1
|
Tang R, Luo S, Liu H, Sun Y, Liu M, Li L, Ren H, Angele MK, Börner N, Yu K, Guo Z, Yin G, Luo H. Circulating Tumor Microenvironment in Metastasis. Cancer Res 2025; 85:1354-1367. [PMID: 39992721 PMCID: PMC11997552 DOI: 10.1158/0008-5472.can-24-1241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/12/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Activation of invasion and metastasis is a central hallmark of cancer, contributing to the primary cause of death for patients with cancer. In the multistep metastatic process, cancer cells must infiltrate the circulation, survive, arrest at capillary beds, extravasate, and form metastatic clones in distant organs. However, only a small proportion of circulating tumor cells (CTC) successfully form metastases, with transit of CTCs in the circulation being the rate-limiting step. The fate of CTCs is influenced by the circulating tumor microenvironment (cTME), which encompasses factors affecting their biological behaviors in the circulation. This liquid and flowing microenvironment differs significantly from the primary TME or the premetastatic niche. This review summarizes the latest advancements in identifying the biophysical cues, key components, and biological roles of the cTME, highlighting the network among biophysical attributes, blood cells, and nonblood factors in cancer metastasis. In addition to the potential of the cTME as a therapeutic target for inhibiting metastasis, the cTME could also represent as a biomarker for predicting patient outcomes and developing strategies for treating cancer.
Collapse
Affiliation(s)
- Rui Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shujuan Luo
- Department of Obstetrics, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Liu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Lu Li
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haoyu Ren
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Martin K. Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich Munich, Germany
| | - Nikolaus Börner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich Munich, Germany
| | - Keda Yu
- Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, P.R. China
| | - Zufeng Guo
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Guobing Yin
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haojun Luo
- Department of Thyroid and Breast Surgery, Renji Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Libring S, Reinhart-King CA. Premetastatic niche mechanics and organotropism in breast cancer. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:11. [PMID: 40191104 PMCID: PMC11968405 DOI: 10.1038/s44341-025-00015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/14/2025] [Indexed: 04/09/2025]
Abstract
Numerous physical and mechanical changes occur in the premetastatic niche. Here, we review the mechanics of the premetastatic niche and how the altered extracellular matrix and cancer cell mechanics may play a role in organotropism in breast cancer. Future research into premetastatic niche development and organotropic cell behavior should address physical alterations and biomechanical effects to the same rigor that biochemical alterations are studied.
Collapse
Affiliation(s)
- Sarah Libring
- Department of Bioengineering, Rice University, Houston, TX USA
| | | |
Collapse
|
3
|
Zhu M, Zhang K, Thomas EC, Xu R, Ciruna B, Hopyan S, Sun Y. Tissue stiffness mapping by light sheet elastography. SCIENCE ADVANCES 2025; 11:eadt7274. [PMID: 40085703 PMCID: PMC11908498 DOI: 10.1126/sciadv.adt7274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Tissue stiffness plays a crucial role in regulating morphogenesis. The ability to measure and monitor the dynamic progression of tissue stiffness is important for generating and testing mechanistic hypotheses. Methods to measure tissue properties in vivo have been emerging but present challenges with spatial and temporal resolution especially in 3D, by their reliance on highly specialized equipment, and/or due to their invasive nature. Here, we introduce light sheet elastography, a noninvasive method that couples low-frequency shear waves with light sheet fluorescence microscopy by adapting commercially available instruments. With this method, we achieved in toto stiffness mapping of organ-stage mouse and zebrafish embryos at cellular resolution. Versatility of the method enabled time-lapse stiffness mapping during tissue remodeling and of the beating embryonic heart. This method expands the spectrum of tools available to biologists and presents opportunities for uncovering the mechanical basis of morphogenesis.
Collapse
Affiliation(s)
- Min Zhu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Kaiwen Zhang
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Evan C. Thomas
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Ran Xu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Brian Ciruna
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Division of Orthopaedic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, ON, M5G 1X8, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| |
Collapse
|
4
|
Persano F, Parodi A, Pallaeva T, Kolesova E, Zamyatnin AA, Pokrovsky VS, De Matteis V, Leporatti S, Cascione M. Atomic Force Microscopy: A Versatile Tool in Cancer Research. Cancers (Basel) 2025; 17:858. [PMID: 40075706 PMCID: PMC11899184 DOI: 10.3390/cancers17050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The implementation of novel analytic methodologies in cancer and biomedical research has enabled the quantification of parameters that were previously disregarded only a few decades ago. A notable example of this paradigm shift is the widespread integration of atomic force microscopy (AFM) into biomedical laboratories, significantly advancing our understanding of cancer cell biology and treatment response. AFM allows for the meticulous monitoring of different parameters at the molecular and nanoscale levels, encompassing critical aspects such as cell morphology, roughness, adhesion, stiffness, and elasticity. These parameters can be systematically investigated in correlation with specific cell treatment, providing important insights into morpho-mechanical properties during normal and treated conditions. The resolution of this system holds the potential for its systematic adoption in clinics; its application could produce useful diagnostic information regarding the aggressiveness of cancer and the efficacy of treatment. This review endeavors to analyze the current literature, underscoring the pivotal role of AFM in biomedical research, especially in cancer cases, while also contemplating its prospective application in a clinical context.
Collapse
Affiliation(s)
- Francesca Persano
- Mathematics and Physics Department “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (F.P.); (V.D.M.)
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
| | - Tatiana Pallaeva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
- Federal Scientific Research Center Crystallography and Photonics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Ekaterina Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
| | - Andrey A. Zamyatnin
- Department of Biological Chemistry, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Vadim S. Pokrovsky
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.); (T.P.); (E.K.); (V.S.P.)
- N.N. Blokhin Medical Research Center of Oncology, 115478 Moscow, Russia
- Patrice Lumumba People’s Friendship University, 117198 Moscow, Russia
| | - Valeria De Matteis
- Mathematics and Physics Department “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (F.P.); (V.D.M.)
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Mariafrancesca Cascione
- Mathematics and Physics Department “Ennio De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce, Italy; (F.P.); (V.D.M.)
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
5
|
Zhao L, Gui Y, Deng X. Focus on mechano-immunology: new direction in cancer treatment. Int J Surg 2025; 111:2590-2602. [PMID: 39764598 DOI: 10.1097/js9.0000000000002224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/29/2024] [Indexed: 03/16/2025]
Abstract
The immune response is modulated by a diverse array of signals within the tissue microenvironment, encompassing biochemical factors, mechanical forces, and pressures from adjacent tissues. Furthermore, the extracellular matrix and its constituents significantly influence the function of immune cells. In the case of carcinogenesis, changes in the biophysical properties of tissues can impact the mechanical signals received by immune cells, and these signals c1an be translated into biochemical signals through mechano-transduction pathways. These mechano-transduction pathways have a profound impact on cellular functions, influencing processes such as cell activation, metabolism, proliferation, and migration, etc. Tissue mechanics may undergo temporal changes during the process of carcinogenesis, offering the potential for novel dynamic levels of immune regulation. Here, we review advances in mechanoimmunology in malignancy studies, focusing on how mechanosignals modulate the behaviors of immune cells at the tissue level, thereby triggering an immune response that ultimately influences the development and progression of malignant tumors. Additionally, we have also focused on the development of mechano-immunoengineering systems, with the help of which could help to further understand the response of tumor cells or immune cells to alterations in the microenvironment and may provide new research directions for overcoming immunotherapeutic resistance of malignant tumors.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, China
| | - Yajun Gui
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, China
| | - Xiangying Deng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, China
- Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Jiang T, Feng Y, Gao C, Jiang J, Chen B, Liu S, Du D, Ding M, Rong J, Liao Z, Li W, Wilson DA, Tu Y, Song S, Wang Y, Peng F. Microenvironment Mechanical Torque from ZnFe 2O 4 (ZFO) Micromotors Inhibiting Tumor Migration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409769. [PMID: 39838745 DOI: 10.1002/adma.202409769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/01/2025] [Indexed: 01/23/2025]
Abstract
Mechanical force attracts booming attention with the potential to tune the tumor cell behavior, especially in cell migration. However, the current approach for introducing mechanical input is difficult to apply in vivo. How the mechanical force affects cell behavior in situ also remains unclear. In this work, an intelligent miniaturized platform is constructed with magnetic ZnFe2O4 (ZFO) micromotors. The wireless ZFO can self-assemble in situ and rotate to generate mechanical torque of biologically relevant piconewton-scale at the target tumor site. It is observed unexpectedly that enhanced in situ mechanical rotating torque from ZFO micromotors and the active fluid inhibit the migration of highly invasive A549 tumor cells. The down-regulation of the Piezo1 channel and the suppressed signaling of ROCK1 in mechano-adaptive tumor cells is found to be related to the inhibition effect. With effectiveness confirmed with the zebrafish xenograft model, this platform provides a valuable toolkit for mechanobiology and force-associated non-invasive tumor therapy.
