1
|
Ryu SH, Kim S, Lee H, Choi JH, Jeong H. Robust palladium oxide nano-cluster catalysts using atomic ions and strong interactions for high-performance methane oxidation. Nat Commun 2024; 15:8348. [PMID: 39333084 PMCID: PMC11436890 DOI: 10.1038/s41467-024-52698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Optimizing metal catalyst structures to achieve desired states is vital for efficient surface reactions, yet remains challenging due to the lack of well-defined precursor materials and weak metal-support interaction. Palladium-based catalysts, when not properly tailored for complete methane oxidation exhibit insufficient performance. Herein, we fabricate Pd oxide nano-clusters supported on SSZ-13 using atomic ions with strong metal-support interaction (SMSI). Steam treatment of Pd/SSZ-13 transforms Pd particles into ions and induces SMSI. Subsequently, CO reduction and O2 oxidation yield mildly sintered Pd oxide nano-clusters firmly anchored on extra-framework Alpenta sites of SSZ-13, facilitating superior activity. The robustness from SMSI prevents irreversible deactivation, and water-resistance by complete dehydration suppresses reversible degradation in wet conditions. This catalyst exhibits high performance in bench-scale reactions using monolith catalysts, ensuring applicability for industrial methane abatement. The results demonstrate that sequential treatment to Pd/SSZ-13 offers a promising approach for tailoring metal structures to enable high-performance methane oxidation.
Collapse
Affiliation(s)
- Seung-Hee Ryu
- Nano Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
- Department of Materials Science and Engineering, Pukyong National University, Busan, Republic of Korea
| | - Seungeun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Joon-Hwan Choi
- Nano Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea
| | - Hojin Jeong
- Nano Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, Republic of Korea.
| |
Collapse
|
2
|
Verma R, Singhvi C, Venkatesh A, Polshettiwar V. Defects tune the acidic strength of amorphous aluminosilicates. Nat Commun 2024; 15:6899. [PMID: 39134554 PMCID: PMC11319355 DOI: 10.1038/s41467-024-51233-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Crystalline zeolites have high acidity but limited utility due to microporosity, whereas mesoporous amorphous aluminosilicates offer better porosity but lack sufficient acidity. In this work, we investigated defect engineering to fine-tune the acidity of amorphous acidic aluminosilicates (AAS). Here we introduced oxygen vacancies in AAS to synthesize defective acidic aluminosilicates (D-AAS). 1H, 27Al, and 17O solid-state nuclear magnetic resonance (NMR) studies indicated that defects induced localized structural changes around the acidic sites, thereby modifying their acidity. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy studies substantiated that oxygen vacancies alter the chemical environment of Brønsted acidic sites of AAS. The effect of defect creation in AAS on its acidity and catalytic behavior was demonstrated using four different acid-catalyzed reactions namely, styrene oxide ring opening, vesidryl synthesis, Friedel-Crafts alkylation, and jasminaldehyde synthesis. The defects played a role in activating reactants during AAS-catalyzed reactions, enhancing the overall catalytic process. This was supported by in-situ FTIR, which provided insights into the molecular-level reaction mechanism and the role of defects in reactant activation. This study demonstrates defect engineering as a promising approach to fine-tune acidity in amorphous aluminosilicates, bridging the porosity and acidity gaps between mesoporous amorphous aluminosilicates and crystalline zeolites.
Collapse
Affiliation(s)
- Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Charvi Singhvi
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Amrit Venkatesh
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA.
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India.
| |
Collapse
|
3
|
Chen G, Zhang W, Zhu R, Chen Y, Zhao M, Hong M. Engineering In-Co 3O 4/H-SSZ-39(OA) Catalyst for CH 4-SCR of NO x: Mild Oxalic Acid (OA) Leaching and Co 3O 4 Modification. Molecules 2024; 29:3747. [PMID: 39202827 PMCID: PMC11357400 DOI: 10.3390/molecules29163747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Zeolite-based catalysts efficiently catalyze the selective catalytic reduction of NOx with methane (CH4-SCR) for the environmentally friendly removal of nitrogen oxides, but suffer severe deactivation in high-temperature SO2- and H2O-containing flue gas. In this work, SSZ-39 zeolite (AEI topology) with high hydrothermal stability is reported for preparing CH4-SCR catalysts. Mild acid leaching with oxalic acid (OA) not only modulates the Si/Al ratio of commercial SSZ-39 to a suitable value, but also removes some extra-framework Al atoms, introducing a small number of mesopores into the zeolite that alleviate diffusion limitation. Additional Co3O4 modification during indium exchange further enhances the catalytic activity of the resulting In-Co3O4/H-SSZ-39(OA). The optimized sample exhibits remarkable performance in CH4-SCR under a gas hourly space velocity (GHSV) of 24,000 h-1 and in the presence of 5 vol% H2O. Even under harsh SO2- and H2O-containing high-temperature conditions, it shows satisfactory stability. Catalysts containing Co3O4 components demonstrate much higher CH4 conversion. The strong mutual interaction between Co3O4 and Brønsted acid sites, confirmed by the temperature-programmed desorption of NO (NO-TPD), enables more stable NxOy species to be retained in In-Co3O4/H-SSZ-39(OA) to supply further reactions at high temperatures.
Collapse
Affiliation(s)
- Guanyu Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Weixin Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Rongshu Zhu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yanpeng Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Minghu Zhao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Mei Hong
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School (PKUSZ), Shenzhen 518055, China
| |
Collapse
|
4
|
Shun K, Mori K, Kidawara T, Ichikawa S, Yamashita H. Heteroatom doping enables hydrogen spillover via H +/e - diffusion pathways on a non-reducible metal oxide. Nat Commun 2024; 15:6403. [PMID: 39085195 PMCID: PMC11291974 DOI: 10.1038/s41467-024-50217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Hydrogen spillover, the simultaneous diffusion of protons (H+) and electrons (e-) is considered to be applicable to ubiquitous technologies related to hydrogen but limited to over reducible metal oxides. The present work demonstrates that a non-reducible MgO with heteroatom Al dopants (Al-MgO) allows hydrogen spillover in the same way as reducible metal oxides. Furthermore, a H+ storage capacity of this material owing to hydrogen spillover is more than three times greater than those of various standard metal oxides based on H+ transport channels within its bulk region. Atomic hydrogen diffuses over the non-reducible Al-MgO produces active H+-e- pairs, as also occurs on reducible metal oxides, to enhance the catalytic performance of Ni during CO2 hydrogenation. The H+ and e- diffusion pathways generated by the heteroatom Al doping are disentangled based on systematic characterizations and calculations. This work provides a new strategy for designing functional materials intended to hydrogen spillover for diverse applications in a future hydrogen-based society.
Collapse
Affiliation(s)
- Kazuki Shun
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, Japan.
| | - Takumi Kidawara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, Japan
| | - Satoshi Ichikawa
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Salvia WS, Zhao TY, Chatterjee P, Huang W, Perras FA. Are the Brønsted acid sites in amorphous silica-alumina bridging? Chem Commun (Camb) 2023; 59:13962-13965. [PMID: 37930239 DOI: 10.1039/d3cc04237e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Competing models exist to explain the differences in the activity of zeolites and amorphous silica-aluminas. Some postulate that silica-alumina contains dilute zeolitic bridging acid sites, while others favor a pseudo-bridging silanol model. We employed a selective isotope labeling strategy to assess the existence of Si-O(H)-Al bonds using NMR-based distance measurements.
Collapse
Affiliation(s)
- William S Salvia
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA 50011, USA.
| | - Tommy Yunpu Zhao
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA 50011, USA.
| | - Puranjan Chatterjee
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA 50011, USA.
