1
|
Troyanovsky RB, Indra I, Troyanovsky SM. Characterization of early and late events of adherens junction assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583373. [PMID: 38496678 PMCID: PMC10942379 DOI: 10.1101/2024.03.04.583373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cadherins are transmembrane adhesion receptors. Cadherin ectodomains form adhesive 2D clusters through cooperative trans and cis interactions, whereas its intracellular region interacts with specific cytosolic proteins, termed catenins, to anchor the cadherin-catenin complex (CCC) to the actin cytoskeleton. How these two types of interactions are coordinated in the formation of specialized cell-cell adhesions, adherens junctions (AJ), remains unclear. We focus here on the role of the actin-binding domain of α-catenin (αABD) by showing that the interaction of αABD with actin generates actin-bound CCC oligomers (CCC/actin strands) incorporating up to six CCCs. The strands are primarily formed on the actin-rich cell protrusions. Once in cell-cell interface, the strands become involved in cadherin ectodomain clustering. Such combination of the extracellular and intracellular oligomerizations gives rise to the composite oligomers, trans CCC/actin clusters. To mature, these clusters then rearrange their actin filaments using several redundant pathways, two of which are characterized here: one depends on the α-catenin-associated protein, vinculin and the second one depends on the unstructured C-terminus of αABD. Thus, AJ assembly proceeds through spontaneous formation of trans CCC/actin clusters and their successive reorganization.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, IL 60614
| |
Collapse
|
2
|
Xu H, Wang J, Al‐Nusaif M, Ma H, Le W. CCL2 promotes metastasis and epithelial-mesenchymal transition of non-small cell lung cancer via PI3K/Akt/mTOR and autophagy pathways. Cell Prolif 2024; 57:e13560. [PMID: 37850256 PMCID: PMC10905333 DOI: 10.1111/cpr.13560] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
In non-small cell lung cancer (NSCLC), metastasis is the most common phenotype, and autophagy plays a vital role in its regulation. However, there are limited data on how autophagy-related genes and metastasis-related genes affect NSCLC progression. Our goal was to identify the genes that regulate autophagy and metastasis in NSCLC, and to assess the underlying mechanisms in this current study. RNA sequencing data from public databases were used to screen differentially expressed autophagy- and metastasis-associated genes. Enrichment analyses and immune correlations were conducted to identify hub genes and potential regulating pathways in NSCLC. In this study, we found that CCL2 expression was highly expressed in NSCLC tissues and high CCL2 level was correlated with strong infiltration in lung tissues from NSCLC patients. Overexpression of CCL2 can enhance the metastasis of NSCLC cells in nude mice. Furthermore, CCL2 activated the PI3K/Akt/mTOR signalling pathway axis, promoted epithelial-mesenchymal transition (EMT), and blocked the autophagic flux in NSCLC cells. Therefore, our results indicate that CCL2 promotes metastasis and EMT of NSCLC via PI3K/Akt/mTOR axis and autophagy signalling pathways. We believe that CCL2 could be a probable target for the diagnosis and therapeutics of NSCLC, and this study may expand our understanding of lung cancer.
Collapse
Affiliation(s)
- Hui Xu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jin Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Murad Al‐Nusaif
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Huipeng Ma
- College of Medical LaboratoryDalian Medical UniversityDalianChina
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Institute of Neurology, Sichuan Academy of Medical Science‐Sichuan Provincial HospitalMedical School of UESTCChengduChina
| |
Collapse
|
3
|
Martin Carli JF, Dzieciatkowska M, Hernandez TL, Monks J, McManaman JL. Comparative proteomic analysis of human milk fat globules and paired membranes and mouse milk fat globules identifies core cellular systems contributing to mammary lipid trafficking and secretion. Front Mol Biosci 2023; 10:1259047. [PMID: 38169886 PMCID: PMC10759240 DOI: 10.3389/fmolb.2023.1259047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Human milk delivers critical nutritional and immunological support to human infants. Milk fat globules (MFGs) and their associated membranes (MFGMs) contain the majority of milk lipids and many bioactive components that contribute to neonatal development and health, yet their compositions have not been fully defined, and the mechanisms responsible for formation of these structures remain incompletely understood. Methods: In this study, we used untargeted mass spectrometry to quantitatively profile the protein compositions of freshly obtained MFGs and their paired, physically separated MFGM fractions from 13 human milk samples. We also quantitatively profiled the MFG protein compositions of 9 pooled milk samples from 18 lactating mouse dams. Results: We identified 2,453 proteins and 2,795 proteins in the majority of human MFG and MFGM samples, respectively, and 1,577 proteins in mouse MFGs. Using paired analyses of protein abundance in MFGMs compared to MFGs (MFGM-MFG; 1% FDR), we identified 699 proteins that were more highly abundant in MFGMs (MFGM-enriched), and 201 proteins that were less abundant in MFGMs (cytoplasmic). MFGM-enriched proteins comprised membrane systems (apical plasma membrane and multiple vesicular membranes) hypothesized to be responsible for lipid and protein secretion and components of membrane transport and signaling systems. Cytoplasmic proteins included ribosomal and proteasomal systems. Comparing abundance between human and mouse MFGs, we found a positive correlation (R 2 = 0.44, p < 0.0001) in the relative abundances of 1,279 proteins that were found in common across species. Discussion: Comparative pathway enrichment analyses between human and mouse samples reveal similarities in membrane trafficking and signaling pathways involved in milk fat secretion and identify potentially novel immunological components of MFGs. Our results advance knowledge of the composition and relative quantities of proteins in human and mouse MFGs in greater detail, provide a quantitative profile of specifically enriched human MFGM proteins, and identify core cellular systems involved in milk lipid secretion.
