1
|
Chen Y, Ishiwari F, Fukui T, Kajitani T, Liu H, Liang X, Nakajima K, Tokita M, Fukushima T. Overcoming the entropy of polymer chains by making a plane with terminal groups: a thermoplastic PDMS with a long-range 1D structural order. Chem Sci 2023; 14:2431-2440. [PMID: 36873840 PMCID: PMC9977418 DOI: 10.1039/d2sc05491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
Due to its unique physical and chemical properties, polydimethylsiloxane (PDMS) is widely used in many applications, in which covalent cross-linking is commonly used to cure the fluidic polymer. The formation of a non-covalent network achieved through the incorporation of terminal groups that exhibit strong intermolecular interactions has also been reported to improve the mechanical properties of PDMS. Through the design of a terminal group capable of two-dimensional (2D) assembly, rather than the generally used multiple hydrogen bonding motifs, we have recently demonstrated an approach for inducing long-range structural ordering of PDMS, resulting in a dramatic change in the polymer from a fluid to a viscous solid. Here we present an even more surprising terminal-group effect: simply replacing a hydrogen with a methoxy group leads to extraordinary enhancement of the mechanical properties, giving rise to a thermoplastic PDMS material without covalent cross-linking. This finding would update the general notion that less polar and smaller terminal groups barely affect polymer properties. Based on a detailed study of the thermal, structural, morphological and rheological properties of the terminal-functionalized PDMS, we revealed that 2D assembly of the terminal groups results in networks of PDMS chains, which are arranged as domains with long-range one-dimensional (1D) periodic order, thereby increasing the storage modulus of the PDMS to exceed its loss modulus. Upon heating, the 1D periodic order is lost at around 120 °C, while the 2D assembly is maintained up to ∼160 °C. The 2D and 1D structures are recovered in sequence upon cooling. Due to the thermally reversible, stepwise structural disruption/formation as well as the lack of covalent cross-linking, the terminal-functionalized PDMS shows thermoplastic behavior and self-healing properties. The terminal group presented herein, which can form a 'plane', might also drive other polymers to assemble into a periodically ordered network structure, thereby allowing for significant modulation of their mechanical properties.
Collapse
Affiliation(s)
- Yugen Chen
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Tomoya Fukui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Haonan Liu
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Xiaobin Liang
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masatoshi Tokita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
2
|
Liu W, Lei Z, Yang R, Xing W, Tao P, Shang W, Fu B, Song C, Deng T. Facile Approach to Enhance Electrical and Thermal Performance of Conducting Polymer PEDOT:PSS Films via Hot Pressing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10605-10615. [PMID: 35179373 DOI: 10.1021/acsami.1c19397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper studies the impact of hot pressing on the electrical and thermal performance of thick (thickness >5 μm) conducting polymer poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films after acid treatment. Thick conducting polymer films usually exhibit low electrical and thermal conductivities similar to bulk polymer because charge and heat carriers are easily scattered by the irregular arrangement of crystalline domains inside the polymer. In this work, the in-plane electrical conductivity of thick hot-pressed PEDOT:PSS film exceeded 1500 S/cm, and 50% enhancement was obtained in comparison with its non-hot-pressed counterparts. Its in-plane thermal conductivity reached as high as 1.11 W/mK (improved by almost 100% compared to acid-treated PEDOT:PSS films), which is comparable to that of some commercial thermal pads. Such electrical and thermal enhancement via the hot-pressing process is attributed to the optimized morphology and microstructures, which provide short paths for thermal and electrical transportation. We have also demonstrated that the hot-pressed PEDOT:PSS films could be potentially utilized as a flexible conductor and heat spreader for application in flexible electronics and thermal management, respectively. This study not only offers a new insight into the process-property relationship for conducting polymers but also further enables the use of PEDOT:PSS films with simultaneously improved electrical and thermal performance in practical applications, such as thermal management for organic electrodes in batteries, flexible electronics, soft robotics, and bioelectronics.