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA 50011, USA.
| | - Frédéric A Perras
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
- Chemical and Biological Sciences Division, Ames National Laboratory, Ames, IA 50011, USA.
| |
Collapse
|
6
|
Gopal VL, Chellapandian K. Synthesis of hybrid framework of tenorite and octahedrally coordinated aluminosilicate for the robust adsorption of cationic and anionic dyes. ENVIRONMENTAL RESEARCH 2023; 220:115111. [PMID: 36586715 DOI: 10.1016/j.envres.2022.115111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/14/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Adsorption is an important process for the industrial dye effluent treatment. Many adsorbents are employed such as activated carbon, metal oxide, molecular sieves etc. All those adsorbents are having their own setbacks like longer adsorption time and lower adsorption capacity. So development of fast adsorption and higher adsorption capacity is very much essential. In this view, we synthesized hybrid crystal system of tenorite and aluminosilicate framework (CuO@AS) for the faster adsorption. It is characterized by FT-IR, HRTEM and WAXRD. WAXRD proved the hybridization of two crystal systems viz tenorite & alumina in monoclinic phase and silica in trigonal phase. The crystal structure drawn based on the WAXRD data. It is observed that the tenorite and aluminosilicate framework are separate, but they are interlinked through Cu-O-Al and Cu-O-Si bond. This interconnection makes the aluminium in six coordination and Cu in four coordination. Aluminium and copper has 3 and 2 Brønsted acid sites respectively. Moreover, copper has three more OH group, so totally 5 H+ and 3 OH- sites in copper and aluminium are responsible for the faster adsorption with high adsorption capacity compared to reported literature. To test the adsorption tendency, Victoria Blue (VB) and Metanil Yellow (MY) dyes are employed at room temperature. The rate constant of Pseudo-second order kinetics for the VB and MY are 0.002462 g mg-1 min-1 and 0.001619 g mg-1 min-1 which indicated faster adsorption of VB than MY. Moreover, total adsorption capacity for VB (636 mg/g) is higher than MY (52 mg/g). This is due to the hybridization of tenorite and aluminosilicate. Thermodynamic data such as ΔG°, ΔH° and ΔS° revealed that the adsorption is spontaneous, chemisorption and highly disordered in the adsorbent-adsorbate interface. This disorderness is due to the disordered pores present in the material.
Collapse
Affiliation(s)
- Vidhya Lakshmi Gopal
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627 012, Tamilnadu, India
| | - Kannan Chellapandian
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627 012, Tamilnadu, India.
| |
Collapse
|
7
|
Yang W, Duk Kim K, O'Dell LA, Wang L, Xu H, Ruan M, Wang W, Ryoo R, Jiang Y, Huang J. Brønsted acid sites formation through penta-coordinated aluminum species on alumina-boria for phenylglyoxal conversion. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Ma Y, Gao Y, Wu X, Jin B, Ran R, Si Z, Weng D. Destructive and Protective Effects of NH 3 on the Low-Temperature Hydrothermal Stability of SAPO-34 and Cu-SAPO-34. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43442-43455. [PMID: 36106798 DOI: 10.1021/acsami.2c13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The influences of gaseous, weakly adsorbed, and strongly adsorbed NH3 on the low-temperature (<100 °C) hydrothermal stability of SAPO-34 and Cu-SAPO-34 were investigated. NH3 temperature-programmed desorption (NH3-TPD), 1H magic angle spinning nuclear magnetic resonance (MAS NMR), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were adopted to characterize the adsorption states of NH3 and H2O in SAPO-34, and the destruction of the SAPO-34 framework was revealed by direct and cross-polarization 29Si, 27Al, and 31P MAS NMR. Gaseous NH3 coadsorbed with H2O inside SAPO-34 micropores and induced the hydrolysis of framework P-O-Al and Si-O(H)-Al bonds. Weakly adsorbed NH3 was released during aging and played a similar negative role to gaseous NH3. When being combined with hydrolyzed Al species from the framework, active Cu ions transformed to inactive CuAl2O4-like species, leading to deactivation in low-temperature SCR of Cu-SAPO-34. Strongly adsorbed NH4+ via 200 °C preadsorption protected the framework integrity of SAPO-34 and the SCR activity of Cu-SAPO-34.
Collapse
Affiliation(s)
- Yue Ma
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yang Gao
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodong Wu
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Baofang Jin
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Ran
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhichun Si
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Duan Weng
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
9
|
Shao ZC, Liu C, Xiao YS, Wang L, Liu ZT, Liu ZW. Texture and acidity of amorphous silica-alumina regulated by the complex-decomposition method for steam reforming of dimethyl ether. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Wang Z, Jiang Y, Baiker A, Hunger M, Huang J. Promoting Aromatic C-H Activation through Reactive Brønsted Acid-Base Pairs on Penta-Coordinated Al-Enriched Amorphous Silica-Alumina. J Phys Chem Lett 2022; 13:486-491. [PMID: 35001618 DOI: 10.1021/acs.jpclett.1c03489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The surface acidity and local coordination environment of zeolites and amorphous silica-aluminas (ASAs) can promote acid-catalyzed C-H activation in many important hydrocarbon conversion reactions. Acid sites generated by penta-coordinated Al species (AlV) can lead to enhanced acidity and changes in the surface coordination. We evaluated the potential of flame-derived ASAs with enriched AlV for C-H activation using hydrogen/deuterium (H/D) exchange with benzene-d6. With increasing Al content of ASAs, the exchange rate increased, whereas the activation energy (Ea) slightly decreased due to the enhanced Brønsted acidity. The ASAs exhibited significantly higher exchange rates and lower Ea values than the sol-gel-derived ASAs and zeolite H-ZSM-5. The superior activity is attributed to the fact that more oxygen coordinated with AlV species on flame-made ASAs, which can act as acceptors for D+, enhancing the deuterium displacement. These findings could offer a valuable alternative strategy for tailoring high-performance solid acids to promote hydrocarbon conversion reactions.
Collapse
Affiliation(s)
- Zichun Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yijiao Jiang
- ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alfons Baiker
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Bioscience, ETH Zürich, HCI, CH-8093 Zürich, Switzerland
| | - Michael Hunger
- Institute of Chemical Technology, University of Stuttgart, D-70550 Stuttgart, Germany
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
11
|
Wu Z, Li Z, Li C. Cooperative catalytic effects between the penta-coordinated Al and Al2O3 in Al2O3-AlPO4 for aldol condensation of methyl acetate with formaldehyde to methyl acrylate. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Loricera CV, Navarro Yerga R, Barrio L, Pawelec B, Fierro JLG. Synergistic Effect in Vapor Phase Hydrodeoxygenation on USY Zeolite Supported Ir–Pt Catalyst: Role of Pentacoordinated Al 3+ Ions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Laura Barrio
- Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, 28049, Spain
| | - Barbara Pawelec
- Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, 28049, Spain
| | | |
Collapse
|
13
|
Wang Z, Chen K, Jiang Y, Trébosc J, Yang W, Amoureux JP, Hung I, Gan Z, Baiker A, Lafon O, Huang J. Revealing Brønsted Acidic Bridging SiOHAl Groups on Amorphous Silica-Alumina by Ultrahigh Field Solid-State NMR. J Phys Chem Lett 2021; 12:11563-11572. [PMID: 34806885 PMCID: PMC9162276 DOI: 10.1021/acs.jpclett.1c02975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Amorphous silica-aluminas (ASAs) are important acidic catalysts and supports for many industrially essential and sustainable processes. The identification of surface acid sites with their local structures on ASAs is of critical importance for tuning their catalytic properties but still remains a great challenge and is under debate. Here, ultrahigh magnetic field (35.2 T) 27Al-{1H} D-HMQC (dipolar-mediated heteronuclear multiple-quantum correlation) two-dimensional NMR experiments demonstrate two types of Brønsted acid sites in ASA catalysts. In addition to the known pseudobridging silanol acid sites, the use of ultrahigh field NMR provides the first direct experimental evidence for the existence of bridging silanol (BS: SiOHAl) acid sites in ASAs, which has been hotly debated in the past few decades. This discovery provides new opportunities for scientists and engineers to develop and apply ASAs in various reaction processes due to the significance of BS in chemical and fuel productions based on its strong Brønsted acidity.