Collapse
Affiliation(s)
- Jayne F. Martin Carli
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Teri L. Hernandez
- College of Nursing, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jenifer Monks
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James L. McManaman
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Cervantes-Villagrana RD, García-Jiménez I, Vázquez-Prado J. Guanine nucleotide exchange factors for Rho GTPases (RhoGEFs) as oncogenic effectors and strategic therapeutic targets in metastatic cancer. Cell Signal 2023; 109:110749. [PMID: 37290677 DOI: 10.1016/j.cellsig.2023.110749] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of βPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.
Collapse
|
5
|
Sri-Ranjan K, Sanchez-Alonso JL, Swiatlowska P, Rothery S, Novak P, Gerlach S, Koeninger D, Hoffmann B, Merkel R, Stevens MM, Sun SX, Gorelik J, Braga VMM. Intrinsic cell rheology drives junction maturation. Nat Commun 2022; 13:4832. [PMID: 35977954 PMCID: PMC9385638 DOI: 10.1038/s41467-022-32102-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/15/2022] [Indexed: 12/02/2022] Open
Abstract
A fundamental property of higher eukaryotes that underpins their evolutionary success is stable cell-cell cohesion. Yet, how intrinsic cell rheology and stiffness contributes to junction stabilization and maturation is poorly understood. We demonstrate that localized modulation of cell rheology governs the transition of a slack, undulated cell-cell contact (weak adhesion) to a mature, straight junction (optimal adhesion). Cell pairs confined on different geometries have heterogeneous elasticity maps and control their own intrinsic rheology co-ordinately. More compliant cell pairs grown on circles have slack contacts, while stiffer triangular cell pairs favour straight junctions with flanking contractile thin bundles. Counter-intuitively, straighter cell-cell contacts have reduced receptor density and less dynamic junctional actin, suggesting an unusual adaptive mechano-response to stabilize cell-cell adhesion. Our modelling informs that slack junctions arise from failure of circular cell pairs to increase their own intrinsic stiffness and resist the pressures from the neighbouring cell. The inability to form a straight junction can be reversed by increasing mechanical stress artificially on stiffer substrates. Our data inform on the minimal intrinsic rheology to generate a mature junction and provide a springboard towards understanding elements governing tissue-level mechanics.
