. Focus on O-phosphohydroxylysine, O-phosphohydroxyproline, N 1-phosphotryptophan and S-phosphocysteine. Amino Acids 2017; 49:1309-1323. [DOI: 10.1007/s00726-017-2446-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
28
|
Penkert M, Yates LM, Schümann M, Perlman D, Fiedler D, Krause E. Unambiguous Identification of Serine and Threonine Pyrophosphorylation Using Neutral-Loss-Triggered Electron-Transfer/Higher-Energy Collision Dissociation. Anal Chem 2017; 89:3672-3680. [DOI: 10.1021/acs.analchem.6b05095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Martin Penkert
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany
- Humboldt Universität zu Berlin, Department
of Chemistry, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Lisa M. Yates
- Princeton University, Department of Chemistry, Frick Chemistry Building, Washington
Road, Princeton, New Jersey 08544, United States
| | - Michael Schümann
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany
| | - David Perlman
- Princeton University, Department of Molecular Biology, 119 Lewis Thomas Laboratory, Washington
Road, Princeton, New Jersey 08544, United States
| | - Dorothea Fiedler
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany
- Humboldt Universität zu Berlin, Department
of Chemistry, Brook-Taylor-Straße
2, 12489 Berlin, Germany
| | - Eberhard Krause
- Leibniz Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125 Berlin, Germany
| |
Collapse
|
29
|
Marmelstein AM, Moreno J, Fiedler D. Chemical Approaches to Studying Labile Amino Acid Phosphorylation. Top Curr Chem (Cham) 2017; 375:22. [DOI: 10.1007/s41061-017-0111-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
|
30
|
Abstract
Phosphatases play key roles in normal physiology and diseases. Studying phosphatases has been both essential and challenging, and the application of conventional genetic and biochemical methods has led to crucial but still limited understanding of their mechanisms, substrates, and exclusive functions within highly intricate networks. With the advances in technologies such as cellular imaging and molecular and chemical biology in terms of sensitive tools and methods, the phosphatase field has thrived in the past years and has set new insights for cell signaling studies and for therapeutic development. In this review, we give an overview of the existing interdisciplinary tools for phosphatases, give examples on how they have been applied to increase our understanding of these enzymes, and suggest how they-and other tools yet barely used in the phosphatase field-might be adapted to address future questions and challenges.
Collapse
Affiliation(s)
- Sara Fahs
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Pablo Lujan
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| |
Collapse
|