Collapse
Affiliation(s)
- Zichun Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
- Department of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kuizhi Chen
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Yijiao Jiang
- Department of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie de Solide, F-59000 Lille, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, FR 2638, Federation Chevreul, F-59000 Lille, France
| | - Wenjie Yang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie de Solide, F-59000 Lille, France
- Bruker Biospin, 34, rue de l'industrie, 67166 Wissembourg, France
- Riken NMR Science and Development Division, Yokohama, 230-0045 Kanagawa, Japan
| | - Ivan Hung
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Alfons Baiker
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Bioscience, ETH Zürich, HCI, CH-8093 Zürich, Switzerland
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie de Solide, F-59000 Lille, France
- Institut Universitaire de France
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Facile and cost-effective synthesis of acidity-enhanced amorphous silica-alumina for high-performance isomerization. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Xie T, Ai S, Huang Y, Yu W, Huang C. Synthesis and purification of glycolic acid from the mixture of methyl levulinate and methyl glycolate via acid-mediated hydrolysis reactions and extraction. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Modification of commercial Y zeolites by alkaline-treatment for improved performance in the isomerization of glucose to fructose. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Weissenberger T, Machoke AGF, Kolle JM, Avadhut YS, Hartmann M, Schwieger W. Synthesis and Catalytic Performance of Aluminium‐containing Mesoporous, Spherical Silica Particles. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202000183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tobias Weissenberger
- University of Erlangen-Nuremberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 91058 Erlangen Germany
| | - Albert G. F. Machoke
- University of Erlangen-Nuremberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 91058 Erlangen Germany
| | - Joel M. Kolle
- University of Erlangen-Nuremberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 91058 Erlangen Germany
| | - Yamini S. Avadhut
- University of Erlangen-Nuremberg Erlangen Center for Interface Research and Catalysis Egerlandstrasse 3 91058 Erlangen Germany
| | - Martin Hartmann
- University of Erlangen-Nuremberg Erlangen Center for Interface Research and Catalysis Egerlandstrasse 3 91058 Erlangen Germany
| | - Wilhelm Schwieger
- University of Erlangen-Nuremberg Institute of Chemical Reaction Engineering Egerlandstrasse 3 91058 Erlangen Germany
- University of Erlangen-Nuremberg Erlangen Center for Interface Research and Catalysis Egerlandstrasse 3 91058 Erlangen Germany
| |
Collapse
|
18
|
Wang Z, Buechel R, Jiang Y, Wang L, Xu H, Castignolles P, Gaborieau M, Lafon O, Amoureux JP, Hunger M, Baiker A, Huang J. Engineering the Distinct Structure Interface of Subnano-alumina Domains on Silica for Acidic Amorphous Silica-Alumina toward Biorefining. JACS AU 2021; 1:262-271. [PMID: 34467291 PMCID: PMC8395625 DOI: 10.1021/jacsau.0c00083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 05/21/2023]
Abstract
Amorphous silica-aluminas (ASAs) are important solid catalysts and supports for many industrially essential and sustainable processes, such as hydrocarbon transformation and biorefining. However, the wide distribution of acid strength on ASAs often results in undesired side reactions, lowering the product selectivity. Here we developed a strategy for the synthesis of a unique class of ASAs with unvarying strength of Brønsted acid sites (BAS) and Lewis acid sites (LAS) using double-flame-spray pyrolysis. Structural characterization using high-resolution transmission electron microscopy (TEM) and solid-state nuclear magnetic resonance (NMR) spectroscopy showed that the uniform acidity is due to a distinct nanostructure, characterized by a uniform interface of silica-alumina and homogeneously dispersed alumina domains. The BAS population density of as-prepared ASAs is up to 6 times higher than that obtained by classical methods. The BAS/LAS ratio, as well as the population densities of BAS and LAS of these ASAs, could be tuned in a broad range. In cyclohexanol dehydration, the uniform Brønsted acid strength provides a high selectivity to cyclohexene and a nearly linear correlation between acid site densities and cyclohexanol conversion. Moreover, the concerted action of these BAS and LAS leads to an excellent bifunctional Brønsted-Lewis acid catalyst for glucose dehydration, affording a superior 5-hydroxymethylfurfural yield.
Collapse
Affiliation(s)
- Zichun Wang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering
& Sydney Nano Institute, The University
of Sydney, Sydney, NSW 2006, Australia
- Department
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Robert Buechel
- Particle
Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zuürich, Sonneggstrasse 3, CH-8092 Zuürich, Switzerland
| | - Yijiao Jiang
- Department
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Lizhuo Wang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering
& Sydney Nano Institute, The University
of Sydney, Sydney, NSW 2006, Australia
| | - Haimei Xu
- Department
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Patrice Castignolles
- Australian
Centre for Research on Separation Science (ACROSS), School of Science, Western Sydney University, Parramatta, New South Wales 2150, Australia
| | - Marianne Gaborieau
- Australian
Centre for Research on Separation Science (ACROSS), School of Science, Western Sydney University, Parramatta, New South Wales 2150, Australia
| | - Olivier Lafon
- Univ.
Lille, CNRS, UMR 8181, UCCS-Unité de Catalyse
et de Chimie du Solide, F-59000 Lille, France
- Institut
Universitaire de France, 1, rue Descartes, 75231 Paris Cedex 05, France
| | - Jean-Paul Amoureux
- Univ.
Lille, CNRS, UMR 8181, UCCS-Unité de Catalyse
et de Chimie du Solide, F-59000 Lille, France
- Bruker
Biospin, 34, rue de l’industrie, 67166 Wissembourg, France
- Riken
NMR Science and Development Division, Yokohama, 230-0045 Kanagawa, Japan
| | - Michael Hunger
- Institute
of Chemical Technology, University of Stuttgart, D-70550 Stuttgart, Germany
| | - Alfons Baiker
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Bioscience, ETH Zürich, Hönggerberg, HCI,
Zurich CH-8093, Switzerland
| | - Jun Huang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering
& Sydney Nano Institute, The University
of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
19
|
Zhao Y, Wang L, Kochubei A, Yang W, Xu H, Luo Y, Baiker A, Huang J, Wang Z, Jiang Y. Formation and Location of Pt Single Sites Induced by Pentacoordinated Al Species on Amorphous Silica-Alumina. J Phys Chem Lett 2021; 12:2536-2546. [PMID: 33683898 DOI: 10.1021/acs.jpclett.1c00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alumina and its mixed oxides are popular industrial supports for emerging supported metal catalysts. Pentacoordinated Al (AlV) species are identified as key surface sites for anchoring and stabilizing metal single-site catalysts; however, AlV is rare in conventional amorphous silica-alumina (ASA). Recently, we have developed AlV-enriched ASA, which was applied as a support for the synthesis of Pt single-site catalysts in this work. Each preparation stage and the interaction between Pt and surface Al species were explored by 1H and 27Al solid-state nuclear magnetic resonance spectroscopy, and the formation of the dominant Pt single sites on the surface of AlV-enriched ASA was confirmed by high-angle annular dark-field imaging scanning transmission electron microscopy and energy dispersive spectroscopy line scanning. On the surface of supports without a significant AlV population (Pt/Al2O3 and Pt/SiO2), mainly Pt nanoparticles were formed. This indicates that AlV contributes to the strong metal-support interaction to stabilize the Pt single sites on Pt/ASA, which was characterized by diffuse reflectance infrared Fourier transform spectroscopy combined with CO adsorption, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. Pt single sites supported on AlV-enriched ASA exhibit excellent chemoselectivity in the hydrogenation of C═O groups, affording 2-3-fold higher yields compared to those of Pt nanoparticles supported on Al2O3 and SiO2.