Collapse
Affiliation(s)
- Tingting Jiang
- The Key Lab of Low-carbon Chemistry, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ye Feng
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chao Gao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bin Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Suyi Liu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dailing Du
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Miaomiao Ding
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jinghui Rong
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zongzhen Liao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Aquatic Economic Animals, Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuqin Song
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yi Wang
- The Key Lab of Low-carbon Chemistry, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
7
|
Zhu R, Jiao Z, Yu FX. Advances towards potential cancer therapeutics targeting Hippo signaling. Biochem Soc Trans 2024; 52:2399-2413. [PMID: 39641583 DOI: 10.1042/bst20240244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Decades of research into the Hippo signaling pathway have greatly advanced our understanding of its roles in organ growth, tissue regeneration, and tumorigenesis. The Hippo pathway is frequently dysregulated in human cancers and is recognized as a prominent cancer signaling pathway. Hence, the Hippo pathway represents an ideal molecular target for cancer therapies. This review will highlight recent advancements in targeting the Hippo pathway for cancer treatment and discuss the potential opportunities for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhihan Jiao
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Dong Y, Lu M, Yin Y, Wang C, Dai N. Tumor Biomechanics-Inspired Future Medicine. Cancers (Basel) 2024; 16:4107. [PMID: 39682291 DOI: 10.3390/cancers16234107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
Malignant tumors pose a significant global health challenge, severely threatening human health. Statistics from the World Health Organization indicate that, in 2022, there were nearly 20 million new cancer cases and 9.7 million cancer-related deaths. Therefore, it is urgently necessary to study the pathogenesis of cancer and explore effective diagnostic and treatment strategies. In recent years, research has highlighted the importance of mechanical cues in tumors, which have become a new hallmark of cancer and a key factor in regulating tumor behavior. This suggests that studying the mechanical properties of tumors may open potential new avenues for understanding the pathogenesis, diagnosis, and therapeutic intervention of cancer. This review summarizes the mechanical characteristics of tumors and the development of tumor diagnostics and treatments targeting specific mechanical factors. Finally, we propose new ideas and insights for the application of mechanomedicine in cancer diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Yuqing Dong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Mengnan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuting Yin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Cong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Ningman Dai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Alqabandi JA, David R, Abdel-Motal UM, ElAbd RO, Youcef-Toumi K. An innovative cellular medicine approach via the utilization of novel nanotechnology-based biomechatronic platforms as a label-free biomarker for early melanoma diagnosis. Sci Rep 2024; 14:30107. [PMID: 39627312 PMCID: PMC11615046 DOI: 10.1038/s41598-024-79154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Innovative cellular medicine (ICM) is an exponentially emerging field with a promising approach to combating complex and ubiquitous life-threatening diseases such as multiple sclerosis (MS), arthritis, Parkinson's disease, Alzheimer's, heart disease, and cancer. Together with the advancement of nanotechnology and bio-mechatronics, ICM revolutionizes cellular therapy in understanding the essence and nature of the disease initiated at a single-cell level. This paper focuses on the intricate nature of cancer that requires multi-disciplinary efforts to characterize it well in order to achieve the objectives of modern world contemporary medicine in the early detection of the disease at a cellular level and potentially arrest its proliferation mechanism. This justifies the multidisciplinary research backgrounds of the authors of this paper in advancing cellular medicine by bridging the gap between experimental biology and the engineering field. Thus, in pursuing this approach, two novel miniaturized and highly versatile biomechatronic platforms with dedicated operating software and microelectronics are designed, modeled, nanofabricated, and tested in numerous in vitro experiments to investigate a hypothesis and arrive at a proven theorem in carcinogenesis by interrelating cellular contractile force, membrane potential, and cellular morphology for early detection and characterization of melanoma cancer cells. The novelties that flourished within this work are manifested in sixfold: (1) developing a mathematical model that utilizes a Heaviside step function, as well as a pin-force model to compute the contractile force of a living cell, (2) deriving an expression of cell-membrane potential based on Laplace and Fourier Transform and their Inverse Transform functions by encountering Warburg diffusion impedance factor, (3) nano-fabricating novel biomechatronic platforms with associated microelectronics and customized software that extract cellular physics and mechanics, (4) developing a label-free biomarker, (5) arrive at a proved theorem in developing a mathematical expression in relating cancer cell mechanobiology to its biophysics in connection to the stage of the disease, and (6) to the first time in literature, and to the best of the authors' knowledge, discriminating different stages and morphology of cancer cell melanoma based on their cell-membrane potentials, and associated contractile forces that could introduce a new venue of cellular therapeutic modalities, preclinical early cancer diagnosis, and a novel approach in immunotherapy drug development. The proposed innovative technology-based versatile bio-mechatronic platforms shall be extended for future studies, investigating the role of electrochemical signaling of the nervous system in cancer formation that will significantly impact modern oncology by pursuing a targeted immunotherapy approach. This work also provides a robust platform for immunotherapy practitioners in extending the study of cellular biophysics in stalling neural-cancer interactions, of which the FDA-approved chimeric antigen receptor (CAR)-T cell therapies can be enhanced (genetically engineered) in a lab by improving its receptors to capture cancer antigens. This work amplifies the importance of studying neurotransmitters and electrochemical signaling molecules in shaping the immune T-cell function and its effectiveness in arresting cancer proliferation rate (mechanobiology mechanism).
Collapse
Affiliation(s)
- Jassim A Alqabandi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Mechatronics in Medicine Laboratory, Imperial College London, London, UK.
- Department of Manufacturing Engineering Technology (Bio-Mechatronics) Department, PAAET, Kuwait, State of Kuwait.
| | - Rhiannon David
- Division of Computational and Systems Medicine (CSM), Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Ussama M Abdel-Motal
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rawan O ElAbd
- McGill University Health Center, Montreal, QC, Canada
| | - Kamal Youcef-Toumi
- Mechatronics Research Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| |
Collapse
|
10
|
Mehta G, Horst E, Cotter L, Bonini M, Novak C, Treacher N, Zhang Y, Jackson Z, Narayanan IV, Wuchu F, Nenwani M, Fischer Z, Sunshine A, Lin Z, Tran L, Nagrath D, Ljungman M, Maturen K, DiFeo A, Nordsletten D. Ascitic Shear Stress Activates GPCRs and Downregulates Mucin 15 to Promote Ovarian Cancer Malignancy. RESEARCH SQUARE 2024:rs.3.rs-5160301. [PMID: 39483899 PMCID: PMC11527234 DOI: 10.21203/rs.3.rs-5160301/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The accumulation of ascites in patients with ovarian cancer increases their risk of transcoelomic metastasis. Although common routes of peritoneal dissemination are known to follow distinct paths of circulating ascites, the mechanisms that initiate these currents and subsequent fluid shear stresses are not well understood. Here, we developed a patient-based, boundary-driven computational fluid dynamics model to predict an upper range of fluid shear stress generated by the accumulation of ascites. We show that ovarian cancer cells exposed to ascitic shear stresses display heightened G protein-coupled receptor mechanosignaling and the induction of an epithelial to mesenchymal-like transition through p38α mitogen-activated protein kinase and mucin 15 modulation. These findings along with a shear-induced immunomodulatory secretome position elevated shear stress as a protumoural signal. Together, this study suggests inhibition of the Gαq protein and restriction of ascites accumulation as maintenance strategies for overcoming mechanotransduction-mediated metastasis within the peritoneal cavity.
Collapse
|
11
|
Yang Y, Yuan T, Panaitescu C, Li R, Wu K, Zhou Y, Pokrajac D, Dini D, Zhan W. Exploring tissue permeability of brain tumours in different grades: Insights from pore-scale fluid dynamics analysis. Acta Biomater 2024:S1742-7061(24)00656-1. [PMID: 39522625 DOI: 10.1016/j.actbio.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Interstitial fluid (ISF) flow is identified as an essential physiological process that plays an important role in the development and progression of brain tumours. However, the relationship between the permeability of the tumour tissue, a complex porous medium, and the interstitial fluid flow around the tumour cells at the microscale is not well understood. To shed light on this issue, and in the absence of experimental techniques that can provide direct measurements, we develop a computational model to predict the tissue permeability of brain tumours in different grades by analysing the ISF flow at the pore scale. The 3-D geometrical models of tissue extracellular spaces are digitally reconstructed for each grade tumour based on their morphological properties measured from microscopic images. The predictive accuracy of the framework is validated by experimental results reported in the literature. Our results indicate that high-grade brain tumours are less permeable despite their higher porosity, whereas necrotic areas of glioblastoma are more permeable than the viable tumour areas. This implies that tissue permeability is primarily governed by both tissue porosity and the deposition of hyaluronic acid (HA), a key component of the extracellular matrix, while the HA deposition can have a greater effect than macro-level porosity. Parametric studies show that tissue permeability falls exponentially with increasing HA concentration in all grades of brain tumours, and this can be captured using an empirically derived relationship in a quantitative manner. These findings provide an improved understanding of the hydraulic properties of brain tumours and their intrinsic links to tumour microstructure. This work can be used to reveal the intratumoural physiochemical processes that rely on fluid flow and offer a powerful tool to tune textured and porous biomaterials for desired transport properties. STATEMENT OF SIGNIFICANCE: Interstitial fluid flow in the extracellular space of brain tumours plays a crucial role in their progression, development, and response to drug treatments. However, the mechanisms of interstitial fluid transport around tumour cells and the characterization of these microscale transports at the tissue scale to meet clinical requirements are largely unknown. In the absence of advanced experimental techniques to capture these pore-scale transport phenomena, we have developed and validated a computational framework to successfully reveal these phenomena across all grades of brain tumours. For the first time, we have quantitatively determined the tissue permeability of all grades of brain tumours as a function of the concentration of hyaluronic acid, a key component of the extracellular matrix. This framework will enhance our ability to capture the intratumoural physicochemical processes in brain tumours and correlate them with tumour tissue-scale behaviours.
Collapse
Affiliation(s)
- Yi Yang
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Tian Yuan
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | | | - Rui Li
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Kejian Wu
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Yingfang Zhou
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Dubravka Pokrajac
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
12
|
Kuracha MR, Radhakrishna U, Kuracha SV, Vegi N, Gurung JL, McVicker BL. New Horizons in Cancer Progression and Metastasis: Hippo Signaling Pathway. Biomedicines 2024; 12:2552. [PMID: 39595118 PMCID: PMC11591698 DOI: 10.3390/biomedicines12112552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
The Hippo pathway is highly evolved to maintain tissue homeostasis in diverse species by regulating cell proliferation, differentiation, and apoptosis. In tumor biology, the Hippo pathway is a prime example of signaling molecules involved in cancer progression and metastasis. Hippo core elements LATS1, LATS2, MST1, YAP, and TAZ have critical roles in the maintenance of traditional tissue architecture and cell homeostasis. However, in cancer development, dysregulation of Hippo signaling results in tumor progression and the formation secondary cancers. Hippo components not only transmit biochemical signals but also act as mediators of mechanotransduction pathways during malignant neoplasm development and metastatic disease. This review confers knowledge of Hippo pathway core components and their role in cancer progression and metastasis and highlights the clinical role of Hippo pathway in cancer treatment. The Hippo signaling pathway and its unresolved mechanisms hold great promise as potential therapeutic targets in the emerging field of metastatic cancer research.
