1
|
Wu Z, Tian Y, Chen H, Wang L, Qian S, Wu T, Zhang S, Lu J. Evolving aprotic Li-air batteries. Chem Soc Rev 2022; 51:8045-8101. [PMID: 36047454 DOI: 10.1039/d2cs00003b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium-air batteries (LABs) have attracted tremendous attention since the proposal of the LAB concept in 1996 because LABs have a super high theoretical/practical specific energy and an infinite supply of redox-active materials, and are environment-friendly. However, due to the lack of critical electrode materials and a thorough understanding of the chemistry of LABs, the development of LABs entered a germination period before 2010, when LABs research mainly focused on the development of air cathodes and carbonate-based electrolytes. In the growing period, i.e., from 2010 to the present, the investigation focused more on systematic electrode design, fabrication, and modification, as well as the comprehensive selection of electrolyte components. Nevertheless, over the past 25 years, the development of LABs has been full of retrospective steps and breakthroughs. In this review, the evolution of LABs is illustrated along with the constantly emerging design, fabrication, modification, and optimization strategies. At the end, perspectives and strategies are put forward for the development of future LABs and even other metal-air batteries.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Yuhui Tian
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Hao Chen
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Shangshu Qian
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Tianpin Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shanqing Zhang
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
2
|
Cao D, Shen X, Wang A, Yu F, Wu Y, Shi S, Freunberger SA, Chen Y. Threshold potentials for fast kinetics during mediated redox catalysis of insulators in Li–O2 and Li–S batteries. Nat Catal 2022. [DOI: 10.1038/s41929-022-00752-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Li D, Zhao L, Xia Q, Liu L, Fang W, Liu Y, Zhou Z, Long Y, Han X, Zhang Y, Wang J, Wu Y, Liu H. CoS 2 Nanoparticles Anchored on MoS 2 Nanorods As a Superior Bifunctional Electrocatalyst Boosting Li 2 O 2 Heteroepitaxial Growth for Rechargeable Li-O 2 Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105752. [PMID: 34897989 DOI: 10.1002/smll.202105752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Developing an excellent bifunctional catalyst is essential for the commercial application of Li-O2 batteries. Heterostructures exhibit great application potential in the field of energy catalysis because of the accelerated charge transfer and increased active sites on their surfaces. In this work, CoS2 nanoparticles decorated on MoS2 nanorods are constructed and act as a superior cathode catalyst for Li-O2 batteries. Coupling MoS2 and CoS2 can not only synergistically enhance their electrical conductivity and electrochemical activity, but also promote the heteroepitaxial growth of discharge products on the heterojunction interfaces, thus delivering high discharge capacity, stable cycle performance, and good rate capability.
Collapse
Affiliation(s)
- Deyuan Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Lanling Zhao
- School of Physics, Shandong University, Jinan, 250100, China
| | - Qing Xia
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Lili Liu
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu Province, Nanjing, 211816, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry, University (NFU), Nanjing, 210037, China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Zhaorui Zhou
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yuxin Long
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Xue Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yiming Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Jun Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Yuping Wu
- School of Energy Science and Engineering, Nanjing Tech University, Jiangsu Province, Nanjing, 211816, China
| | - Huakun Liu
- University of Wollongong, Institute for Superconducting and Electronic Materials (ISEM), Wollongong, NSW, 2522, Australia
| |
Collapse
|
4
|
1,3-Dimethyl-2-imidazolidinone: an ideal electrolyte solvent for high-performance Li–O2 battery with pretreated Li anode. Sci Bull (Beijing) 2022; 67:141-150. [DOI: 10.1016/j.scib.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022]
|
5
|
Jiang Y, Ding Z, Gao M, Chen C, Ni P, Zhang C, Wang B, Duan G, Lu Y. Spontaneous Deposition of Uniformly Distributed Ruthenium Nanoparticles on Graphitic Carbon Nitride for Quantifying Electrochemically Accumulated
H
2
O
2
. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuanyuan Jiang
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| | - Zhenyu Ding
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| | - Meng Gao
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| | - Chuanxia Chen
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| | - Pengjuan Ni
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| | - Chenghui Zhang
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| | - Bo Wang
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| | - Guangbin Duan
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| | - Yizhong Lu
- School of Materials Science and Engineering University of Jinan Jinan Shandong 250022 China
| |
Collapse
|
6
|
Abstract
As an emerging energy storage technology, Na-CO2 batteries with high energy density are drawing tremendous attention because of their advantages of combining cost-effective energy conversion and storage with CO2 clean recycle and utilization. Nevertheless, their commercial applications are impeded by unsatisfactory electrochemical performance including large overpotentials, poor rate capability, fast capacity deterioration, and inferior durability, which mainly results from the inefficient electrocatalysts of cathode materials. Therefore, novel structured cathode materials with efficient catalytic activity are highly desired. In this review, the latest advances of catalytic cathode materials for Na-CO2 batteries are summarized, with a special emphasis on the electrocatalysts for CO2 reduction and evolution, the formation and decomposition of discharge product, as well as their catalytic mechanism. Finally, an outlook is also proposed for the future development of Na-CO2 batteries.