Collapse
Affiliation(s)
- Yutong Zhao
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Lizhuo Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alena Kochubei
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Wenjie Yang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Haimei Xu
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Alfons Baiker
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Hönggerberg, HCI, Zurich CH-8093, Switzerland
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zichun Wang
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yijiao Jiang
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
20
|
Pham ST, Nguyen MB, Le GH, Nguyen TD, Pham CD, Le TS, Vu TA. Influence of Brønsted and Lewis acidity of the modified Al-MCM-41 solid acid on cellulose conversion and 5-hydroxylmethylfurfuran selectivity. CHEMOSPHERE 2021; 265:129062. [PMID: 33250232 DOI: 10.1016/j.chemosphere.2020.129062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
The modified Al-MCM-41 solid acids with turning Si/Al molar ratio were successfully fabricated through a hydrothermal route and utilized as a suitable catalyst in the cellulose conversion into 5-hydroxylmethylfurfural (5-HMF). The crystal structure, composition, morphologies and porosity of as-synthesized acids were characterized by XRD, FT-IR, N2 adsorption-desorption, TEM and EDS. The 27Al MAS NMR and 29Si-MAS NMR results revealed the existence of both Al framework and Al extra framework. Besides, the existence of medium-weak and strong acid sites, according to Brønsted and Lewis acidity, in Al-MCM-41 acids was confirmed by NH3-TPD and FTIR-pyridine adsorption. The 30Al-MCM-41 solid acid (Si/Al molar ratio = 30) exhibited excellent activity with the highest 5-HMF yield of 40.56% compared to other samples. We also discovered that 5-HMF production, as well as cellulose conversion, strongly depended on the total acid, strong/medium-weak acid ratio, as well as Brønsted/Lewis acid ratio. Therefore, these parameters have been considered as essential factors for the design of solid acid for 5-HMF production.
Collapse
Affiliation(s)
- Son Tung Pham
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam; Hanoi University of Science (HUS), Vietnam National University (VNU), 334 Nguyen Trai, Hanoi, Viet Nam
| | - Manh B Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam; Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Road, Ha Noi City, Viet Nam.
| | - Giang H Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam
| | - Trinh Duy Nguyen
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@ GrEEN), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Chinh D Pham
- Hanoi University of Science and Technology (HUST), 01 Dai Co Viet Road, Ha Noi City, Viet Nam
| | - Thanh Son Le
- Hanoi University of Science (HUS), Vietnam National University (VNU), 334 Nguyen Trai, Hanoi, Viet Nam
| | - Tuan A Vu
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology. 18 Hoang Quoc Viet Street, Cau Giay, Ha Noi City, Viet Nam.
| |
Collapse
|
21
|
Castro-Fernández P, Mance D, Liu C, Moroz IB, Abdala PM, Pidko EA, Copéret C, Fedorov A, Müller CR. Propane Dehydrogenation on Ga 2O 3-Based Catalysts: Contrasting Performance with Coordination Environment and Acidity of Surface Sites. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05009] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pedro Castro-Fernández
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, CH-8092 Zurich, Switzerland
| | - Deni Mance
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Chong Liu
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ilia B. Moroz
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Paula M. Abdala
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, CH-8092 Zurich, Switzerland
| | - Evgeny A. Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, CH-8092 Zurich, Switzerland
| | - Christoph R. Müller
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, CH-8092 Zurich, Switzerland
| |
Collapse
|
22
|
Dombrowski JP, Ziegler MS, Phadke NM, Mansoor E, Levine DS, Witzke RJ, Head-Gordon M, Bell AT, Tilley TD. Siloxyaluminate and Siloxygallate Complexes as Models for Framework and Partially Hydrolyzed Framework Sites in Zeolites and Zeotypes. Chemistry 2021; 27:307-315. [PMID: 32926472 DOI: 10.1002/chem.202002926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Indexed: 11/07/2022]
Abstract
Anionic molecular models for nonhydrolyzed and partially hydrolyzed aluminum and gallium framework sites on silica, M[OSi(OtBu)3 ]4 - and HOM[OSi(OtBu)3 ]3 - (where M=Al or Ga), were synthesized from anionic chlorides Li{M[OSi(OtBu)3 ]3 Cl} in salt metathesis reactions. Sequestration of lithium cations with [12]crown-4 afforded charge-separated ion pairs composed of monomeric anions M[OSi(OtBu)3 ]4 - with outer-sphere [([12]crown-4)2 Li]+ cations, and hydroxides {HOM[OSi(OtBu)3 ]3 } with pendant [([12]crown-4)Li]+ cations. These molecular models were characterized by single-crystal X-ray diffraction, vibrational spectroscopy, mass spectrometry and NMR spectroscopy. Upon treatment of monomeric [([12]crown-4)Li]{HOM[OSi(OtBu)3 ]3 } complexes with benzyl alcohol, benzyloxide complexes were formed, modeling a possible pathway for the formation of active sites for Meerwin-Ponndorf-Verley (MPV) transfer hydrogenations with Al/Ga-doped silica catalysts.
Collapse
Affiliation(s)
- James P Dombrowski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Micah S Ziegler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Neelay M Phadke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Erum Mansoor
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.,Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Daniel S Levine
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ryan J Witzke
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Martin Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Alexis T Bell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| |
Collapse
|
23
|
Dehydroaromatization of methane over Mo/ZSM-5 zeolites: influence of aluminum distribution in the crystals. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01887-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Wang Z, Jiang Y, Baiker A, Huang J. Pentacoordinated Aluminum Species: New Frontier for Tailoring Acidity-Enhanced Silica-Alumina Catalysts. Acc Chem Res 2020; 53:2648-2658. [PMID: 33090765 DOI: 10.1021/acs.accounts.0c00459] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Silica-alumina catalysts, including zeolites and amorphous silica-aluminas (ASAs), are among the most widely used solid acid catalysts and supports to produce petrochemicals, fine chemicals, and renewable energy. The coordination, distribution, and interactions of aluminum in ASAs have an enormous impact on their acidic properties and catalytic performance. Unsaturated tetracoordinated aluminum (AlIV) species are commonly accepted as the key sites in generating catalytically active Brønsted acid sites (BASs) in silica-alumina catalysts. Extensive efforts focus on increasing the concentration of AlIV as the main route to enhance their Brønsted acidity for efficient catalysis. However, increasing the AlIV concentration either weakens the acid strength in zeolites or lowers Brønsted acidity in ASAs at high Al/Si ratios, impeding acidity enhancement of these popular catalysts."Pentacoordinated aluminum (AlV) species" are potential unsaturated Al species like AlIV but rarely observed in silica-aluminas, and thus, are widely considered unavailable for BAS formation or surface reactions. In this Account, we will describe novel strategies for the controlled synthesis of AlV-enriched ASAs using flame-spray pyrolysis (FSP) techniques and highlight the contribution of AlV species in acidity enhancement, together with their structure-activity relationship in the conversion of biomass-derived compounds into valuable chemicals. Using various in situ and advanced 2D solid-state NMR (SSNMR) experiments, the studies of the acidic properties and local structure of AlV-enriched ASAs reveal that AlV species can highly populate on ASA surfaces, promote BASs formation, and facilitate adaptable tuning of BASs from moderate to zeolitic strength by synergy with neighboring Al sites. Moreover, the BASs with enhanced acidity can work jointly with surface Lewis acid sites or metal active species for bifunctional catalysis on AlV-enriched ASAs. Compared to zeolites, these AlV-enriched ASAs are highly active in acid-catalyzed biomass conversion, including alcohol dehydration and sugar conversion reactions, as well as in promoting the performance of supported metal catalysts in chemoselective hydrogenation of aromatic ketones. These new insights provide a state-of-the-art strategy for strongly enhancing the acidity of these popular silica-alumina catalysts, which offers an interesting potential for a wide range of acid and multifunctional catalysis.