Collapse
Affiliation(s)
- Murali R. Kuracha
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Uppala Radhakrishna
- Department of Anesthesiology and Perioperative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Sreenaga V. Kuracha
- Comparative Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Navyasri Vegi
- Shri Vishnu College of Pharmacy, Andhra University, Bhimavaram 534202, Andhra Pradesh, India;
| | - Jhyama Lhamo Gurung
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Benita L. McVicker
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
13
|
Li Z, Qin C, Zhao B, Li T, Zhao Y, Zhang X, Wang W. Circulating tumor cells in pancreatic cancer: more than liquid biopsy. Ther Adv Med Oncol 2024; 16:17588359241284935. [PMID: 39421679 PMCID: PMC11483845 DOI: 10.1177/17588359241284935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that slough off the primary lesions and extravasate into the bloodstream. By forming CTC clusters and interacting with other circulating cells (platelets, NK cells, macrophage, etc.), CTCs are able to survive in the circulatory system of tumor patients and colonize to metastatic organs. In recent years, the potential of CTCs in diagnosis, prognostic assessment, and individualized therapy of various types of tumors has been gradually explored, while advances in biotechnology have made it possible to extract CTCs from patient blood samples. These biological features of CTCs provide us with new insights into cancer vulnerabilities. With the advent of new immunotherapies and personalized medicines, disrupting the heterotypical interaction between CTCs and circulatory cells as well as direct CTCs targeting hold great promise. Pancreatic cancer (PC) is one of the most malignant cancers, in part because of early metastasis, difficult diagnosis, and limited treatment options. Although there is significant potential for CTCs as a biomarker to impact PC from diagnosis to therapy, there still remain a number of challenges to the routine implementation of CTCs in the clinical management of PC. In this review, we summed up the progress made in understanding biological characteristics and exceptional technological advances of CTCs and provided insight into exploiting these developments to design future clinical tools for improving the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing Street Dongcheng District Beijing China, Beijing 100730, China
| |
Collapse
|
14
|
Pyne E, Reardon M, Christensen M, Rodriguez Mateos P, Taylor S, Iles A, Choudhury A, Pamme N, Pires IM. Investigating the impact of the interstitial fluid flow and hypoxia interface on cancer transcriptomes using a spheroid-on-chip perfusion system. LAB ON A CHIP 2024; 24:4609-4622. [PMID: 39258507 PMCID: PMC11388701 DOI: 10.1039/d4lc00512k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Solid tumours are complex and heterogeneous systems, which exist in a dynamic biophysical microenvironment. Conventional cancer research methods have long relied on two-dimensional (2D) static cultures which neglect the dynamic, three-dimensional (3D) nature of the biophysical tumour microenvironment (TME), especially the role and impact of interstitial fluid flow (IFF). To address this, we undertook a transcriptome-wide analysis of the impact of IFF-like perfusion flow using a spheroid-on-chip microfluidic platform, which allows 3D cancer spheroids to be integrated into extracellular matrices (ECM)-like hydrogels and exposed to continuous perfusion, to mimic IFF in the TME. Importantly, we have performed these studies both in experimental (normoxia) and pathophysiological (hypoxia) oxygen conditions. Our data indicated that gene expression was altered by flow when compared to static conditions, and for the first time showed that these gene expression patterns differed in different oxygen tensions, reflecting a differential role of spheroid perfusion in IFF-like flow in tumour-relevant hypoxic conditions in the biophysical TME. We were also able to identify factors primarily linked with IFF-like conditions which are linked with prognostic value in cancer patients and therefore could correspond to a potential novel biomarker of IFF in cancer. This study therefore highlights the need to consider relevant oxygen conditions when studying the impact of flow in cancer biology, as well as demonstrating the potential of microfluidic models of flow to identify IFF-relevant tumour biomarkers.
Collapse
Affiliation(s)
- Emily Pyne
- Centre for Biomedicine, HYMS, University of Hull, Hull, UK
| | - Mark Reardon
- Translational Radiobiology, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | | | - Pablo Rodriguez Mateos
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Scott Taylor
- Tumour Hypoxia Biology, Division of Cancer Sciences, University of Manchester, Manchester, UK.
| | - Alexander Iles
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Ananya Choudhury
- Translational Radiobiology, Division of Cancer Sciences, University of Manchester, Manchester, UK
- Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Nicole Pamme
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Isabel M Pires
- Centre for Biomedicine, HYMS, University of Hull, Hull, UK
- Tumour Hypoxia Biology, Division of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Villares E, Gerecht S. Engineered Biomaterials and Model Systems to Study YAP/TAZ in Cancer. ACS Biomater Sci Eng 2024; 10:5550-5561. [PMID: 39190867 DOI: 10.1021/acsbiomaterials.4c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The transcriptional coactivators yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are master regulators involved in a multitude of cancer types and a wide range of tumorigenic events, including cancer stem cell renewal, invasion, metastasis, tumor precursor emergence, and drug resistance. YAP/TAZ are known to be regulated by several external cues and stimuli, such as extracellular matrix stiffness, cell spreading, cell geometry, and shear stress. Therefore, there is a need in the field of cancer research to develop and design relevant in vitro models that can accurately reflect the complex biochemical and biophysical cues of the tumor microenvironment central to the YAP/TAZ signaling nexus. While much progress has been made, this remains a major roadblock to advancing research in this field. In this review, we highlight the current engineered biomaterials and in vitro model systems that can be used to advance our understanding of how YAP/TAZ shapes several aspects of cancer. We begin by discussing current 2D and 3D hydrogel systems that model the YAP/TAZ response to ECM stiffness. We then examine the current trends in organoid culture systems and the use of microfluidics to model the effects of cellular density and shear stress on YAP/TAZ. Finally, we analyze the ongoing pitfalls of the present models used and important future directions in engineering systems that will advance our current knowledge of YAP/TAZ in cancer.
Collapse
Affiliation(s)
- Emma Villares
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705, United States
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27705, United States
| |
Collapse
|
16
|
Ouyang P, Cheng B, He X, Lou J, Li X, Guo H, Xu F. Navigating the biophysical landscape: how physical cues steer the journey of bone metastatic tumor cells. Trends Cancer 2024; 10:792-808. [PMID: 39127608 DOI: 10.1016/j.trecan.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Many tumors prefer to metastasize to bone, but the underlying mechanisms remain elusive. The human skeletal system has unique physical properties, that are distinct from other organs, which play a key role in directing the behavior of tumor cells within bone. Understanding the physical journey of tumor cells within bone is crucial. In this review we discuss bone metastasis in the context of how physical cues in the bone vasculature and bone marrow niche regulate the fate of tumor cells. Our objective is to inspire innovative diagnostic and therapeutic approaches for bone metastasis from a mechanobiological perspective.
Collapse
Affiliation(s)
- Pengrong Ouyang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China
| | - Xijing He
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Xi'an International Medical Center Hospital, Xi'an 710061, P.R. China.
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China.
| | - Xiaokang Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P.R. China.
| | - Hui Guo
- Department of Medical Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.
| |
Collapse
|
17
|
Liu X, Zhang W, Gu J, Wang J, Wang Y, Xu Z. Single-cell SERS imaging of dual cell membrane receptors expression influenced by extracellular matrix stiffness. J Colloid Interface Sci 2024; 668:335-342. [PMID: 38678888 DOI: 10.1016/j.jcis.2024.04.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Membrane receptors perform a diverse range of cellular functions, accounting for more than half of all drug targets. The mechanical microenvironment regulates cell behaviors and phenotype. However, conventional analysis methods of membrane receptors often ignore the effects of the extracellular matrix stiffness, failing to reveal the heterogeneity of cell membrane receptors expression. Herein, we developed an in-situ surface-enhanced Raman scattering (SERS) imaging method to visualize single-cell membrane receptors on substrates with different stiffness. Two SERS substrates, Au@4-mercaptobenzonitrile@Ag@Sgc8c and Au@4-pethynylaniline@Ag@SYL3c, were employed to specifically target protein tyrosine kinase-7 (PTK7) and epithelial cell adhesion molecule (EpCAM), respectively. The polyacrylamide (PA) gels with tunable stiffness (2.5-25 kPa) were constructed to mimic extracellular matrix. The simultaneous SERS imaging of dual membrane receptors on single cancer cells on substrates with different stiffness was achieved. Our findings reveal decreased expression of PTK7 and EpCAM on cells cultured on stiffer substrates and higher migration ability of the cells. The results elucidate the heterogeneity of membrane receptors expression of cells cultured on the substrates with different stiffness. This single-cell analysis method offers an in-situ platform for investigating the impacts of extracellular matrix stiffness on the expression of membrane receptors, providing insights into the role of cell membrane receptors in cancer metastasis.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Wenshu Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jiahui Gu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jie Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yue Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
18
|
Mohamadian Namaqi M, Moll F, Wiedemeier S, Grodrian A, Lemke K. Dynamic cell culture modulates colon cancer cell migration in a novel 3D cell culture system. Sci Rep 2024; 14:18851. [PMID: 39143115 PMCID: PMC11324956 DOI: 10.1038/s41598-024-69261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
The progression of cancer cell migration, invasion and subsequent metastasis is the main cause of mortality in cancer patients. Through creating more accurate cancer models, we can achieve more precise results, which will lead to a better understanding of the invasion process. This holds promise for more effective prevention and treatment strategies. Although numerous 2D and 3D cell culture systems have been developed, they poorly reflect the in vivo situation and many questions have remained unanswered. This work describes a novel dynamic 3D cell culture system aimed at advancing our comprehension of cancer cell migration. With the newly designed cultivation chamber, 3D tumor spheroids were cultivated within a collagen I matrix in the presence of fluid flow to study the migration of cancer cells from spheroids in the matrix. Using light sheet microscopy and histology, we demonstrated that the morphology of spheroids is influenced by dynamic culture and that, in contrast to static culture, spheroids in dynamic culture are characterized by the absence of a large necrotic core. Additionally, this influence extends to an increase in the size of migration area, coupled with an increase in expression of some genes related to epithelial-mesenchymal transition (EMT). The results here highlight the importance of dynamic culture in cancer research. Although the dynamic 3D cell culture system in this study was used to investigate migration of one cell type into a matrix, it has the potential to be further developed and used for more complex models consisting of different cell types or to analyze other steps of metastasis development such as transendothelial migration or extravasation.
Collapse
Affiliation(s)
- M Mohamadian Namaqi
- Department of Bioprocess Engineering, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Heilbad Heiligenstadt, Germany.
| | - F Moll
- Department of Bioprocess Engineering, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Heilbad Heiligenstadt, Germany
| | - S Wiedemeier
- Department of Bioprocess Engineering, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Heilbad Heiligenstadt, Germany
| | - A Grodrian
- Department of Bioprocess Engineering, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Heilbad Heiligenstadt, Germany
| | - K Lemke
- Department of Bioprocess Engineering, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Heilbad Heiligenstadt, Germany
| |
Collapse
|
19
|
Xue Y, Xue C, Song W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol (Dordr) 2024; 47:1071-1089. [PMID: 38324230 DOI: 10.1007/s13402-024-00923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.