Collapse
Affiliation(s)
- K Sri-Ranjan
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - J L Sanchez-Alonso
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - P Swiatlowska
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - S Rothery
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - P Novak
- School of Engineering and Materials Science, Queen Mary University, London, UK
| | - S Gerlach
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Julich, Germany
| | - D Koeninger
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Julich, Germany
| | - B Hoffmann
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Julich, Germany
| | - R Merkel
- Institute of Biological Information Processing, IBI-2: Mechanobiology, Julich, Germany
| | - M M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering Imperial College London, London, UK
| | - S X Sun
- Department of Mechanical Engineering and Institute of NanoBioTechnology, Johns Hopkins University, Baltimore Maryland, USA
| | - J Gorelik
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
6
|
Scott MA, Woolums AR, Swiderski CE, Perkins AD, Nanduri B. Genes and regulatory mechanisms associated with experimentally-induced bovine respiratory disease identified using supervised machine learning methodology. Sci Rep 2021; 11:22916. [PMID: 34824337 PMCID: PMC8616896 DOI: 10.1038/s41598-021-02343-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Bovine respiratory disease (BRD) is a multifactorial disease involving complex host immune interactions shaped by pathogenic agents and environmental factors. Advancements in RNA sequencing and associated analytical methods are improving our understanding of host response related to BRD pathophysiology. Supervised machine learning (ML) approaches present one such method for analyzing new and previously published transcriptome data to identify novel disease-associated genes and mechanisms. Our objective was to apply ML models to lung and immunological tissue datasets acquired from previous clinical BRD experiments to identify genes that classify disease with high accuracy. Raw mRNA sequencing reads from 151 bovine datasets (n = 123 BRD, n = 28 control) were downloaded from NCBI-GEO. Quality filtered reads were assembled in a HISAT2/Stringtie2 pipeline. Raw gene counts for ML analysis were normalized, transformed, and analyzed with MLSeq, utilizing six ML models. Cross-validation parameters (fivefold, repeated 10 times) were applied to 70% of the compiled datasets for ML model training and parameter tuning; optimized ML models were tested with the remaining 30%. Downstream analysis of significant genes identified by the top ML models, based on classification accuracy for each etiological association, was performed within WebGestalt and Reactome (FDR ≤ 0.05). Nearest shrunken centroid and Poisson linear discriminant analysis with power transformation models identified 154 and 195 significant genes for IBR and BRSV, respectively; from these genes, the two ML models discriminated IBR and BRSV with 100% accuracy compared to sham controls. Significant genes classified by the top ML models in IBR (154) and BRSV (195), but not BVDV (74), were related to type I interferon production and IL-8 secretion, specifically in lymphoid tissue and not homogenized lung tissue. Genes identified in Mannheimia haemolytica infections (97) were involved in activating classical and alternative pathways of complement. Novel findings, including expression of genes related to reduced mitochondrial oxygenation and ATP synthesis in consolidated lung tissue, were discovered. Genes identified in each analysis represent distinct genomic events relevant to understanding and predicting clinical BRD. Our analysis demonstrates the utility of ML with published datasets for discovering functional information to support the prediction and understanding of clinical BRD.
Collapse
Affiliation(s)
- Matthew A Scott
- Veterinary Education, Research, and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX, USA.
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Cyprianna E Swiderski
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Andy D Perkins
- Department of Computer Science and Engineering, Mississippi State University, Mississippi State, MS, USA
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
7
|
Ayagama T, Bose SJ, Capel RA, Priestman DA, Berridge G, Fischer R, Galione A, Platt FM, Kramer H, Burton RA. A modified density gradient proteomic-based method to analyze endolysosomal proteins in cardiac tissue. iScience 2021; 24:102949. [PMID: 34466782 PMCID: PMC8384914 DOI: 10.1016/j.isci.2021.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/04/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
The importance of lysosomes in cardiac physiology and pathology is well established, and evidence for roles in calcium signaling is emerging. We describe a label-free proteomics method suitable for small cardiac tissue biopsies based on density-separated fractionation, which allows study of endolysosomal (EL) proteins. Density gradient fractions corresponding to tissue lysate; sarcoplasmic reticulum (SR), mitochondria (Mito) (1.3 g/mL); and EL with negligible contamination from SR or Mito (1.04 g/mL) were analyzed using Western blot, enzyme activity assay, and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis (adapted discontinuous Percoll and sucrose differential density gradient). Kyoto Encyclopedia of Genes and Genomes, Reactome, Panther, and Gene Ontology pathway analysis showed good coverage of RAB proteins and lysosomal cathepsins (including cardiac-specific cathepsin D) in the purified EL fraction. Significant EL proteins recovered included catalytic activity proteins. We thus present a comprehensive protocol and data set of guinea pig atrial EL organelle proteomics using techniques also applicable for non-cardiac tissue.