Collapse
Affiliation(s)
- Zichun Wang
- Department of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yijiao Jiang
- Department of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alfons Baiker
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Hönggerberg, HCI, Zurich CH-8093, Switzerland
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
25
|
|
26
|
Yeh JY, Matsagar BM, S. Chen S, Sung HL, Tsang DC, Li YP, Wu KCW. Synergistic effects of Pt-embedded, MIL-53-derived catalysts (Pt@Al2O3) and NaBH4 for water-mediated hydrogenolysis of biomass-derived furfural to 1,5-pentanediol at near-ambient temperature. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Sun T, Xu S, Xiao D, Liu Z, Li G, Zheng A, Liu W, Xu Z, Cao Y, Guo Q, Wang N, Wei Y, Liu Z. Water-Induced Structural Dynamic Process in Molecular Sieves under Mild Hydrothermal Conditions: Ship-in-a-Bottle Strategy for Acidity Identification and Catalyst Modification. Angew Chem Int Ed Engl 2020; 59:20672-20681. [PMID: 32706134 DOI: 10.1002/anie.202009648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Water is the most important substance in nature. Imitating the formation of natural materials, molecular sieves have been synthesized under hydrothermal conditions and applied in industry. Herein, we reveal an unforeseen observation on a very special water-induced structural dynamic process of these materials. Dynamic and reversible breaking and forming of T-O-T bonds in silicoaluminophosphate (SAPO) occurs through interactions between gaseous water and the molecular-sieve framework under mild hydrothermal conditions and is confirmed by detection of the incorporation of 17 O from H2 17 O into molecular-sieve framework. Encapsulation of the bulky molecules trimethylphosphine and pyridine (kinetic diameters much larger than the pore size of SAPO-34) into CHA cavities consolidated the water-induced dynamic process. Consequently, new insights into the dynamic features of molecular sieves in water are provided. The ship-in-a-bottle strategy based on these findings also open new fields for fine acidity identification and gives extra boost in shape-selective catalysis.
Collapse
Affiliation(s)
- Tantan Sun
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dong Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Guangchao Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wenjuan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaochao Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yi Cao
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qiang Guo
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Nan Wang
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.,State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
28
|
Sun T, Xu S, Xiao D, Liu Z, Li G, Zheng A, Liu W, Xu Z, Cao Y, Guo Q, Wang N, Wei Y, Liu Z. Water‐Induced Structural Dynamic Process in Molecular Sieves under Mild Hydrothermal Conditions: Ship‐in‐a‐Bottle Strategy for Acidity Identification and Catalyst Modification. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tantan Sun
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shutao Xu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Dong Xiao
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhiqiang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Guangchao Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Wenjuan Liu
- Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhaochao Xu
- Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Yi Cao
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Qiang Guo
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Nan Wang
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yingxu Wei
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| |
Collapse
|
29
|
A Practical Review of NMR Lineshapes for Spin-1/2 and Quadrupolar Nuclei in Disordered Materials. Int J Mol Sci 2020; 21:ijms21165666. [PMID: 32784642 PMCID: PMC7461203 DOI: 10.3390/ijms21165666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023] Open
Abstract
NMR is a powerful spectroscopic method that can provide information on the structural disorder in solids, complementing scattering and diffraction techniques. The structural disorder in solids can generate a dispersion of local magnetic and electric fields, resulting in a distribution of isotropic chemical shift δiso and quadrupolar coupling CQ. For spin-1/2 nuclei, the NMR linewidth and shape under high-resolution magic-angle spinning (MAS) reflects the distributions of isotropic chemical shift, providing a rich source of disorder information. For quadrupolar nuclei, the second-order quadrupolar broadening remains present even under MAS. In addition to isotropic chemical shift, structural disorder can impact the electric field gradient (EFG) and consequently the quadrupolar NMR parameters. The distributions of quadrupolar coupling and isotropic chemical shift are superimposed with the second-order quadrupolar broadening, but can be potentially characterized by MQMAS (multiple-quantum magic-angle spinning) spectroscopy. We review analyses of NMR lineshapes in 2D DQ–SQ (double-quantum single-quantum) and MQMAS spectroscopies, to provide a guide for more general lineshape analysis. In addition, methods to enhance the spectral resolution and sensitivity for quadrupolar nuclei are discussed, including NMR pulse techniques and the application of high magnetic fields. The role of magnetic field strength and its impact on the strategy of determining optimum NMR methods for disorder characterization are also discussed.
Collapse
|
30
|
Catalytic nanosponges of acidic aluminosilicates for plastic degradation and CO 2 to fuel conversion. Nat Commun 2020; 11:3828. [PMID: 32737304 PMCID: PMC7395177 DOI: 10.1038/s41467-020-17711-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/07/2020] [Indexed: 11/08/2022] Open
Abstract
The synthesis of solid acids with strong zeolite-like acidity and textural properties like amorphous aluminosilicates (ASAs) is still a challenge. In this work, we report the synthesis of amorphous "acidic aluminosilicates (AAS)", which possesses Brønsted acidic sites like in zeolites and textural properties like ASAs. AAS catalyzes different reactions (styrene oxide ring-opening, vesidryl synthesis, Friedel-Crafts alkylation, jasminaldehyde synthesis, m-xylene isomerization, and cumene cracking) with better performance than state-of-the-art zeolites and amorphous aluminosilicates. Notably, AAS efficiently converts a range of waste plastics to hydrocarbons at significantly lower temperatures. A Cu-Zn-Al/AAS hybrid shows excellent performance for CO2 to fuel conversion with 79% selectivity for dimethyl ether. Conventional and DNP-enhanced solid-state NMR provides a molecular-level understanding of the distinctive Brønsted acidic sites of these materials. Due to their unique combination of strong acidity and accessibility, AAS will be a potential alternative to zeolites.
Collapse
|
31
|
Qiao G, Chen G, Wen Q, Liu W, Gao J, Yu Z, Wang Q. Rapid conversion from common precursors to carbon dots in large scale: Spectral controls, optical sensing, cellular imaging and LEDs application. J Colloid Interface Sci 2020; 580:88-98. [PMID: 32682119 DOI: 10.1016/j.jcis.2020.07.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
The commercial production of carbon dots will be concerned with the simplicity and energy consumption. Herein, maleic acid and m-phenylenediamine form elegantly simple sources for carbon dots. The two precursors are dissolved in formamid (abbreviated as FA) or N,N-dimethylformamide (abbreviated as DMF) and the dehydration-condensation processes have been performed at 30 min or 120 min under room temperature. No external energy/irradiations, reactants or high temperature will be required and the afforded carbon dots (abbreviated as CDs) are collected by extraction, centrifugation, dialysis and column chromatography. It has been found for the first time the choice of organic solvents has been correlated with emission color. The blue-emitting CDs (abbreviated as B-CDs) and green-emitting CDs (abbreviated as G-CDs) are yielded in FA and DMF respectively. Facts support that the increase of -CONH- units causes red-shift in emissions. The optical sensing of tetracycline has been explored and the detection limit of blue-emitting CDs is as low as 25 nM. Live cells exposed to B-CDs and G-CDs (0.5 mg/ml) show no apparent changes via both Cell Counting Kit-8 and Annexin V/7-AAD analysis. The blue and green fluorescent signals can be easily tracked in cells. It has been demonstrated that the two carbon dots can be fabricated as multiple-color light-emitting diodes (abbreviated as LEDs).