Collapse
Affiliation(s)
- Ying Xue
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| | - Cong Xue
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
20
|
Zhang X, Yue K, Zhang X. Numerical investigation on flow-induced wall shear stress variation of metastatic cancer cells in lymphatics with elastic valves. Comput Methods Biomech Biomed Engin 2024:1-14. [PMID: 39023503 DOI: 10.1080/10255842.2024.2381518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Hematogenous metastasis occurs when cancer cells detach from the extracellular matrix in the primary tumor into the bloodstream or lymphatic system. Elucidating the response of metastatic tumor cells in suspension to the flow conditions in lymphatics with valves from a mechanical/fluidic perspective is necessary. A physiologically relevant computational model of a lymphatic vessel with valves was constructed using fully coupled fluid-cell-vessel interactions to investigate the effects of lymphatic vessel contractility, valve properties, and cell size and stiffness on the variations in magnitude and gradient of the flow-induced wall shear stress (WSS) experienced by suspended tumor cells. Results indicated that the maximum WSSmax increased with the increments in cell diameter, vessel contraction amplitude, and valve stiffness. The decrease in vessel contraction period and valve aspect ratio also increased the maximum WSSmax. The influence of the properties of the valve on the WSS was more significant among the factors mentioned above. The maximum WSSmax acting on the cancer cell when the cell reversed the direction of its motion in the valve region increased by 0.5-1.4 times that before the cell entered the valve region. The maximum change in WSS was in the range of 0.004-0.028 Pa/µm depending on the factors studied. They slightly exceeded the values associated with breast cancer cell apoptosis. The results of this study provide biofluid mechanics-based support for mechanobiological research on the metastasis of metastatic cancer cells in suspension within the lymphatics.
Collapse
Affiliation(s)
- Xilong Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
- Shunde Innovation School, University of Science and Technology Beijing, Shunde, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
- Shunde Innovation School, University of Science and Technology Beijing, Shunde, China
| |
Collapse
|
21
|
Li W, Guo Z, Zhou Z, Zhou Z, He H, Sun J, Zhou X, Chin YR, Zhang L, Yang M. Distinguishing high-metastasis-potential circulating tumor cells through fluidic shear stress in a bloodstream-like microfluidic circulatory system. Oncogene 2024; 43:2295-2306. [PMID: 38858591 DOI: 10.1038/s41388-024-03075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Circulating tumor cells (CTCs) play a critical role as initiators in tumor metastasis, which unlocks an irreversible process of cancer progression. Regarding the fluid environment of intravascular CTCs, a comprehensive understanding of the impact of hemodynamic shear stress on CTCs is of profound significance but remains vague. Here, we report a microfluidic circulatory system that can emulate the CTC microenvironment to research the responses of typical liver cancer cells to varying levels of fluid shear stress (FSS). We observe that HepG2 cells surviving FSS exhibit a marked overexpression of TLR4 and TPPP3, which are shown to be associated with the colony formation, migration, and anti-apoptosis abilities of HepG2. Furthermore, overexpression of these two genes in another liver cancer cell line with normally low TLR4 and TPPP3 expression, SK-Hep-1 cells, by lentivirus-mediated transfection also confirms the critical role of TLR4 and TPPP3 in improving colony formation, migration, and survival capability under a fluid environment. Interestingly, in vivo experiments show SK-Hep-1 cells, overexpressed with these genes, have enhanced metastatic potential to the liver and lungs in mouse models via tail vein injection. Mechanistically, TLR4 and TPPP3 upregulated by FSS may increase FSS-mediated cell survival and metastasis through the p53-Bax signaling pathway. Moreover, elevated levels of these genes correlate with poorer overall survival in liver cancer patients, suggesting that our findings could offer new therapeutic strategies for early cancer diagnosis and targeted treatment development.
Collapse
Affiliation(s)
- Wenxiu Li
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhengdong Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Y Rebecca Chin
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China.
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China.
| |
Collapse
|
22
|
Khan IR, Sadida HQ, Hashem S, Singh M, Macha MA, Al-Shabeeb Akil AS, Khurshid I, Bhat AA. Therapeutic implications of signaling pathways and tumor microenvironment interactions in esophageal cancer. Biomed Pharmacother 2024; 176:116873. [PMID: 38843587 DOI: 10.1016/j.biopha.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Esophageal cancer (EC) is significantly influenced by the tumor microenvironment (TME) and altered signaling pathways. Downregulating these pathways in EC is essential for suppressing tumor development, preventing metastasis, and enhancing therapeutic outcomes. This approach can increase tumor sensitivity to treatments, enhance patient outcomes, and inhibit cancer cell proliferation and spread. The TME, comprising cellular and non-cellular elements surrounding the tumor, significantly influences EC's development, course, and treatment responsiveness. Understanding the complex relationships within the TME is crucial for developing successful EC treatments. Immunotherapy is a vital TME treatment for EC. However, the heterogeneity within the TME limits the application of anticancer drugs outside clinical settings. Therefore, identifying reliable microenvironmental biomarkers that can detect therapeutic responses before initiating therapy is crucial. Combining approaches focusing on EC signaling pathways with TME can enhance treatment outcomes. This integrated strategy aims to interfere with essential signaling pathways promoting cancer spread while disrupting factors encouraging tumor development. Unraveling aberrant signaling pathways and TME components can lead to more focused and efficient treatment approaches, identifying specific cellular targets for treatments. Targeting the TME and signaling pathways may reduce metastasis risk by interfering with mechanisms facilitating cancer cell invasion and dissemination. In conclusion, this integrative strategy has significant potential for improving patient outcomes and advancing EC research and therapy. This review discusses the altered signaling pathways and TME in EC, focusing on potential future therapeutics.
Collapse
Affiliation(s)
- Inamu Rashid Khan
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine Doha 26999, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Ibraq Khurshid
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
23
|
Liang L, Song X, Zhao H, Lim CT. Insights into the mechanobiology of cancer metastasis via microfluidic technologies. APL Bioeng 2024; 8:021506. [PMID: 38841688 PMCID: PMC11151435 DOI: 10.1063/5.0195389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
During cancer metastasis, cancer cells will encounter various microenvironments with diverse physical characteristics. Changes in these physical characteristics such as tension, stiffness, viscosity, compression, and fluid shear can generate biomechanical cues that affect cancer cells, dynamically influencing numerous pathophysiological mechanisms. For example, a dense extracellular matrix drives cancer cells to reorganize their cytoskeleton structures, facilitating confined migration, while this dense and restricted space also acts as a physical barrier that potentially results in nuclear rupture. Identifying these pathophysiological processes and understanding their underlying mechanobiological mechanisms can aid in the development of more effective therapeutics targeted to cancer metastasis. In this review, we outline the advances of engineering microfluidic devices in vitro and their role in replicating tumor microenvironment to mimic in vivo settings. We highlight the potential cellular mechanisms that mediate their ability to adapt to different microenvironments. Meanwhile, we also discuss some important mechanical cues that still remain challenging to replicate in current microfluidic devices in future direction. While much remains to be explored about cancer mechanobiology, we believe the developments of microfluidic devices will reveal how these physical cues impact the behaviors of cancer cells. It will be crucial in the understanding of cancer metastasis, and potentially contributing to better drug development and cancer therapy.
Collapse
Affiliation(s)
- Lanfeng Liang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xiao Song
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | | |
Collapse
|
24
|
Sun D, Ma J, Du L, Liu Q, Yue H, Peng C, Chen H, Wang G, Liu X, Shen Y. Fluid shear stress induced-endothelial phenotypic transition contributes to cerebral ischemia-reperfusion injury and repair. APL Bioeng 2024; 8:016110. [PMID: 38414635 PMCID: PMC10898918 DOI: 10.1063/5.0174825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Long-term ischemia leads to insufficient cerebral microvascular perfusion and dysfunction. Reperfusion restores physiological fluid shear stress (FSS) but leads to serious injury. The mechanism underlying FSS-induced endothelial injury in ischemia-reperfusion injury (IRI) remains poorly understood. In this study, a rat model of middle cerebral artery occlusion was constructed to explore cerebrovascular endothelial function and inflammation in vivo. Additionally, the rat brain microvascular endothelial cells (rBMECs) were exposed to a laminar FSS of 0.5 dyn/cm2 for 6 h and subsequently restored to physiological fluid shear stress level (2 dyn/cm2) for 2 and 12 h, respectively. We found that reperfusion induced endothelial-to-mesenchymal transition (EndMT) in endothelial cells, leading to serious blood-brain barrier dysfunction and endothelial inflammation, accompanied by the nuclear accumulation of Yes-associated protein (YAP). During the later stage of reperfusion, cerebral endothelium was restored to the endothelial phenotype with a distinct change in mesenchymal-to-endothelial transition (MEndT), while YAP was translocated and phosphorylated in the cytoplasm. Knockdown of YAP or inhibition of actin polymerization markedly impaired the EndMT in rBMECs. These findings suggest that ischemia-reperfusion increased intensity of FSS triggered an EndMT process and, thus, led to endothelial inflammation and tissue injury, whereas continuous FSS induced a time-dependent reversal MEndT event contributing to the endothelial repair. This study provides valuable insight for therapeutic strategies targeting IRI.
Collapse
Affiliation(s)
| | - Jia Ma
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lingyu Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Qiao Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyan Yue
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chengxiu Peng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hanxiao Chen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
25
|
Clevenger AJ, McFarlin MK, Gorley JPM, Solberg SC, Madyastha AK, Raghavan SA. Advances in cancer mechanobiology: Metastasis, mechanics, and materials. APL Bioeng 2024; 8:011502. [PMID: 38449522 PMCID: PMC10917464 DOI: 10.1063/5.0186042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Within the tumor microenvironment (TME), tumor cells are exposed to numerous mechanical forces, both internally and externally, which contribute to the metastatic cascade. From the initial growth of the tumor to traveling through the vasculature and to the eventual colonization of distant organs, tumor cells are continuously interacting with their surroundings through physical contact and mechanical force application. The mechanical forces found in the TME can be simplified into three main categories: (i) shear stress, (ii) tension and strain, and (iii) solid stress and compression. Each force type can independently impact tumor growth and progression. Here, we review recent bioengineering strategies, which have been employed to establish the connection between mechanical forces and tumor progression. While many cancers are explored in this review, we place great emphasis on cancers that are understudied in their response to mechanical forces, such as ovarian and colorectal cancers. We discuss the major steps of metastatic transformation and present novel, recent advances in model systems used to study how mechanical forces impact the study of the metastatic cascade. We end by summarizing systems that incorporate multiple forces to expand the complexity of our understanding of how tumor cells sense and respond to mechanical forces in their environment. Future studies would also benefit from the inclusion of time or the aspect of mechanical memory to further enhance this field. While the knowledge of mechanical forces and tumor metastasis grows, developing novel materials and in vitro systems are essential to providing new insight into predicting, treating, and preventing cancer progression and metastasis.