Collapse
Affiliation(s)
- Wendong Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Materials Genome Initiative Center, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| | - Zhihui Lei
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| | - Rui Yang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| | - Wenkui Xing
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| | - Peng Tao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| | - Wen Shang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| | - Benwei Fu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| | - Chengyi Song
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Materials Genome Initiative Center, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| | - Tao Deng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Materials Genome Initiative Center, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Kumar A, Banerjee R, Zangrando E, Mukherjee PS. Solvent and Counteranion Assisted Dynamic Self-Assembly of Molecular Triangles and Tetrahedral Cages. Inorg Chem 2022; 61:2368-2377. [PMID: 35029966 DOI: 10.1021/acs.inorgchem.1c03797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembly of naked PdII ions separately with newly designed bis(3-pyridyl)benzothiadiazole (L1) and bis(3-pyridyl)thiazolo[5,4-d]thiazole (L2) donors separately, under varying experimental conditions, yielded Pd4L8 (L= L1 or L2) tetrahedral cages and their homologous Pd3L6 (L= L1 or L2) double-walled triangular macrocycles. The resulting assemblies exhibited solvent, temperature, and counteranion induced dynamic equilibrium. Treatment of L1 with Pd(BF4)2 in acetonitrile (ACN) resulted in selective formation of a tetrahedral cage [Pd4(L1)8](BF4)8 (1a), which is in dynamic equilibrium with its homologue triangle [Pd3(L1)6](BF4)6 (2a) in dimethyl sulfoxide (DMSO). On the other hand, similar self-assembly using L2 instead of L1 yielded an equilibrium mixture of tetrahedral cage [Pd4(L2)8](BF4)8 (3a) and triangle [Pd3(L2)6](BF4)6 (4a) forms in both ACN and DMSO. The assembles were characterized by multinuclear NMR and ESI-MS while the structure of the tetrahedral cage (1a) was determined by single crystal X-ray diffraction. Existence of a dynamic equilibrium between the assemblies in solution has been investigated via variable temperature 1H NMR. The equilibrium constant K = ([Pd4L8]3/[Pd3L6]4) was calculated at each experimental temperature and fitted with the Van't Hoff equation to determine the standard enthalpy (ΔH°) and entropy (ΔS°) associated with the interconversion of the double-walled triangle to tetrahedral cage. The thermodynamic feasibility of structural interconversion was analyzed from the change in ΔG°, which suggests favorable conversion of Pd3L6 triangle to Pd4L8 cage at elevated temperature for L1 in DMSO and L2 in ACN. Interestingly, similar self-assembly reactions of L1 and L2 with Pd(NO3)2 instead of Pd(BF4)2 resulted in selective formation of a tetrahedral cage [Pd4(L1)8](NO3)8 (1b) and double-walled triangle [Pd3(L2)6](NO3)6 (4b), respectively.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ranit Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Ishiwari F, Kawahara S, Kajitani T, Fukushima T. Structure-preserving Solid-state Thermal Huisgen Cycloaddition Polymerization of a Self-assembled Triptycene-based AB3-type Monomer. CHEM LETT 2021. [DOI: 10.1246/cl.210476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shintaro Kawahara
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
5
|
Kumar A, Saha R, Mukherjee PS. Self-assembled metallasupramolecular cages towards light harvesting systems for oxidative cyclization. Chem Sci 2021; 12:5319-5329. [PMID: 34163765 PMCID: PMC8179592 DOI: 10.1039/d1sc00097g] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Designing artificial light harvesting systems with the ability to utilize the output energy for fruitful application in aqueous medium is an intriguing topic for the development of clean and sustainable energy. We report here facile synthesis of three prismatic molecular cages as imminent supramolecular optoelectronic materials via two-component coordination-driven self-assembly of a new tetra-imidazole donor (L) in combination with 180°/120° di-platinum(ii) acceptors. Self-assembly of 180° trans-Pt(ii) acceptors A1 and A2 with L leads to the formation of cages Pt4 L 2(1a) and Pt8 L 2(2a) respectively, while 120°-Pt(ii) acceptor A3 with L gives the Pt8 L 2(3a) metallacage. PF6 - analogues (1b, 2b and 3b) of the metallacages possess a high molar extinction coefficient and large Stokes shift. 1b-3b are weakly emissive in dilute solution but showed aggregation induced emission (AIE) in a water/MeCN mixture as well as in the solid state. AIE active 2b and 3b in aqueous (90% water/MeCN mixture) medium act as donors for fabricating artificial light harvesting systems via Förster resonance energy transfer (FRET) with organic dye rhodamine-B (RhB) with high energy efficiency and good antenna effect. The metallacages 2b and 3b represent an interesting platform to fabricate new generation supramolecular aqueous light harvesting systems with high antenna effect. Finally, the harvested energy of the LHSs (2b + RhB) and (3b + RhB) was utilized successfully for efficient visible light induced photo-oxidative cross coupling cyclization of N,N-dimethylaniline (4) with a series of N-alkyl/aryl maleimides (5) in aqueous acetonitrile with dramatic enhancement in yields compared to the reactions with RhB or cages alone.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