Collapse
Affiliation(s)
- Thamali Ayagama
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Samuel J. Bose
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Rebecca A. Capel
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | | | - Georgina Berridge
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ UK
| | - Antony Galione
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Frances M. Platt
- University of Oxford, Department of Pharmacology, Oxford, OX1 3QT UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, London, W12 0NN UK
| | | |
Collapse
|
8
|
Sánchez-Reyes A, Bretón-Deval L, Mangelson H, Salinas-Peralta I, Sanchez-Flores A. Hi-C deconvolution of a textile dye-related microbiome reveals novel taxonomic landscapes and links phenotypic potential to individual genomes. Int Microbiol 2021; 25:99-110. [PMID: 34269948 DOI: 10.1007/s10123-021-00189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
Microbial biodiversity is represented by a variety of genomic landscapes adapted to dissimilar environments on Earth. These genomic landscapes contain functional signatures connected with the community phenotypes. Here, we assess the genomic microbial diversity landscape at a high-resolution level of a polluted river-associated microbiome (Morelos, México), cultured in a medium enriched with anthraquinone Deep Blue 35 dye. We explore the resultant textile dye microbiome to infer links between predicted biodegradative functions, and metagenomic and metabolic potential, especially using the information obtained from individual reconstructed genomes. By using Hi-C proximity-ligation deconvolution method, we deconvoluted 97 genome composites (80% potentially novel species). The main taxonomic determinants were Methanobacterium, Clostridium, and Cupriavidus genera constituting 50, 22, and 11% of the total community profile. Also, we observed a rare biosphere of novel taxa without clear taxonomic standing. Removal of 50% chemical oxygen demand with 23% decolorization was observed after 30 days of dye enrichment. Genes related to catalase-peroxidase, polyphenol oxidase, and laccase enzymes were predicted as associated with textile dye biodegradation phenotype under our study conditions, highlighting the potential of metagenome-wide analysis to predict biodegradative determinants. This study prompts high-resolution screening of individual genomes within textile dye river sediment microbiomes or complex communities under environmental pressures.
Collapse
Affiliation(s)
- Ayixon Sánchez-Reyes
- Cátedras Conacyt-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, México.
| | - Luz Bretón-Deval
- Cátedras Conacyt-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, México
| | | | | | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
9
|
Kostrzewska-Poczekaj M, Byzia E, Soloch N, Jarmuz-Szymczak M, Janiszewska J, Kowal E, Paczkowska J, Kiwerska K, Wierzbicka M, Bartochowska A, Ustaszewski A, Greczka G, Grenman R, Szyfter K, Giefing M. DIAPH2 alterations increase cellular motility and may contribute to the metastatic potential of laryngeal squamous cell carcinoma. Carcinogenesis 2020; 40:1251-1259. [PMID: 30793164 DOI: 10.1093/carcin/bgz035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Low 5-year survival rate in laryngeal squamous cell carcinoma (LSCC) is to large extent attributable to high rate of recurrences and metastases. Despite the importance of the latter process, its complex genetic background remains not fully understood. Recently, we identified two metastasis-related candidate genes, DIAPH2 and DIAPH3 to be frequently targeted by hemizygous/homozygous deletions, respectively, in LSCC cell lines. They physiologically regulate such processes as cell movement and adhesion, hence we found it as a rationale, to study if tumor LSCC specimens harbor mutations of these genes and whether the mutations are associated with metastasizing tumors. As a proof of concept, we sequenced both genes in five LSCC cell lines derived from lymph node metastases assuming there the highest probability of finding alterations. Indeed, we identified one hemizygous deletion (c.3116_3240del125) in DIAPH2 targeting the FH2 domain. Moreover, we analyzed 95 LSCC tumors (53 N0 and 42 N+) using the Illumina platform and identified three heterozygous single nucleotide variants in DIAPH2 targeting conserved domains exclusively in N+ tumors. By combining these results with cBioPortal data we showed significant enrichment of DIAPH2 mutations (P = 0.036) in N+ tumors. To demonstrate the consequences of DIAPH2 inactivation, CRISPR/Cas9 editing was used to obtain a heterozygous DIAPH2+/- mutant HEK-293T cell line. Importantly, the edited line shows a shift from 'proliferation' to 'migration' phenotype typically observed in metastasizing cells. In conclusion, we report that DIAPH2 alterations are present primarily in metastasizing specimens of LSCC and suggest that they may contribute to the metastatic potential of the tumor.