Collapse
Affiliation(s)
| | - Maygan K. McFarlin
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - John Paul M. Gorley
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Spencer C. Solberg
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Anirudh K. Madyastha
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
26
|
Ortega Quesada BA, Cuccia J, Coates R, Nassar B, Littlefield E, Martin EC, Melvin AT. A modular microfluidic platform to study how fluid shear stress alters estrogen receptor phenotype in ER + breast cancer cells. MICROSYSTEMS & NANOENGINEERING 2024; 10:25. [PMID: 38370397 PMCID: PMC10873338 DOI: 10.1038/s41378-024-00653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024]
Abstract
Metastatic breast cancer leads to poor prognoses and worse outcomes in patients due to its invasive behavior and poor response to therapy. It is still unclear what biophysical and biochemical factors drive this more aggressive phenotype in metastatic cancer; however recent studies have suggested that exposure to fluid shear stress in the vasculature could cause this. In this study a modular microfluidic platform capable of mimicking the magnitude of fluid shear stress (FSS) found in human vasculature was designed and fabricated. This device provides a platform to evaluate the effects of FSS on MCF-7 cell line, an estrogen receptor positive (ER+) breast cancer cell line, during circulation in the vessels. Elucidation of the effects of FSS on MCF-7 cells was carried out utilizing two approaches: single cell analysis and bulk analysis. For single cell analysis, cells were trapped in a microarray after exiting the serpentine channel and followed by immunostaining on the device (on-chip). Bulk analysis was performed after cells were collected in a microtube at the outlet of the microfluidic serpentine channel for western blotting (off-chip). It was found that cells exposed to an FSS magnitude of 10 dyn/cm2 with a residence time of 60 s enhanced expression of the proliferation marker Ki67 in the MCF-7 cell line at a single cell level. To understand possible mechanisms for enhanced Ki67 expression, on-chip and off-chip analyses were performed for pro-growth and survival pathways ERK, AKT, and JAK/STAT. Results demonstrated that after shearing the cells phosphorylation of p-AKT, p-mTOR, and p-STAT3 were observed. However, there was no change in p-ERK1/2. AKT is a mediator of ER rapid signaling, analysis of phosphorylated ERα was carried out and no significant differences between sheared and non-sheared populations were observed. Taken together these results demonstrate that FSS can increase phosphorylation of proteins associated with a more aggressive phenotype in circulating cancer cells. These findings provide additional information that may help inform why cancer cells located at metastatic sites are usually more aggressive than primary breast cancer cells.
Collapse
Affiliation(s)
- Braulio Andrés Ortega Quesada
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC 29634 USA
| | - Jonathan Cuccia
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Rachael Coates
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Blake Nassar
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Ethan Littlefield
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Elizabeth C. Martin
- Department Medicine, Section Hematology and Medical Oncology, Tulane University, New Orleans, LA 70118 USA
| | - Adam T. Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
27
|
Zhang Y, O'Mahony A, He Y, Barber T. Hydrodynamic shear stress' impact on mammalian cell properties and its applications in 3D bioprinting. Biofabrication 2024; 16:022003. [PMID: 38277669 DOI: 10.1088/1758-5090/ad22ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
As an effective cell assembly method, three-dimensional bioprinting has been widely used in building organ models and tissue repair over the past decade. However, different shear stresses induced throughout the entire printing process can cause complex impacts on cell integrity, including reducing cell viability, provoking morphological changes and altering cellular functionalities. The potential effects that may occur and the conditions under which these effects manifest are not clearly understood. Here, we review systematically how different mammalian cells respond under shear stress. We enumerate available experimental apparatus, and we categorise properties that can be affected under disparate stress patterns. We also summarise cell damaging mathematical models as a predicting reference for the design of bioprinting systems. We concluded that it is essential to quantify specific cell resistance to shear stress for the optimisation of bioprinting systems. Besides, as substantial positive impacts, including inducing cell alignment and promoting cell motility, can be generated by shear stress, we suggest that we find the proper range of shear stress and actively utilise its positive influences in the development of future systems.
Collapse
Affiliation(s)
- Yani Zhang
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Aidan O'Mahony
- Inventia Life Science Pty Ltd, Alexandria, Sydney, NSW 2015, Australia
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tracie Barber
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Wendong Y, Jiali J, Qiaomei F, Yayun W, Xianze X, Zheng S, Wei H. Biomechanical forces and force-triggered drug delivery in tumor neovascularization. Biomed Pharmacother 2024; 171:116117. [PMID: 38171243 DOI: 10.1016/j.biopha.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Tumor angiogenesis is one of the typical hallmarks of tumor occurrence and development, and tumor neovascularization also exhibits distinct characteristics from normal blood vessels. As the number of cells and matrix inside the tumor increases, the biomechanical force is enhanced, specifically manifested as solid stress, fluid stress, stiffness, and topology. This mechanical microenvironment also provides shelter for tumors and intensifies angiogenesis, providing oxygen and nutritional support for tumor progression. During tumor development, the biomechanical microenvironment also emerges, which in turn feeds back to regulate the tumor progression, including tumor angiogenesis, and biochemical and biomechanical signals can regulate tumor angiogenesis. Blood vessels possess inherent sensitivity to mechanical stimuli, but compared to the extensive research on biochemical signal regulation, the study of the regulation of tumor neovascularization by biomechanical signals remains relatively scarce. Biomechanical forces can affect the phenotypic characteristics and mechanical signaling pathways of tumor blood vessels, directly regulating angiogenesis. Meanwhile, they can indirectly regulate tumor angiogenesis by causing an imbalance in angiogenesis signals and affecting stromal cell function. Understanding the regulatory mechanism of biomechanical forces in tumor angiogenesis is beneficial for better identifying and even taming the mechanical forces involved in angiogenesis, providing new therapeutic targets for tumor vascular normalization. Therefore, we summarized the composition of biomechanical forces and their direct or indirect regulation of tumor neovascularization. In addition, this review discussed the use of biomechanical forces in combination with anti-angiogenic therapies for the treatment of tumors, and biomechanical forces triggered delivery systems.
Collapse
Affiliation(s)
- Yao Wendong
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China
| | - Jiang Jiali
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China
| | - Fan Qiaomei
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China
| | - Weng Yayun
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China
| | - Xie Xianze
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China
| | - Shi Zheng
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China.
| | - Huang Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China.
| |
Collapse
|
29
|
Fish A, Kulkarni A. Flow-Induced Shear Stress Primes NLRP3 Inflammasome Activation in Macrophages via Piezo1. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4505-4518. [PMID: 38240257 DOI: 10.1021/acsami.3c18645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The NLRP3 inflammasome is a crucial component of the innate immune system, playing a pivotal role in initiating and regulating the body's inflammatory response to various pathogens and cellular damage. Environmental stimuli, such as temperature, pH level, and nutrient availability, can influence the behavior and functions of innate immune cells, including immune cell activity, proliferation, and cytokine production. However, there is limited understanding regarding how mechanical forces, like shear stress, govern the intrinsic inflammatory reaction, particularly the activation of the NLRP3 inflammasome, and how shear stress impacts NLRP3 inflammasome activation through its capacity to induce alterations in gene expression and cytokine secretion. Here, we investigated how shear stress can act as a priming signal in NLRP3 inflammasome activation by exposing immortalized bone marrow-derived macrophages (iBMDMs) to numerous physiologically relevant magnitudes of shear stress before chemically inducing inflammasome activation. We demonstrated that shear stress of large magnitudes was able to prime iBMDMs more effectively for inflammasome activation compared to lower shear stress magnitudes, as quantified by the percentage of cells where ASC-CFP specks formed and IL-1β secretion, the hallmarks of inflammasome activation. Testing this in NLRP3 and caspase-1 knockout iBMDMs showed that the NLRP3 inflammasome was primarily primed for activation due to shear stress exposure. Quantitative polymerase chain reaction (qPCR) and a small-molecule inhibitor study mechanistically determined that shear stress regulates the NLRP3 inflammasome by upregulating Piezo1, IKKβ, and NLRP3. These findings offer insights into the mechanistic relationship among physiological shear stresses, inflammasome activation, and their impact on the progression of inflammatory diseases and their interconnected pathogenesis.
Collapse
Affiliation(s)
- Adam Fish
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
30
|
Rahman Z, Bordoloi AD, Rouhana H, Tavasso M, van der Zon G, Garbin V, Ten Dijke P, Boukany PE. Interstitial flow potentiates TGF-β/Smad-signaling activity in lung cancer spheroids in a 3D-microfluidic chip. LAB ON A CHIP 2024; 24:422-433. [PMID: 38087979 PMCID: PMC10826459 DOI: 10.1039/d3lc00886j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024]
Abstract
Within the tumor microenvironment (TME), cancer cells use mechanotransduction pathways to convert biophysical forces to biochemical signals. However, the underlying mechanisms and functional significance of these pathways remain largely unclear. The upregulation of mechanosensitive pathways from biophysical forces such as interstitial flow (IF), leads to the activation of various cytokines, including transforming growth factor-β (TGF-β). TGF-β promotes in part via a Smad-dependent signaling pathway the epithelial-mesenchymal transition (EMT) in cancer cells. The latter process is linked to increased cancer cell motility and invasion. Current research models have limited ability to investigate the combined effects of biophysical forces (such as IF) and cytokines (TGF-β) in a 3D microenvironment. We used a 3D-matrix based microfluidic platform to demonstrate the potentiating effect of IF on exogenous TGF-β induced upregulation of the Smad-signaling activity and the expression of mesenchymal marker vimentin in A549 lung cancer spheroids. To monitor this, we used stably integrated fluorescent based reporters into the A549 cancer cell genome. Our results demonstrate that IF enhances exogenous TGF-β induced Smad-signaling activity in lung cancer spheroids embedded in a matrix microenvironment. In addition, we observed an increased cell motility for A549 spheroids when exposed to IF and TGF-β. Our 3D-microfluidic model integrated with real-time imaging provides a powerful tool for investigating cancer cell signaling and motility associated with invasion characteristics in a physiologically relevant TME.