6
|
Chen J, Xu T, Zhao W, Ma LL, Chen D, Lu YQ. Photoresponsive thin films of well-synthesized azobenzene side-chain liquid crystalline polynorbornenes as command surface for patterned graphic writing. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Influence of different aligning surfaces on the morphology of dichroic squaraine films. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Chen Z, Chan MHY, Yam VWW. Stimuli-Responsive Two-Dimensional Supramolecular Polymers Based on Trinuclear Platinum(II) Scaffolds: Reversible Modulation of Photoluminescence, Cavity Size, and Water Permeability. J Am Chem Soc 2020; 142:16471-16478. [PMID: 32909749 DOI: 10.1021/jacs.0c07969] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report the first two-dimensional (2D) supramolecular polymer, which has varying structure and function arising from the perturbation of noncovalent metal···metal interactions in response to acid-base stimuli. This 2D assembly possesses a positively charged, honeycomb-like nanostructure consisting of trinuclear alkynylplatinum(II) terpyridine complexes appended with acid-sensitive dimethylamino groups. Upon addition of acids and bases, reversible switching mediated by protonation and deprotonation of dimethylamino and dimethylammonium moieties intrinsically alters the positive charge density of the constituent cationic units, which causes interior cavities to adaptively adjust their size, accompanied by drastic photoluminescence changes. When water molecules pass through the membranes obtained from 2D supramolecular polymers, the permeating flux can also be tuned by the pH values of the buffer media. This work paves the way toward supramolecularly engineered 2D smart materials with stimuli-responsive properties.
Collapse
Affiliation(s)
- Zhen Chen
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| |
Collapse
|
9
|
Dhiman S, Ghosh R, Sarkar S, George SJ. Controlled synthesis of organic two-dimensional nanostructures via reaction-driven, cooperative supramolecular polymerization. Chem Sci 2020; 11:12701-12709. [PMID: 34094465 PMCID: PMC8163148 DOI: 10.1039/d0sc02670k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/16/2020] [Indexed: 01/26/2023] Open
Abstract
The bottom-up approach of supramolecular polymerization is an effective synthetic method for functional organic nanostructures. However, the uncontrolled growth and polydisperse structural outcome often lead to low functional efficiency. Thus, precise control over the structural characteristics of supramolecular polymers is the current scientific hurdle. Research so far has tended to focus on systems with inherent kinetic control by the presence of metastable state monomers either through conformational molecular design or by exploring pathway complexity. The need of the hour is to create generic strategies for dormant states of monomers that can be extended to different molecules and various structural organizations and dimensions. Here we venture to demonstrate chemical reaction-driven cooperative supramolecular polymerization as an alternative strategy for the controlled synthesis of organic two-dimensional nanostructures. In our approach, the dynamic imine bond is exploited to convert a non-assembling dormant monomer to an activated amphiphilic structure in a kinetically controlled manner. The chemical reaction governed retarded nucleation-elongation growth provides control over dispersity and size.
Collapse
Affiliation(s)
- Shikha Dhiman
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre of Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Rita Ghosh
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre of Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Souvik Sarkar
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre of Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Subi J George
- Supramolecular Chemistry Laboratory, New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre of Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| |
Collapse
|
10
|
Jiang XQ, Zhao RY, Chang WY, Yin DX, Guo YC, Wang W, Liang DH, Yang S, Shi AC, Chen EQ. Highly Ordered Sub-10 nm Patterns Based on Multichain Columns of Side-Chain Liquid Crystalline Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | | |
Collapse
|
11
|
Abstract
Photoresponsive polymers with multi-azobenzene groups are reviewed and their potential applications in photoactuation, photo-patterning, and photoinduced birefringence are introduced.