Collapse
Affiliation(s)
- Gongxi Qiao
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Gui Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qin Wen
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Wanqiang Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Jinwei Gao
- Guangdong Provincial Engineering Technology Research Center For Transparent Conductive Materials, South China Normal University, Guangzhou 510006, China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Qianming Wang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
32
|
Kinoshita Y, Shimoyama Y, Masui Y, Kawahara Y, Arai K, Motohashi T, Noda Y, Uchida S. Amorphous High-Surface-Area Aluminum Hydroxide-Bicarbonates for Highly Efficient Methyl Orange Removal from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6277-6285. [PMID: 32423218 DOI: 10.1021/acs.langmuir.0c00021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amorphous high-surface-area aluminum hydroxide-bicarbonates were synthesized starting from AlCl3, base, and bicarbonate in water. Composites with a chemical formulas of [Al13O4(μ-OH)24(H2O)6.5(OH)5.5](HCO3)1.5 (I-NaOH) and [Al13O4(μ-OH)24(H2O)6(OH)6](HCO3) (I-NH3) were obtained by the use of NaOH/NaHCO3 and NH3/NH4HCO3 as base/bicarbonate, respectively. The surface area of the composites was highly dependent on the pH level of the synthetic solution, and composites with high surface areas (ca. 200 m2 g-1) were obtained around pH 7-8. Pore-size distributions determined from the N2 adsorption isotherms showed that I-NH3 and I-NaOH possess mainly large (pore radius rp > 3 nm) and small (rp < 3 nm) pores, respectively, despite similar surface areas. While SEM images showed that both I-NH3 and I-NaOH were aggregates of nanoparticles, the particles were more fused in I-NaOH, which is in line with the existence of small pores and the use of a stronger base (NaOH), which would facilitate the dehydration condensation reaction. The composites were applied as adsorbents to remove methyl orange (MO) from water. The time course of MO adsorption was readily fitted with a pseudo-second-order model, and over 90% MO removal was attained within 10 min with I-NH3, while I-NaOH showed much less MO removal (26%). The MO adsorption isotherm of I-NH3 was reproduced with a Langmuir model with an adsorption capacity of 154 mg g-1. Notably, the aluminum hydroxide-bicarbonates could not absorb methylene blue, which is a cationic dye, while anions (MO and PO43-) were readily absorbed. Solid-state 27Al MAS NMR spectra showed that the concentration of 5-coordinated aluminum species, which may serve as guest binding sites, was higher for I-NH3. These results show that electrostatic interaction between anionic MO and coordinatively unsaturated 5-coordinated cationic aluminum species and the large external surface area of I-NH3 contribute to the highly efficient MO adsorption.
Collapse
Affiliation(s)
- Yuki Kinoshita
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yuto Shimoyama
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yoichi Masui
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yoshiteru Kawahara
- Department of Materials and Life Chemistry, Graduate School of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kenji Arai
- Department of Materials and Life Chemistry, Graduate School of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Teruki Motohashi
- Department of Materials and Life Chemistry, Graduate School of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yasuto Noda
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
33
|
Li Y, Zhang X, Shang C, Wei X, Wu L, Wang X, Wu WD, Chen XD, Selomulya C, Zhao D, Wu Z. Scalable Synthesis of Uniform Mesoporous Aluminosilicate Microspheres with Controllable Size and Morphology and High Hydrothermal Stability for Efficient Acid Catalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21922-21935. [PMID: 32324368 DOI: 10.1021/acsami.0c04998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mesoporous aluminosilicates are promising solid acid catalysts. They are also excellent supports for transition metal catalysts for various catalytic applications. Synthesis of mesoporous aluminosilicates with controllable particle size, morphology, and structure, as well as adjustable acidity and high hydrothermal stability, is very desirable. In this work, we demonstrate the scalable synthesis of Al-SBA-15 microspheres with controllable physicochemical properties by using the microfluidic jet-spray-drying technology. The productivity is up to ∼30 g of dried particles per nozzle per hour. The Al-SBA-15 microspheres possess uniform controllable micron sizes (27.5-70.2 μm), variable surface morphologies, excellent hydrothermal stability (in pure steam at 800 °C), high surface areas (385-464 m2/g), ordered mesopore sizes (5.4-5.8 nm), and desirable acid properties. The dependence of various properties, including particle size, morphology, porosity, pore size, acidity, and hydrothermal stability, of the obtained Al-SBA-15 microspheres on experimental parameters including precursor composition (Si/Al ratio and solid content) and processing conditions (drying and calcination temperatures) is established. A unique morphology transition from smooth to wrinkled microsphere triggered by control of the Si/Al ratio and solid content is observed. The particle formation and morphology-evolution mechanism are discussed. The Al-SBA-15 microspheres exhibit high acid catalytic performance for aldol-condensation reaction between benzaldehyde and ethyl alcohol with a high benzaldehyde conversion (∼56.3%), a fast pseudo-first-order reaction rate (∼0.1344 h-1), and a high cyclic stability, superior to the commercial zeolite acid (H-ZSM-5). Several influencing factors on the catalytic performance of the obtained Al-SBA-15 microspheres are also studied.
Collapse
Affiliation(s)
- Yunqing Li
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiangcheng Zhang
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Chao Shang
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiangru Wei
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Wu
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaoning Wang
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Winston Duo Wu
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiao Dong Chen
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Cordelia Selomulya
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dongyuan Zhao
- Department of Chemistry and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zhangxiong Wu
- Particle Engineering Laboratory (PEL), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
34
|
Chizallet C. Toward the Atomic Scale Simulation of Intricate Acidic Aluminosilicate Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01136] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles Solaize, Rond-Point de l’Echangeur de Solaize, BP 3, 69360 Solaize, France
| |
Collapse
|
35
|
Chen K, Horstmeier S, Nguyen VT, Wang B, Crossley SP, Pham T, Gan Z, Hung I, White JL. Structure and Catalytic Characterization of a Second Framework Al(IV) Site in Zeolite Catalysts Revealed by NMR at 35.2 T. J Am Chem Soc 2020; 142:7514-7523. [PMID: 32233465 DOI: 10.1021/jacs.0c00590] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ultrahigh field 27Al{1H} 2D correlation NMR experiments demonstrate that at least two framework Al(IV) sites with hydroxyl groups can exist in acidic zeolite catalysts in their dehydrated and catalytically active states. In addition to the known Al(IV) at the framework bridging acid site (BAS), a new site created by a second tetrahedral Al atom and its hydroxyl group protons in zeolite HZSM-5 is clearly resolved at 35.2 T field strengths, enabled by recently developed series-connected hybrid (SCH) magnet technology. Coupled with computational modeling, extensive 27Al MQMAS experiments at multiple field strengths, and 1H MAS NMR experiments, these data indicate that this second tetrahedrally coordinated Al site (denoted Al(IV)-2) experiences an increased chemical shift and unique quadrupolar parameters relative to the BAS in both dehydrated and hydrated states. These new experimental data, supported by computational and catalytic reaction work, indicate that the second site arises from partially bonded framework (SiO)4-n-Al(OH)n species that significantly increase catalyst reactivity in benzene hydride-transfer and n-hexane cracking reactions. Al(IV)-2 sites result either from framework crystallization defects or from incomplete postsynthetic hydrolysis of a framework Al, prior to the formation of extraframework Al. Populations of this second acidic proton site created by the Al(IV)-2 species are shown to be controlled via postsynthetic catalyst treatments, should be general to different catalyst structures, and significantly enhance catalyst reactivity in the cited probe reactions when they are present. The results herein communicate the highest magnetic field strength data on active zeolite catalyst structures to date and enable for the first time the detection of Al and H association on a dry HZSM-5 catalyst, i.e., under conditions representative of typical end-use processes.
Collapse
Affiliation(s)
- Kuizhi Chen
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Sarah Horstmeier
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Vy T Nguyen
- School of Chemical, Materials, and Biological Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Wang
- School of Chemical, Materials, and Biological Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Steven P Crossley
- School of Chemical, Materials, and Biological Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Tram Pham
- School of Chemical, Materials, and Biological Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Ivan Hung
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Jeffery L White
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
36
|
Wang Z, Li T, Jiang Y, Lafon O, Liu Z, Trébosc J, Baiker A, Amoureux JP, Huang J. Acidity enhancement through synergy of penta- and tetra-coordinated aluminum species in amorphous silica networks. Nat Commun 2020; 11:225. [PMID: 31932684 PMCID: PMC6957685 DOI: 10.1038/s41467-019-13907-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/25/2019] [Indexed: 11/30/2022] Open
Abstract
Amorphous silica-aluminas (ASAs) are widely used in acid-catalyzed C-H activation reactions and biomass conversions in large scale, which can be promoted by increasing the strength of surface Brønsted acid sites (BAS). Here, we demonstrate the first observation on a synergistic effect caused by two neighboring Al centers interacting with the same silanol group in flame-made ASAs with high Al content. The two close Al centers decrease the electron density on the silanol oxygen and thereby enhance its acidity, which is comparable to that of dealuminated zeolites, while ASAs with small or moderate Al contents provide mainly moderate acidity, much lower than that of zeolites. The ASAs with enhanced acidity exhibit outstanding performances in C-H bond activation of benzene and glucose dehydration to 5-hydroxymethylfurfural, simultaneously with an excellent calcination stability and resistance to leaching, and they offer an interesting potential for a wide range of acid and multifunctional catalysis.