Collapse
Affiliation(s)
- Zaid Rahman
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Ankur Deep Bordoloi
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Haifa Rouhana
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Margherita Tavasso
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Gerard van der Zon
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Valeria Garbin
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Pouyan E Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
31
|
冯 唐, 杨 欣, 王 琦, 刘 肖. [Hepatocellular Carcinoma-Derived Exosomes: Key Players in Intercellular Communication Within the Tumor Microenvironment]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:6-12. [PMID: 38322525 PMCID: PMC10839483 DOI: 10.12182/20240160203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 02/08/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths in the world. Due to the insidious onset and rapid progression and a lack of effective treatments, the prognosis of patients with HCC is extremely poor, with the average 5-year survival rate being less than 10%. The tumor microenvironment (TME), the internal environment in which HCC develops, can regulate the oncogenesis, development, invasion, and metastasis of HCC. During the process of cancer progression, HCC cells can regulate the biological behaviors of tumor cells, cancer-associated fibroblasts, cancer-associated immune cells, and other cells in the TME by releasing exosomes containing specific signals, thereby promoting cancer progression. However, the exact molecular mechanisms and the roles of exosomes in the specific cellular regulation of these processes are not fully understood. Herein, we summarized the TME components of HCC, the sources and the biological traits of exosomes in the TME, and the impact of mechanical factors on exosomes. In addition, special attention was given to the discussion of the effects of HCC-exosomes on different types of cells in the microenvironment. There are still many difficulties to be overcome before exosomes can be applied as carriers in clinical cancer treatment. First of all, the homogeneity of exosomes is difficult to ensure. Secondly, exosomes are mainly administered through subcutaneous injection. Although this method is simple and easy to implement, the absorption efficiency is not ideal. Thirdly, exosome extraction methods are limited in number and inefficient, making it difficult to prepare exosomes in large quantities. It is important to ensure that exosomes are used in sufficient quantities to trigger an effective tumor immune response, especially for exosome-mediated tumor immunotherapy. With the improvement in identification, isolation, and purification technology, exosomes are expected to be successfully used in the clinical diagnosis of early-stage HCC and the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- 唐 冯
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 欣蕊 杨
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 琦为 王
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 肖珩 刘
- 四川大学华西基础医学与法医学院 生物医学工程研究室 (成都 610041)Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
33
|
Claude-Taupin A, Isnard P, Bagattin A, Kuperwasser N, Roccio F, Ruscica B, Goudin N, Garfa-Traoré M, Regnier A, Turinsky L, Burtin M, Foretz M, Pontoglio M, Morel E, Viollet B, Terzi F, Codogno P, Dupont N. The AMPK-Sirtuin 1-YAP axis is regulated by fluid flow intensity and controls autophagy flux in kidney epithelial cells. Nat Commun 2023; 14:8056. [PMID: 38052799 PMCID: PMC10698145 DOI: 10.1038/s41467-023-43775-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Shear stress generated by urinary fluid flow is an important regulator of renal function. Its dysregulation is observed in various chronic and acute kidney diseases. Previously, we demonstrated that primary cilium-dependent autophagy allows kidney epithelial cells to adapt their metabolism in response to fluid flow. Here, we show that nuclear YAP/TAZ negatively regulates autophagy flux in kidney epithelial cells subjected to fluid flow. This crosstalk is supported by a primary cilium-dependent activation of AMPK and SIRT1, independently of the Hippo pathway. We confirm the relevance of the YAP/TAZ-autophagy molecular dialog in vivo using a zebrafish model of kidney development and a unilateral ureteral obstruction mouse model. In addition, an in vitro assay simulating pathological accelerated flow observed at early stages of chronic kidney disease (CKD) activates YAP, leading to a primary cilium-dependent inhibition of autophagic flux. We confirm this YAP/autophagy relationship in renal biopsies from patients suffering from diabetic kidney disease (DKD), the leading cause of CKD. Our findings demonstrate the importance of YAP/TAZ and autophagy in the translation of fluid flow into cellular and physiological responses. Dysregulation of this pathway is associated with the early onset of CKD.
Collapse
Affiliation(s)
- Aurore Claude-Taupin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France.
| | - Pierre Isnard
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Alessia Bagattin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | | | - Federica Roccio
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Biagina Ruscica
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Nicolas Goudin
- Structure Fédérative de Recherche Necker, US24-UMS3633, Paris, France
| | | | - Alice Regnier
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Lisa Turinsky
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Martine Burtin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Marc Foretz
- Institut Cochin, Inserm U1016 - CNRS UMR8104 - Université Paris Cité, 75014, Paris, France
| | - Marco Pontoglio
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Etienne Morel
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Benoit Viollet
- Institut Cochin, Inserm U1016 - CNRS UMR8104 - Université Paris Cité, 75014, Paris, France
| | - Fabiola Terzi
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Patrice Codogno
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France
| | - Nicolas Dupont
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015, Paris, France.
| |
Collapse
|
34
|
Zhao Y, Sheldon M, Sun Y, Ma L. New Insights into YAP/TAZ-TEAD-Mediated Gene Regulation and Biological Processes in Cancer. Cancers (Basel) 2023; 15:5497. [PMID: 38067201 PMCID: PMC10705714 DOI: 10.3390/cancers15235497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
The Hippo pathway is conserved across species. Key mammalian Hippo pathway kinases, including MST1/2 and LATS1/2, inhibit cellular growth by inactivating the TEAD coactivators, YAP, and TAZ. Extensive research has illuminated the roles of Hippo signaling in cancer, development, and regeneration. Notably, dysregulation of Hippo pathway components not only contributes to tumor growth and metastasis, but also renders tumors resistant to therapies. This review delves into recent research on YAP/TAZ-TEAD-mediated gene regulation and biological processes in cancer. We focus on several key areas: newly identified molecular patterns of YAP/TAZ activation, emerging mechanisms that contribute to metastasis and cancer therapy resistance, unexpected roles in tumor suppression, and advances in therapeutic strategies targeting this pathway. Moreover, we provide an updated view of YAP/TAZ's biological functions, discuss ongoing controversies, and offer perspectives on specific debated topics in this rapidly evolving field.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
35
|
Cortés-Sánchez JL, Melnik D, Sandt V, Kahlert S, Marchal S, Johnson IRD, Calvaruso M, Liemersdorf C, Wuest SL, Grimm D, Krüger M. Fluid and Bubble Flow Detach Adherent Cancer Cells to Form Spheroids on a Random Positioning Machine. Cells 2023; 12:2665. [PMID: 37998400 PMCID: PMC10670461 DOI: 10.3390/cells12222665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
In preparing space and microgravity experiments, the utilization of ground-based facilities is common for initial experiments and feasibility studies. One approach to simulating microgravity conditions on Earth is to employ a random positioning machine (RPM) as a rotary bioreactor. Combined with a suitable low-mass model system, such as cell cultures, these devices simulating microgravity have been shown to produce results similar to those obtained in a space experiment under real microgravity conditions. One of these effects observed under real and simulated microgravity is the formation of spheroids from 2D adherent cancer cell cultures. Since real microgravity cannot be generated in a laboratory on Earth, we aimed to determine which forces lead to the detachment of individual FTC-133 thyroid cancer cells and the formation of tumor spheroids during culture with exposure to random positioning modes. To this end, we subdivided the RPM motion into different static and dynamic orientations of cell culture flasks. We focused on the molecular activation of the mechanosignaling pathways previously associated with spheroid formation in microgravity. Our results suggest that RPM-induced spheroid formation is a two-step process. First, the cells need to be detached, induced by the cell culture flask's rotation and the subsequent fluid flow, as well as the presence of air bubbles. Once the cells are detached and in suspension, random positioning prevents sedimentation, allowing 3D aggregates to form. In a comparative shear stress experiment using defined fluid flow paradigms, transcriptional responses were triggered comparable to exposure of FTC-133 cells to the RPM. In summary, the RPM serves as a simulator of microgravity by randomizing the impact of Earth's gravity vector especially for suspension (i.e., detached) cells. Simultaneously, it simulates physiological shear forces on the adherent cell layer. The RPM thus offers a unique combination of environmental conditions for in vitro cancer research.
Collapse
Affiliation(s)
- José Luis Cortés-Sánchez
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (D.M.); (V.S.); (S.M.); (D.G.)
| | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (D.M.); (V.S.); (S.M.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Viviann Sandt
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (D.M.); (V.S.); (S.M.); (D.G.)
| | - Stefan Kahlert
- Institute of Anatomy, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Shannon Marchal
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (D.M.); (V.S.); (S.M.); (D.G.)
| | - Ian R. D. Johnson
- Research in Space Environments Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Marco Calvaruso
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy;
| | - Christian Liemersdorf
- Department of Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany;
| | - Simon L. Wuest
- Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (D.M.); (V.S.); (S.M.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, 39106 Magdeburg, Germany
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, 39106 Magdeburg, Germany; (J.L.C.-S.); (D.M.); (V.S.); (S.M.); (D.G.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, 39106 Magdeburg, Germany
| |
Collapse
|
36
|
So WY, Wong CS, Azubuike UF, Paul CD, Sangsari PR, Gordon PB, Gong H, Maity TK, Lim P, Yang Z, Haryanto CA, Batchelor E, Jenkins LM, Morgan NY, Tanner K. YAP localization mediates mechanical adaptation of human cancer cells during extravasation in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567015. [PMID: 38076880 PMCID: PMC10705547 DOI: 10.1101/2023.11.14.567015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Biophysical profiling of primary tumors has revealed that individual tumor cells fall along a highly heterogeneous continuum of mechanical phenotypes. One idea is that a subset of tumor cells is "softer" to facilitate detachment and escape from the primary site, a step required to initiate metastasis. However, it has also been postulated that cells must be able to deform and generate sufficient force to exit into distant sites. Here, we aimed to dissect the mechanical changes that occur during extravasation and organ colonization. Using multiplexed methods of intravital microscopy and optical tweezer based active microrheology, we obtained longitudinal images and mechanical profiles of cells during organ colonization in vivo. We determined that cells were softer, more liquid like upon exit of the vasculature but stiffened and became more solid like once in the new organ microenvironment. We also determined that a YAP mediated mechanogenotype influenced the global dissemination in our in vivo and in vitro models and that reducing mechanical heterogeneity could reduce extravasation. Moreover, our high throughput analysis of mechanical phenotypes of patient samples revealed that this mechanics was in part regulated by the external hydrodynamic forces that the cancer cells experienced within capillary mimetics. Our findings indicate that disseminated cancer cells can keep mutating with a continuum landscape of mechano-phenotypes, governed by the YAP-mediated mechanosensing of hydrodynamic flow.