Collapse
Affiliation(s)
- Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| | - Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| | - Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| | - Guofeng Xu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry
- Hefei National Laboratory for Physical Sciences at the Microscale
- Anhui Key Laboratory of Optoelectronic Science and Technology
- Department of Polymer Science and Engineering
- University of Science and Technology of China
| |
Collapse
|
12
|
Ishiwari F, Shoji Y, Fukushima T. Supramolecular scaffolds enabling the controlled assembly of functional molecular units. Chem Sci 2018; 9:2028-2041. [PMID: 29719683 PMCID: PMC5896469 DOI: 10.1039/c7sc04340f] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
To assemble functional molecular units into a desired structure while controlling positional and orientational order is a key technology for the development of high-performance organic materials that exhibit electronic, optoelectronic, biological and even dynamic functions. For this purpose, we cannot rely simply on the inherent self-assembly properties of the target functional molecular units, since it is difficult to predict, based solely on the molecular structure, what structure will be achieved upon assembly. To address this issue, it would be useful to employ molecular building blocks with self-assembly structures that can be clearly predicted and defined, to make target molecular units assemble into a desired structure. To date, various motifs of molecular assemblies, polymers, discrete and/or three-dimensional metal-organic complexes, nanoparticles and metal/metal oxide substrates have been developed to create materials with particular structures and dimensionalities. In this perspective, we define such assembly motifs as "supramolecular scaffolds". The structure of supramolecular scaffolds can be classified in terms of dimensionality, and they range in size from nano- to macroscopic scales. Functional molecular units, when attached to supramolecular scaffolds either covalently or non-covalently, can be assembled into specific structures, thus enabling the exploration of new properties, which cannot be achieved with the target molecular units alone. Through the classification and overview of reported examples, we shed new light on supramolecular scaffolds for the rational design of organic and polymeric materials.
Collapse
Affiliation(s)
- Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science , Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan .
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science , Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan .
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science , Institute of Innovative Research , Tokyo Institute of Technology , 4259 Nagatsuta, Midori-ku , Yokohama 226-8503 , Japan .
| |
Collapse
|
13
|
Liu C, Kubo K, Wang E, Han KS, Yang F, Chen G, Escobedo FA, Coates GW, Chen P. Single polymer growth dynamics. Science 2017; 358:352-355. [DOI: 10.1126/science.aan6837] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/11/2017] [Indexed: 11/02/2022]
|
14
|
Nickmans K, Bögels GM, Sánchez-Somolinos C, Murphy JN, Leclère P, Voets IK, Schenning APHJ. 3D Orientational Control in Self-Assembled Thin Films with Sub-5 nm Features by Light. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701043. [PMID: 28736935 DOI: 10.1002/smll.201701043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/01/2017] [Indexed: 05/21/2023]
Abstract
While self-assembled molecular building blocks could lead to many next-generation functional organic nanomaterials, control over the thin-film morphologies to yield monolithic sub-5 nm patterns with 3D orientational control at macroscopic length scales remains a grand challenge. A series of photoresponsive hybrid oligo(dimethylsiloxane) liquid crystals that form periodic cylindrical nanostructures with periodicities between 3.8 and 5.1 nm is studied. The liquid crystals can be aligned in-plane by exposure to actinic linearly polarized light and out-of-plane by exposure to actinic unpolarized light. The photoalignment is most efficient when performed just under the clearing point of the liquid crystal, at which the cylindrical nanostructures are reoriented within minutes. These results allow the generation of highly ordered sub-5 nm patterns in thin films at macroscopic length scales, with control over the orientation in a noncontact fashion.
Collapse
Affiliation(s)
- Koen Nickmans
- Laboratory of Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Gerardus M Bögels
- Laboratory of Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Carlos Sánchez-Somolinos
- Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Jeffrey N Murphy
- Laboratory of Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Philippe Leclère
- Laboratory for Chemistry of Novel Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, B 7000, Mons, Belgium
| | - Ilja K Voets
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands
| | - Albertus P H J Schenning
- Laboratory of Functional Organic Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600, MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands
| |
Collapse
|