Collapse
Affiliation(s)
- Zichun Wang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Department of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Tong Li
- Institute for Materials & ZGH, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Yijiao Jiang
- Department of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Olivier Lafon
- Univ. Lille, CNRS, UMR 8181, UCCS-Unité de Catalyse et de Chimie du Solide, F-59000, Lille, France
- Institut Universitaire de France, Centrale Lille, ENSCL, Villeneuve-d'Ascq, France
| | - Zongwen Liu
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Julien Trébosc
- Univ. Lille, CNRS, INRA, Centrale Lille, ENSCL, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000, Lille, France
| | - Alfons Baiker
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH, Zürich, Hönggerberg, HCI, CH-8093, Switzerland
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, UMR 8181, UCCS-Unité de Catalyse et de Chimie du Solide, F-59000, Lille, France.
- Bruker Biospin, 34, rue de l'industrie, 67166, Wissembourg, France.
- Riken NMR Science and Development Division, Yokohama, 230-0045, Kanagawa, Japan.
| | - Jun Huang
- Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
37
|
Zhang L, Wang S, Shi D, Qin Z, Wang P, Wang G, Li J, Dong M, Fan W, Wang J. Methanol to olefins over H-RUB-13 zeolite: regulation of framework aluminum siting and acid density and their relationship to the catalytic performance. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02419k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Incorporating boron promotes siting of more aluminum atoms at the sites accessible to MTO and then enhances the catalytic performance of H-RUB-13 in MTO.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- PR China
- University of the Chinese Academy of Sciences
| | - Sen Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Dezhi Shi
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- PR China
- University of the Chinese Academy of Sciences
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Guofu Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Junfen Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Mei Dong
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- PR China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry, Chinese Academy of Sciences
- Taiyuan
- PR China
- University of the Chinese Academy of Sciences
| |
Collapse
|
38
|
Wang Z, Jiang Y, Stampfl C, Baiker A, Hunger M, Huang J. NMR Spectroscopic Characterization of Flame‐Made Amorphous Silica‐Alumina for Cyclohexanol and Glyceraldehyde Conversion. ChemCatChem 2019. [DOI: 10.1002/cctc.201901728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zichun Wang
- Department of Engineering Macquarie University Sydney NSW-2109 Australia
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sidney NSW-2006 Australia
| | - Yijiao Jiang
- Department of Engineering Macquarie University Sydney NSW-2109 Australia
| | | | - Alfons Baiker
- Department of Chemistry and Applied Bioscience ETH Zürich Zürich CH-8093 Switzerland
| | - Michael Hunger
- Institute of Chemical Technology University of Stuttgart Stuttgart D-70550 Germany
| | - Jun Huang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sidney NSW-2006 Australia
| |
Collapse
|
39
|
Zeng X, Wang Z, Ding J, Wang L, Jiang Y, Stampfl C, Hunger M, Huang J. Catalytic arene alkylation over H-Beta zeolite: Influence of zeolite shape selectivity and reactant nucleophilicity. J Catal 2019. [DOI: 10.1016/j.jcat.2019.09.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Wang Z, O'Dell LA, Zeng X, Liu C, Zhao S, Zhang W, Gaborieau M, Jiang Y, Huang J. Insight into Three‐Coordinate Aluminum Species on Ethanol‐to‐Olefin Conversion over ZSM‐5 Zeolites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zichun Wang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
- Department of Engineering Macquarie University Sydney NSW 2109 Australia
| | - Luke A. O'Dell
- Institute for Frontier Materials Deakin University Geelong VIC 3220 Australia
| | - Xin Zeng
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Can Liu
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Shufang Zhao
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Wenwen Zhang
- Department of Engineering Macquarie University Sydney NSW 2109 Australia
| | - Marianne Gaborieau
- School of Science and Health Western Sydney University Parramatta NSW 2150 Australia
| | - Yijiao Jiang
- Department of Engineering Macquarie University Sydney NSW 2109 Australia
| | - Jun Huang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
41
|
Wang Z, O'Dell LA, Zeng X, Liu C, Zhao S, Zhang W, Gaborieau M, Jiang Y, Huang J. Insight into Three‐Coordinate Aluminum Species on Ethanol‐to‐Olefin Conversion over ZSM‐5 Zeolites. Angew Chem Int Ed Engl 2019; 58:18061-18068. [DOI: 10.1002/anie.201910987] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Zichun Wang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
- Department of Engineering Macquarie University Sydney NSW 2109 Australia
| | - Luke A. O'Dell
- Institute for Frontier Materials Deakin University Geelong VIC 3220 Australia
| | - Xin Zeng
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Can Liu
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Shufang Zhao
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| | - Wenwen Zhang
- Department of Engineering Macquarie University Sydney NSW 2109 Australia
| | - Marianne Gaborieau
- School of Science and Health Western Sydney University Parramatta NSW 2150 Australia
| | - Yijiao Jiang
- Department of Engineering Macquarie University Sydney NSW 2109 Australia
| | - Jun Huang
- Laboratory for Catalysis Engineering School of Chemical and Biomolecular Engineering & Sydney Nano Institute The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
42
|
Marshall M, Blawat J, Xing L, Winiarski MJ, Klimczuk T, Jin R, Xie W. Low-Dimensional Magnetic Semimetal Cr 0.65Al 1.35Se 3. Inorg Chem 2019; 58:13960-13968. [PMID: 31599587 DOI: 10.1021/acs.inorgchem.9b01913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While exploring novel magnetic semiconductors, the new phase Cr0.65Al1.35Se3 was discovered and characterized by both structural and physical properties. Cr0.65Al1.35Se3 was found to crystallize into orthorhombic CrGeTe3-type structure with space group Pnma (no. 62). Vacancies and mixed occupancies were tested, and the results show that one of the 4c sites accommodates a mixture of Cr and Al atoms, while the other 4c site is fully occupied by Al atoms. Unique structural features include a T-shaped channel network created from the edge-sharing Cr/Al@Se6 and Al@Se4 polyhedra and a zipper effect of the puckered Se atoms inside the columnar channels. The round peak observed in the temperature-dependent magnetic susceptibility (χg) plot at ∼8(1) K corresponds to the antiferromagnetic-type transition in Cr0.65Al1.35Se3. However, the positive θCW indicates an additional ferromagnetic interaction, which is highly likely due to the complex magnetic structure arising from the mixed Cr/Al occupancies on the 4c site. Electrical resistivity measurements confirm that Cr0.65Al1.35Se3 is a semimetal with a positive magnetoresistance. Here we present the characterization and determination of the crystal structure and physical properties for this new material.
Collapse
Affiliation(s)
- Madalynn Marshall
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Joanna Blawat
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States.,Department of Physics and Astronomy , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Lingyi Xing
- Department of Physics and Astronomy , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Michał J Winiarski
- Faculty of Applied Physics and Mathematics , Gdansk University of Technology , Narutowicza 11/12 , Gdansk , Poland 80-233
| | - Tomasz Klimczuk
- Faculty of Applied Physics and Mathematics , Gdansk University of Technology , Narutowicza 11/12 , Gdansk , Poland 80-233
| | - Rongying Jin
- Department of Physics and Astronomy , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Weiwei Xie
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
43
|
Xin S, Wang Q, Xu J, Chu Y, Wang P, Feng N, Qi G, Trébosc J, Lafon O, Fan W, Deng F. The acidic nature of "NMR-invisible" tri-coordinated framework aluminum species in zeolites. Chem Sci 2019; 10:10159-10169. [PMID: 32055370 PMCID: PMC6979346 DOI: 10.1039/c9sc02634g] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/11/2019] [Indexed: 01/19/2023] Open
Abstract
The unambiguous characterization of different acid sites in zeolites is of great importance for understanding their catalytic performance and the rational design of highly efficient zeolite catalysts. In addition to various well-characterized extra-framework Al species, a tri-coordinated framework aluminum species can also serve as a Lewis acid site in zeolites, which is "NMR-invisible" owing to its extremely distorted local environment. Here we provide a feasible and reliable approach to elucidate the acidic nature of the tri-coordinated framework Al in dehydrated H-ZSM-5 zeolites via sensitivity-enhanced two-dimensional (2D) multiple nuclear correlation NMR experiments coupled with trimethylphosphine oxide (TMPO) probe molecules. Two types of tri-coordinated framework Al sites have been unambiguously identified, which amount to 11.6% of the total Brønsted and Lewis acid sites. Furthermore, it was found that synergistic effects arising from the close spatial proximity between the tri-coordinated framework Al site and the Brønsted acid site lead to the generation of superacidity (with an acid strength stronger than 100% H2SO4) in the zeolite.