Collapse
Affiliation(s)
- Woong Young So
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Claudia S. Wong
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | | | - Colin D. Paul
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Paniz Rezvan Sangsari
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | | | - Hyeyeon Gong
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Tapan K. Maity
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Perry Lim
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Zhilin Yang
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | | | | | - Lisa M. Jenkins
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| | - Nicole Y. Morgan
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
| | - Kandice Tanner
- National Cancer Institute, National Institutes of Health (NIH), MD, USA
| |
Collapse
|
37
|
Dombroski JA, Rowland SJ, Fabiano AR, Knoblauch SV, Hope JM, King MR. Fluid shear stress enhances dendritic cell activation. Immunobiology 2023; 228:152744. [PMID: 37729773 PMCID: PMC10841200 DOI: 10.1016/j.imbio.2023.152744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Ex vivo activation of dendritic cells (DCs) has been widely explored for targeted therapies, although these treatments remain expensive. Reducing treatment costs while enhancing cell activation could help to make immunotherapies more accessible. Cells can be activated by both internal and external forces including fluid shear stress (FSS). FSS activates cells via opening of mechanosensitive ion channels. In this study, dendritic cells were activated by sustained exposure to circulatory levels of fluid shear stress using a cone-and-plate flow device and analyzed for activation markers. After 1 h of shear stress exposure, an increase in cytokine release was present in immortalized cells as well as phosphorylation of the proteins NF-κB and cFos in primary DCs. Changes in DC morphology, metabolism and proliferation were also observed. These compelling new findings point to the potential for using FSS to activate DCs for ex vivo therapeutics.
Collapse
Affiliation(s)
- Jenna A Dombroski
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN 37212, United States
| | - Schyler J Rowland
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN 37212, United States
| | - Abigail R Fabiano
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN 37212, United States
| | - Samantha V Knoblauch
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN 37212, United States
| | - Jacob M Hope
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN 37212, United States
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, 2414 Highland Ave, Nashville, TN 37212, United States.
| |
Collapse
|
38
|
Quesada BAO, Cuccia J, Coates R, Nassar B, Littlefield E, Martin EC, Melvin AT. A modular microfluidic platform to study how fluid shear stress alters estrogen receptor phenotype in ER + breast cancer cells. RESEARCH SQUARE 2023:rs.3.rs-3399118. [PMID: 37886527 PMCID: PMC10602101 DOI: 10.21203/rs.3.rs-3399118/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Metastatic breast cancer leads to poor prognoses and worse outcomes in patients due to its invasive behavior and poor response to therapy. It is still unclear what biophysical and biochemical factors drive this more aggressive phenotype in metastatic cancer; however recent studies have suggested that exposure to fluid shear stress in the vasculature could cause this. In this study a modular microfluidic platform capable of mimicking the magnitude of fluid shear stress (FSS) found in human vasculature was designed and fabricated. This device provides a platform to evaluate the effects of FSS on MCF-7 cell line, a receptor positive (ER+) breast cancer cell line, during circulation in the vessels. Elucidation of the effects of FSS on MCF-7 cells was carried out utilizing two approaches: single cell analysis and bulk analysis. For single cell analysis, cells were trapped in a microarray after exiting the serpentine channel and followed by immunostaining on the device (on-chip). Bulk analysis was performed after cells were collected in a microtube at the outlet of the microfluidic serpentine channel for western blotting (off-chip). It was found that cells exposed to an FSS magnitude of 10 dyn/cm2 with a residence time of 60 seconds enhanced expression of the proliferation marker Ki67 in the MCF-7 cell line at a single cell level. To understand possible mechanisms for enhanced Ki67 expression, on-chip and off-chip analyses were performed for pro-growth and survival pathways ERK, AKT, and JAK/STAT. Results demonstrated that after shearing the cells phosphorylation of p-AKT, p-mTOR, and p-STAT3 were observed. However, there was no change in p-ERK1/2. AKT is a mediator of ER rapid signaling, analysis of phosphorylated ERα was carried out and no significant differences between sheared and non-sheared populations were observed. Taken together these results demonstrate that FSS can increase phosphorylation of proteins associated with a more aggressive phenotype in circulating cancer cells. These findings provide additional information that may help inform why cancer cells located at metastatic sites are usually more aggressive than primary breast cancer cells.
Collapse
Affiliation(s)
- Braulio Andrés Ortega Quesada
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC, 29634
| | - Jonathan Cuccia
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Rachael Coates
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Blake Nassar
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Ethan Littlefield
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Elizabeth C. Martin
- Department Medicine, Section Hematology and Medical Oncology, Tulane University, New Orleans, LA, 70118
| | - Adam T. Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC, 29634
| |
Collapse
|
39
|
Espina JA, Cordeiro MH, Milivojevic M, Pajić-Lijaković I, Barriga EH. Response of cells and tissues to shear stress. J Cell Sci 2023; 136:jcs260985. [PMID: 37747423 PMCID: PMC10560560 DOI: 10.1242/jcs.260985] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Shear stress is essential for normal physiology and malignancy. Common physiological processes - such as blood flow, particle flow in the gut, or contact between migratory cell clusters and their substrate - produce shear stress that can have an impact on the behavior of different tissues. In addition, shear stress has roles in processes of biomedical interest, such as wound healing, cancer and fibrosis induced by soft implants. Thus, understanding how cells react and adapt to shear stress is important. In this Review, we discuss in vivo and in vitro data obtained from vascular and epithelial models; highlight the insights these have afforded regarding the general mechanisms through which cells sense, transduce and respond to shear stress at the cellular levels; and outline how the changes cells experience in response to shear stress impact tissue organization. Finally, we discuss the role of shear stress in collective cell migration, which is only starting to be appreciated. We review our current understanding of the effects of shear stress in the context of embryo development, cancer and fibrosis, and invite the scientific community to further investigate the role of shear stress in these scenarios.
Collapse
Affiliation(s)
- Jaime A. Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), 2780-156 Oeiras, Portugal
| | - Marilia H. Cordeiro
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), 2780-156 Oeiras, Portugal
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, 11120 Belgrade, Serbia
| | | | - Elias H. Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), 2780-156 Oeiras, Portugal
| |
Collapse
|
40
|
Wang Y, Wang P, Zhang Z, Zhou J, Fan J, Sun Y. Dissecting the tumor ecosystem of liver cancers in the single-cell era. Hepatol Commun 2023; 7:e0248. [PMID: 37639704 PMCID: PMC10461950 DOI: 10.1097/hc9.0000000000000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/24/2023] [Indexed: 08/31/2023] Open
Abstract
Primary liver cancers (PLCs) are a broad class of malignancies that include HCC, intrahepatic cholangiocarcinoma, and combined hepatocellular and intrahepatic cholangiocarcinoma. PLCs are often associated with a poor prognosis due to their high relapse and low therapeutic response rates. Importantly, PLCs exist within a dynamic and complex tumor ecosystem, which includes malignant, immune, and stromal cells. It is critical to dissect the PLC tumor ecosystem to uncover the underlying mechanisms associated with tumorigenesis, relapse, and treatment resistance to facilitate the discovery of novel therapeutic targets. Single-cell and spatial multi-omics sequencing techniques offer an unprecedented opportunity to elucidate spatiotemporal interactions among heterogeneous cell types within the complex tumor ecosystem. In this review, we describe the latest advances in single-cell and spatial technologies and review their applications with respect to dissecting liver cancer tumor ecosystems.
Collapse
|
41
|
Diamantopoulou Z, Gvozdenovic A, Aceto N. A new time dimension in the fight against metastasis. Trends Cell Biol 2023; 33:736-748. [PMID: 36967300 DOI: 10.1016/j.tcb.2023.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Despite advances in uncovering vulnerabilities, identifying biomarkers, and developing more efficient treatments, cancer remains a threat because of its ability to progress while acquiring resistance to therapy. The circadian rhythm governs most of the cellular functions implicated in cancer progression, and its exploitation therefore opens new promising directions in the fight against metastasis. In this review we summarize the role of the circadian rhythm in tumor development and progression, with emphasis on the circadian rhythm-regulated elements that control the generation of circulating tumor cells (CTCs) and metastasis. We then present data on chronotherapy and discuss how circadian rhythm investigations may open new paths to more effective anticancer treatments.
Collapse
Affiliation(s)
- Zoi Diamantopoulou
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Zhou M, Li K, Luo KQ. Shear Stress Drives the Cleavage Activation of Protease-Activated Receptor 2 by PRSS3/Mesotrypsin to Promote Invasion and Metastasis of Circulating Lung Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301059. [PMID: 37395651 PMCID: PMC10477893 DOI: 10.1002/advs.202301059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/04/2023] [Indexed: 07/04/2023]
Abstract
When circulating tumor cells (CTCs) travel in circulation, they can be killed by detachment-induced anoikis and fluidic shear stress (SS)-mediated apoptosis. Circulatory treatment, which can make CTCs detached but also generate SS, can increase metastasis of cancer cells. To identify SS-specific mechanosensors without detachment impacts, a microfluidic circulatory system is used to generate arteriosus SS and compare transcriptome profiles of circulating lung cancer cells with suspended cells. Half of the cancer cells can survive SS damage and show higher invasion ability. Mesotrypsin (PRSS3), protease-activated receptor 2 (PAR2), and the subunit of activating protein 1, Fos-related antigen 1 (FOSL1), are upregulated by SS, and their high expression is responsible for promoting invasion and metastasis. SS triggers PRSS3 to cleave the N-terminal inhibitory domain of PAR2 within 2 h. As a G protein-coupled receptor, PAR2 further activates the Gαi protein to turn on the Src-ERK/p38/JNK-FRA1/cJUN axis to promote the expression of epithelial-mesenchymal transition markers, and also PRSS3, which facilitates metastasis. Enriched PRSS3, PAR2, and FOSL1 in human tumor samples and their correlations with worse outcomes reveal their clinical significance. PAR2 may serve as an SS-specific mechanosensor cleavable by PRSS3 in circulation, which provides new insights for targeting metastasis-initiating CTCs.
Collapse
Affiliation(s)
- Muya Zhou
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SAR999078China
| | - Koukou Li
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SAR999078China
| | - Kathy Qian Luo
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SAR999078China
- Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacao SAR999078China
| |
Collapse
|
43
|
Juste-Lanas Y, Hervas-Raluy S, García-Aznar JM, González-Loyola A. Fluid flow to mimic organ function in 3D in vitro models. APL Bioeng 2023; 7:031501. [PMID: 37547671 PMCID: PMC10404142 DOI: 10.1063/5.0146000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 08/08/2023] Open
Abstract
Many different strategies can be found in the literature to model organ physiology, tissue functionality, and disease in vitro; however, most of these models lack the physiological fluid dynamics present in vivo. Here, we highlight the importance of fluid flow for tissue homeostasis, specifically in vessels, other lumen structures, and interstitium, to point out the need of perfusion in current 3D in vitro models. Importantly, the advantages and limitations of the different current experimental fluid-flow setups are discussed. Finally, we shed light on current challenges and future focus of fluid flow models applied to the newest bioengineering state-of-the-art platforms, such as organoids and organ-on-a-chip, as the most sophisticated and physiological preclinical platforms.