Collapse
Affiliation(s)
| | - E Byzia
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - N Soloch
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - M Jarmuz-Szymczak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - J Janiszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - E Kowal
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - J Paczkowska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - K Kiwerska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Tumor Pathology, Greater Poland Cancer Center, Poznan, Poland
| | - M Wierzbicka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - A Bartochowska
- Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - A Ustaszewski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - G Greczka
- Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - R Grenman
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Central Hospital and Turku University, Turku, Finland
| | - K Szyfter
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - M Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
10
|
Brezovjakova H, Tomlinson C, Mohd Naim N, Swiatlowska P, Erasmus JC, Huveneers S, Gorelik J, Bruche S, Braga VM. Junction Mapper is a novel computer vision tool to decipher cell-cell contact phenotypes. eLife 2019; 8:45413. [PMID: 31793877 PMCID: PMC7034980 DOI: 10.7554/elife.45413] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Stable cell–cell contacts underpin tissue architecture and organization. Quantification of junctions of mammalian epithelia requires laborious manual measurements that are a major roadblock for mechanistic studies. We designed Junction Mapper as an open access, semi-automated software that defines the status of adhesiveness via the simultaneous measurement of pre-defined parameters at cell–cell contacts. It identifies contacting interfaces and corners with minimal user input and quantifies length, area and intensity of junction markers. Its ability to measure fragmented junctions is unique. Importantly, junctions that considerably deviate from the contiguous staining and straight contact phenotype seen in epithelia are also successfully quantified (i.e. cardiomyocytes or endothelia). Distinct phenotypes of junction disruption can be clearly differentiated among various oncogenes, depletion of actin regulators or stimulation with other agents. Junction Mapper is thus a powerful, unbiased and highly applicable software for profiling cell–cell adhesion phenotypes and facilitate studies on junction dynamics in health and disease.
Collapse
Affiliation(s)
- Helena Brezovjakova
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Chris Tomlinson
- Bioinformatics Data Science Group, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Noor Mohd Naim
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Pamela Swiatlowska
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Jennifer C Erasmus
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Stephan Huveneers
- Department Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Julia Gorelik
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Susann Bruche
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Vania Mm Braga
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| |
Collapse
|
11
|
Braga V. Signaling by Small GTPases at Cell-Cell Junctions: Protein Interactions Building Control and Networks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028746. [PMID: 28893858 DOI: 10.1101/cshperspect.a028746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of interesting reports highlight the intricate network of signaling proteins that coordinate formation and maintenance of cell-cell contacts. We have much yet to learn about how the in vitro binding data is translated into protein association inside the cells and whether such interaction modulates the signaling properties of the protein. What emerges from recent studies is the importance to carefully consider small GTPase activation in the context of where its activation occurs, which upstream regulators are involved in the activation/inactivation cycle and the GTPase interacting partners that determine the intracellular niche and extent of signaling. Data discussed here unravel unparalleled cooperation and coordination of functions among GTPases and their regulators in supporting strong adhesion between cells.
Collapse
Affiliation(s)
- Vania Braga
- Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Zilberman Y, Abrams J, Anderson DC, Nance J. Cdc42 regulates junctional actin but not cell polarization in the Caenorhabditis elegans epidermis. J Cell Biol 2017; 216:3729-3744. [PMID: 28903999 PMCID: PMC5674880 DOI: 10.1083/jcb.201611061] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 07/18/2017] [Accepted: 08/15/2017] [Indexed: 12/27/2022] Open
Abstract
During morphogenesis, adherens junctions (AJs) remodel to allow changes in cell shape and position while preserving adhesion. Here, we examine the function of Rho guanosine triphosphatase CDC-42 in AJ formation and regulation during Caenorhabditis elegans embryo elongation, a process driven by asymmetric epidermal cell shape changes. cdc-42 mutant embryos arrest during elongation with epidermal ruptures. Unexpectedly, we find using time-lapse fluorescence imaging that cdc-42 is not required for epidermal cell polarization or junction assembly, but rather is needed for proper junctional actin regulation during elongation. We show that the RhoGAP PAC-1/ARHGAP21 inhibits CDC-42 activity at AJs, and loss of PAC-1 or the interacting linker protein PICC-1/CCDC85A-C blocks elongation in embryos with compromised AJ function. pac-1 embryos exhibit dynamic accumulations of junctional F-actin and an increase in AJ protein levels. Our findings identify a previously unrecognized molecular mechanism for inhibiting junctional CDC-42 to control actin organization and AJ protein levels during epithelial morphogenesis.