Collapse
Affiliation(s)
- Shaohui Xin
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ; .,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ;
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ;
| | - Yueying Chu
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ;
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion , Institute of Coal Chemistry , Chinese Academy of Sciences , P.O. Box 165 , Taiyuan , Shanxi 030001 , P. R. China
| | - Ningdong Feng
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ;
| | - Guodong Qi
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ;
| | - Julien Trébosc
- Univ. Lille , CNRS , ENSCL , UMR 8181 , Unité de Catalyse et de Chimie du Solide , 59000 Lille , France
| | - Olivier Lafon
- Univ. Lille , CNRS , ENSCL , UMR 8181 , Unité de Catalyse et de Chimie du Solide , 59000 Lille , France.,Institut Universitaire de France , 75231 Paris , France
| | - Weibin Fan
- State Key Laboratory of Coal Conversion , Institute of Coal Chemistry , Chinese Academy of Sciences , P.O. Box 165 , Taiyuan , Shanxi 030001 , P. R. China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan , State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , CAS Key Laboratory of Magnetic Resonance in Biological Systems , Wuhan Institute of Physics and Mathematics , Chinese Academy of Sciences , Wuhan 430071 , China . ;
| |
Collapse
|
44
|
Wang S, Zhang L, Li S, Qin Z, Shi D, He S, Yuan K, Wang P, Zhao TS, Fan S, Dong M, Li J, Fan W, Wang J. Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Styskalik A, Abbott JG, Orick MC, Debecker DP, Barnes CE. Synthesis, characterization and catalytic activity of single site, Lewis acidic aluminosilicates. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.11.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Verapamil delivery systems on the basis of mesoporous ZSM-5/KIT-6 and ZSM-5/SBA-15 polymer nanocomposites as a potential tool to overcome MDR in cancer cells. Eur J Pharm Biopharm 2019; 142:460-472. [PMID: 31336182 DOI: 10.1016/j.ejpb.2019.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 12/23/2022]
Abstract
ZSM-5/KIT-6 and ZSM-5/SBA-15 nanoparticles were synthesized and further modified by a post-synthesis method with (CH2)3SO3H and (CH2)3NHCO(CH2)2COOH groups to optimize their drug loading and release kinetic profiles. The verapamil cargo drug was loaded by incipient wetness impregnation both on the parent and modified nanoporous supports. Nanocarriers were then coated with a three-layer polymeric shell composed of chitosan-k-carrageenan-chitosan with grafted polysulfobetaine chains. The parent and drug loaded formulations were characterized by powder XRD, N2 physisorption, thermal analysis, AFM, DLS, TEM, ATR-FT-IR and solid state NMR spectroscopies. Loading of verapamil on such nanoporous carriers and their subsequent polymer coating resulted in a prolonged in vitro release of the drug molecules. Quantum-chemical calculations were performed to investigate the strength of the interaction between the specific functional groups of the drug molecule and (CH2)3SO3H and CH2)3NHCO(CH2)2COOH groups of the drug carrier. Furthermore, the ability of the developed nanocomposites to positively modulate the intracellular internalization and thereby augment the antitumor activity of the p-gp substrate drug doxorubicin was investigated in a comparative manner vs. free drug in a panel of MDR positive (HL-60/Dox, HT-29) and MDR negative (HL-60) human cancer cell lines using the Chou-Talalay method.
Collapse
|
47
|
Chen K, Abdolrahmani M, Horstmeier S, Pham TN, Nguyen VT, Zeets M, Wang B, Crossley S, White JL. Brønsted–Brønsted Synergies between Framework and Noncrystalline Protons in Zeolite H-ZSM-5. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01583] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuizhi Chen
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Maryam Abdolrahmani
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Sarah Horstmeier
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Tram N. Pham
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Vy T. Nguyen
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Michael Zeets
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Bin Wang
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Steven Crossley
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Jeffery L. White
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
48
|
Wang Z, Jiang Y, Yi X, Zhou C, Rawal A, Hook J, Liu Z, Deng F, Zheng A, Hunger M, Baiker A, Huang J. High population and dispersion of pentacoordinated Al V species on the surface of flame-made amorphous silica-alumina. Sci Bull (Beijing) 2019; 64:516-523. [PMID: 36659741 DOI: 10.1016/j.scib.2019.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/02/2019] [Accepted: 03/26/2019] [Indexed: 01/21/2023]
Abstract
Pentacoordinated Al (AlV) species in silica-alumina are promising to promote the formation of acid sites or act as surface defects for tailoring single-atom catalysts. However, pentahedral coordination (AlV) is rarely observed in conventionally prepared silica-alumina. Here, we show that high population and dispersion of AlV species on the surface of amorphous silica-alumina (ASA) can be achieved by means of flame spray pyrolysis. High resolution TEM/EDX, high magnetic-field NMR and DFT calculations are employed to characterize the structure of as-prepared ASAs. Solid-state 27Al multi-quantum MAS NMR experiments show that most of the AlV species are formed independently from the alumina phase and are accessible for guest molecules on the surface. Upon water adsorption, these AlV species are transformed to AlVI species, structurally similar to surface AlIV species, as confirmed by DFT calculations. The outstanding catalytic activity of as-synthesized ASA is demonstrated using the in situ H/D exchange reaction with deuterated benzene as an example. The AlV-rich ASA provides a much lower activation energy (∼30 kJ/mol) than that reported for zeolite H-ZSM-5 (∼60 kJ/mol). The superior catalytic performance is attributed to the high AlV content promoting the surface active sites in ASA. The knowledge gained on the synthesis of AlV-rich ASAs and the nature of aluminum coordination in these materials could pave the way to more efficient silica-alumina based catalysts.
Collapse
Affiliation(s)
- Zichun Wang
- School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney, New South Wales 2006, Australia; Department of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yijiao Jiang
- Department of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xianfeng Yi
- State Key Laboratory Magnetic Resonance & Atomic Molecular Physics, Wuhan Institute of Physics & Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Cuifeng Zhou
- School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney, New South Wales 2006, Australia
| | - Aditya Rawal
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - James Hook
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney, New South Wales 2006, Australia
| | - Feng Deng
- State Key Laboratory Magnetic Resonance & Atomic Molecular Physics, Wuhan Institute of Physics & Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Anmin Zheng
- State Key Laboratory Magnetic Resonance & Atomic Molecular Physics, Wuhan Institute of Physics & Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Michael Hunger
- Institute of Chemical Technology, University of Stuttgart, D-70550 Stuttgart, Germany
| | - Alfons Baiker
- Department of Chemistry and Applied Bioscience, ETH Zürich, Hönggerberg, HCI, CH-8093 Zürich, Switzerland
| | - Jun Huang
- School of Chemical and Biomolecular Engineering & Sydney Nano Institute, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
49
|
Wang Z, Jiang Y, Jin F, Stampfl C, Hunger M, Baiker A, Huang J. Strongly enhanced acidity and activity of amorphous silica–alumina by formation of pentacoordinated AlV species. J Catal 2019. [DOI: 10.1016/j.jcat.2019.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Wang S, He Y, Jiao W, Wang J, Fan W. Recent experimental and theoretical studies on Al siting/acid site distribution in zeolite framework. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|