Collapse
Affiliation(s)
| | - Silvia Hervas-Raluy
- Department of Mechanical Engineering, Engineering Research Institute of Aragón (I3A), University of Zaragoza, Zaragoza, Spain
| | | | | |
Collapse
|
44
|
Zhang Y, Kitagawa T, Furutani-Seiki M, Yoshimura SH. Yes-associated protein regulates cortical actin architecture and dynamics through intracellular translocation of Rho GTPase-activating protein 18. FASEB J 2023; 37:e23161. [PMID: 37638562 DOI: 10.1096/fj.202201992r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Yes-associated protein (YAP) is a transcriptional co-activator that controls the transcription of target genes and modulates the structures of various cytoskeletal architecture as mechanical responses. Although it has been known that YAP regulates actin-regulatory proteins, the detailed molecular mechanism of how they control and coordinate intracellular actin architecture remains elusive. Herein, we aimed to examine the structure and dynamics of intracellular actin architecture from molecular to cellular scales in normal and YAP-knockout (YAP-KO) cells utilizing high-speed atomic force microscopy (HS-AFM) for live-cell imaging and other microscope-based mechanical manipulation and measurement techniques. YAP-KO Madin-Darby canine kidney cells had a higher density and turnover of actin filaments in the cell cortex and a higher elastic modulus. Laser aberration assay demonstrated that YAP-KO cells were more resistant to damage than normal cells. We also found that Rho GTPase-activating protein 18 (ARHGAP18), a downstream factor of YAP, translocated from the cortex to the edge of sparsely cultured YAP-KO cells. It resulted in high RhoA activity and promotion of actin polymerization in the cell cortex and their reductions at the edge. HS-AFM imaging of live cell edge and a cell-migration assay demonstrated lower membrane dynamics and motility of YAP-KO cells than those of normal cells, suggesting lower actin dynamics at the edge. Together, these results demonstrate that a YAP-dependent pathway changes the intracellular distribution of RhoGAP and modulates actin dynamics in different parts of the cell, providing a mechanistic insight into how a mechano-sensitive transcription cofactor regulates multiple intracellular actin architecture and coordinates mechano-responses.
Collapse
Affiliation(s)
- Yanshu Zhang
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takao Kitagawa
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | | | | |
Collapse
|
45
|
Clevenger AJ, McFarlin MK, Collier CA, Sheshadri VS, Madyastha AK, Gorley JPM, Solberg SC, Stratman AN, Raghavan SA. Peristalsis-Associated Mechanotransduction Drives Malignant Progression of Colorectal Cancer. Cell Mol Bioeng 2023; 16:261-281. [PMID: 37811008 PMCID: PMC10550901 DOI: 10.1007/s12195-023-00776-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/21/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction In the colorectal cancer (CRC) tumor microenvironment, cancerous and precancerous cells continuously experience mechanical forces associated with peristalsis. Given that mechanical forces like shear stress and strain can positively impact cancer progression, we explored the hypothesis that peristalsis may also contribute to malignant progression in CRC. We defined malignant progression as enrichment of cancer stem cells and the acquisition of invasive behaviors, both vital to CRC progression. Methods We leveraged our peristalsis bioreactor to expose CRC cell lines (HCT116), patient-derived xenograft (PDX1,2) lines, or non-cancerous intestinal cells (HIEC-6) to forces associated with peristalsis in vitro. Cells were maintained in static control conditions or exposed to peristalsis for 24 h prior to assessment of cancer stem cell (CSC) emergence or the acquisition of invasive phenotypes. Results Exposure of HCT116 cells to peristalsis significantly increased the emergence of LGR5+ CSCs by 1.8-fold compared to static controls. Peristalsis enriched LGR5 positivity in several CRC cell lines, notably significant in KRAS mutant lines. In contrast, peristalsis failed to increase LGR5+ in non-cancerous intestinal cells, HIEC-6. LGR5+ emergence downstream of peristalsis was dependent on ROCK and Wnt activity, and not YAP1 activation. Additionally, HCT116 cells adopted invasive morphologies when exposed to peristalsis, with increased filopodia density and epithelial to mesenchymal gene expression, in a Wnt dependent manner. Conclusions Peristalsis associated forces drive malignant progression of CRC via ROCK, YAP1, and Wnt-related mechanotransduction. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00776-w.
Collapse
Affiliation(s)
- Abigail J. Clevenger
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Maygan K. McFarlin
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Claudia A. Collier
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Vibha S. Sheshadri
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Anirudh K. Madyastha
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - John Paul M. Gorley
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Spencer C. Solberg
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Amber N. Stratman
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Shreya A. Raghavan
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX USA
| |
Collapse
|
46
|
Zhou T, Li X, Liu J, Hao J. The Hippo/YAP signaling pathway: the driver of cancer metastasis. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0164. [PMID: 37493303 PMCID: PMC10466436 DOI: 10.20892/j.issn.2095-3941.2023.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/27/2023] Open
Affiliation(s)
- Tianxing Zhou
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xueyang Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Jing Liu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
47
|
Guo M, Zhang Y, Wu L, Sheng Y, Zhao J, Wang Z, Wang H, Zhang L, Xiao H. Dynamic Phosphoproteomics of BRS3 Activation Reveals the Hippo Signaling Pathway for Cell Migration. J Proteome Res 2023. [PMID: 37368948 DOI: 10.1021/acs.jproteome.3c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Bombesin receptor subtype-3 (BRS3) is an orphan G-protein coupled receptor (GPCR) that is involved in a variety of pathological and physiological processes, while its biological functions and underlying regulatory mechanisms remain largely unknown. In this study, a quantitative phosphoproteomics approach was employed to comprehensively decipher the signal transductions that occurred upon intracellular BRS3 activation. The lung cancer cell line H1299-BRS3 was treated with MK-5046, an agonist of BRS3, for different durations. Harvested cellular proteins were digested and phosphopeptides were enriched by immobilized titanium (IV) ion affinity chromatography (Ti4+-IMAC) for label-free quantification (LFQ) analysis. A total of 11,938 phosphopeptides were identified, corresponding to 3,430 phosphoproteins and 10,820 phosphosites. Data analysis revealed that 27 phosphopeptides corresponding to six proteins were involved in the Hippo signaling pathway, which was significantly regulated by BRS3 activation. Verification experiments demonstrated that downregulation of the Hippo signaling pathway caused by BRS3 activation could induce the dephosphorylation and nucleus localization of the Yes-associated protein (YAP), and its association with cell migration was further confirmed by kinase inhibition. Our data collectively demonstrate that BRS3 activation contributes to cell migration through downregulation of the Hippo signaling pathway.
Collapse
Affiliation(s)
- Miao Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lehao Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ye Sheng
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaqi Zhao
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
48
|
Kurma K, Alix-Panabières C. Mechanobiology and survival strategies of circulating tumor cells: a process towards the invasive and metastatic phenotype. Front Cell Dev Biol 2023; 11:1188499. [PMID: 37215087 PMCID: PMC10196185 DOI: 10.3389/fcell.2023.1188499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Metastatic progression is the deadliest feature of cancer. Cancer cell growth, invasion, intravasation, circulation, arrest/adhesion and extravasation require specific mechanical properties to allow cell survival and the completion of the metastatic cascade. Circulating tumor cells (CTCs) come into contact with the capillary bed during extravasation/intravasation at the beginning of the metastatic cascade. However, CTC mechanobiology and survival strategies in the bloodstream, and specifically in the microcirculation, are not well known. A fraction of CTCs can extravasate and colonize distant areas despite the biomechanical constriction forces that are exerted by the microcirculation and that strongly decrease tumor cell survival. Furthermore, accumulating evidence shows that several CTC adaptations, via molecular factors and interactions with blood components (e.g., immune cells and platelets inside capillaries), may promote metastasis formation. To better understand CTC journey in the microcirculation as part of the metastatic cascade, we reviewed how CTC mechanobiology and interaction with other cell types in the bloodstream help them to survive the harsh conditions in the circulatory system and to metastasize in distant organs.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (E LBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (E LBS), Hamburg, Germany
| |
Collapse
|
49
|
Kim OH, Jeon TJ, Shin YK, Lee HJ. Role of extrinsic physical cues in cancer progression. BMB Rep 2023; 56:287-295. [PMID: 37037673 PMCID: PMC10230013 DOI: 10.5483/bmbrep.2023-0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 07/22/2023] Open
Abstract
The tumor microenvironment (TME) is a complex system composed of many cell types and an extracellular matrix (ECM). During tumorigenesis, cancer cells constantly interact with cellular components, biochemical cues, and the ECM in the TME, all of which make the environment favorable for cancer growth. Emerging evidence has revealed the importance of substrate elasticity and biomechanical forces in tumor progression and metastasis. However, the mechanisms underlying the cell response to mechanical signals-such as extrinsic mechanical forces and forces generated within the TME-are still relatively unknown. Moreover, having a deeper understanding of the mechanisms by which cancer cells sense mechanical forces and transmit signals to the cytoplasm would substantially help develop effective strategies for cancer treatment. This review provides an overview of biomechanical forces in the TME and the intracellular signaling pathways activated by mechanical cues as well as highlights the role of mechanotransductive pathways through mechanosensors that detect the altering biomechanical forces in the TME. as an adjuvant for cancer immunotherapy.[BMB Reports 2023; 56(5): 287-295].
Collapse
Affiliation(s)
- Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Tae Jin Jeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
50
|
Kim OH, Jeon TJ, Shin YK, Lee HJ. Role of extrinsic physical cues in cancer progression. BMB Rep 2023; 56:287-295. [PMID: 37037673 PMCID: PMC10230013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
The tumor microenvironment (TME) is a complex system composed of many cell types and an extracellular matrix (ECM). During tumorigenesis, cancer cells constantly interact with cellular components, biochemical cues, and the ECM in the TME, all of which make the environment favorable for cancer growth. Emerging evidence has revealed the importance of substrate elasticity and biomechanical forces in tumor progression and metastasis. However, the mechanisms underlying the cell response to mechanical signals-such as extrinsic mechanical forces and forces generated within the TME-are still relatively unknown. Moreover, having a deeper understanding of the mechanisms by which cancer cells sense mechanical forces and transmit signals to the cytoplasm would substantially help develop effective strategies for cancer treatment. This review provides an overview of biomechanical forces in the TME and the intracellular signaling pathways activated by mechanical cues as well as highlights the role of mechanotransductive pathways through mechanosensors that detect the altering biomechanical forces in the TME. as an adjuvant for cancer immunotherapy.[BMB Reports 2023; 56(5): 287-295].
Collapse
Affiliation(s)
- Ok-Hyeon Kim
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Tae Jin Jeon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|