Collapse
Affiliation(s)
- Yuliya Zilberman
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Joshua Abrams
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Dorian C Anderson
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
| | - Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY
- Department of Cell Biology, New York University School of Medicine, New York, NY
| |
Collapse
|
13
|
Moya-García A, Adeyelu T, Kruger FA, Dawson NL, Lees JG, Overington JP, Orengo C, Ranea JAG. Structural and Functional View of Polypharmacology. Sci Rep 2017; 7:10102. [PMID: 28860623 PMCID: PMC5579063 DOI: 10.1038/s41598-017-10012-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Protein domains mediate drug-protein interactions and this principle can guide the design of multi-target drugs i.e. polypharmacology. In this study, we associate multi-target drugs with CATH functional families through the overrepresentation of targets of those drugs in CATH functional families. Thus, we identify CATH functional families that are currently enriched in drugs (druggable CATH functional families) and we use the network properties of these druggable protein families to analyse their association with drug side effects. Analysis of selected druggable CATH functional families, enriched in drug targets, show that relatives exhibit highly conserved drug binding sites. Furthermore, relatives within druggable CATH functional families occupy central positions in a human protein functional network, cluster together forming network neighbourhoods and are less likely to be within proteins associated with drug side effects. Our results demonstrate that CATH functional families can be used to identify drug-target interactions, opening a new research direction in target identification.
Collapse
Affiliation(s)
- Aurelio Moya-García
- University College London, Institute of Structural and Molecular Biology, London, UK.
- Department of Molecular Biology and Biochemistry, Universidad de Malaga, 29071, Málaga Spain, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain.
| | - Tolulope Adeyelu
- University College London, Institute of Structural and Molecular Biology, London, UK
| | - Felix A Kruger
- European Molecular Laboratory - European Bioinformatics Institute, Hinxton, UK
- BenevolentAI, Churchway 40, NW1 1LW, London, UK
| | - Natalie L Dawson
- University College London, Institute of Structural and Molecular Biology, London, UK
| | - Jon G Lees
- University College London, Institute of Structural and Molecular Biology, London, UK
| | - John P Overington
- European Molecular Laboratory - European Bioinformatics Institute, Hinxton, UK
- Medicines Discovery Catapult, Mereside, Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Christine Orengo
- University College London, Institute of Structural and Molecular Biology, London, UK
| | - Juan A G Ranea
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29071, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| |
Collapse
|
14
|
McCormack JJ, Bruche S, Ouadda ABD, Ishii H, Lu H, Garcia-Cattaneo A, Chávez-Olórtegui C, Lamarche-Vane N, Braga VMM. The scaffold protein Ajuba suppresses CdGAP activity in epithelia to maintain stable cell-cell contacts. Sci Rep 2017; 7:9249. [PMID: 28835688 PMCID: PMC5569031 DOI: 10.1038/s41598-017-09024-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/20/2017] [Indexed: 12/28/2022] Open
Abstract
Levels of active Rac1 at epithelial junctions are partially modulated via interaction with Ajuba, an actin binding and scaffolding protein. Here we demonstrate that Ajuba interacts with the Cdc42 GTPase activating protein CdGAP, a GAP for Rac1 and Cdc42, at cell-cell contacts. CdGAP recruitment to junctions does not require Ajuba; rather Ajuba seems to control CdGAP residence at sites of cell-cell adhesion. CdGAP expression potently perturbs junctions and Ajuba binding inhibits CdGAP activity. Ajuba interacts with Rac1 and CdGAP via distinct domains and can potentially bring them in close proximity at junctions to facilitate activity regulation. Functionally, CdGAP-Ajuba interaction maintains junctional integrity in homeostasis and diseases: (i) gain-of-function CdGAP mutants found in Adams-Oliver Syndrome patients strongly destabilize cell-cell contacts and (ii) CdGAP mRNA levels are inversely correlated with E-cadherin protein expression in different cancers. We present conceptual insights on how Ajuba can integrate CdGAP binding and inactivation with the spatio-temporal regulation of Rac1 activity at junctions. Ajuba provides a novel mechanism due to its ability to bind to CdGAP and Rac1 via distinct domains and influence the activation status of both proteins. This functional interplay may contribute towards conserving the epithelial tissue architecture at steady-state and in different pathologies.
Collapse
Affiliation(s)
- J J McCormack
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - S Bruche
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - A B D Ouadda
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - H Ishii
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - H Lu
- Cancer Division, Faculty of Medicine, Imperial College London, SW7 2AZ, London, UK
| | - A Garcia-Cattaneo
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK
| | - C Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - N Lamarche-Vane
- Cancer Research Program, Research Institute-McGill University Hospital Centre and Department of Anatomy and Cell Biology, McGill University, H4A 3J1, Montreal, Quebec, Canada
| | - V M M Braga
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, SW7 2AZ, London, UK.
| |
Collapse
|