Collapse
|
7
|
Liu T, Vivek JP, Zhao EW, Lei J, Garcia-Araez N, Grey CP. Current Challenges and Routes Forward for Nonaqueous Lithium-Air Batteries. Chem Rev 2020; 120:6558-6625. [PMID: 32090540 DOI: 10.1021/acs.chemrev.9b00545] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonaqueous lithium-air batteries have garnered considerable research interest over the past decade due to their extremely high theoretical energy densities and potentially low cost. Significant advances have been achieved both in the mechanistic understanding of the cell reactions and in the development of effective strategies to help realize a practical energy storage device. By drawing attention to reports published mainly within the past 8 years, this review provides an updated mechanistic picture of the lithium peroxide based cell reactions and highlights key remaining challenges, including those due to the parasitic processes occurring at the reaction product-electrolyte, product-cathode, electrolyte-cathode, and electrolyte-anode interfaces. We introduce the fundamental principles and critically evaluate the effectiveness of the different strategies that have been proposed to mitigate the various issues of this chemistry, which include the use of solid catalysts, redox mediators, solvating additives for oxygen reaction intermediates, gas separation membranes, etc. Recently established cell chemistries based on the superoxide, hydroxide, and oxide phases are also summarized and discussed.
Collapse
Affiliation(s)
- Tao Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, P. R. China.,Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - J Padmanabhan Vivek
- Chemistry Department, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Evan Wenbo Zhao
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jiang Lei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Shanghai 200092, P. R. China
| | - Nuria Garcia-Araez
- Chemistry Department, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Clare P Grey
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
8
|
Lai J, Xing Y, Chen N, Li L, Wu F, Chen R. Elektrolyte für wiederaufladbare Lithium‐Luft‐Batterien. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jingning Lai
- Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Peking 100081 China
| | - Yi Xing
- Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Peking 100081 China
| | - Nan Chen
- Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Peking 100081 China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Peking 100081 China
- Collaborative Innovation Center of Electric Vehicles in Beijing Peking 100081 China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Peking 100081 China
- Collaborative Innovation Center of Electric Vehicles in Beijing Peking 100081 China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Peking 100081 China
- Collaborative Innovation Center of Electric Vehicles in Beijing Peking 100081 China
| |
Collapse
|
9
|
Lai J, Xing Y, Chen N, Li L, Wu F, Chen R. Electrolytes for Rechargeable Lithium-Air Batteries. Angew Chem Int Ed Engl 2019; 59:2974-2997. [PMID: 31124264 DOI: 10.1002/anie.201903459] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Indexed: 01/08/2023]
Abstract
Lithium-air batteries are promising devices for electrochemical energy storage because of their ultrahigh energy density. However, it is still challenging to achieve practical Li-air batteries because of their severe capacity fading and poor rate capability. Electrolytes are the prime suspects for cell failure. In this Review, we focus on the opportunities and challenges of electrolytes for rechargeable Li-air batteries. A detailed summary of the reaction mechanisms, internal compositions, instability factors, selection criteria, and design ideas of the considered electrolytes is provided to obtain appropriate strategies to meet the battery requirements. In particular, ionic liquid (IL) electrolytes and solid-state electrolytes show exciting opportunities to control both the high energy density and safety.
Collapse
Affiliation(s)
- Jingning Lai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yi Xing
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Nan Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| |
Collapse
|
10
|
Zhu Y, Goh FT, Wang Q. Redox catalysts for aprotic Li-O2 batteries: Toward a redox flow system. NANO MATERIALS SCIENCE 2019. [DOI: 10.1016/j.nanoms.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Liu J, Zhao H, Zhu F, Yu W, Li J, Li Q, Wang C. Nitrogen‐doped Porous Carbon Obtained from Silk Cocoon for High Performance Li‐O
2
Batteries. ChemistrySelect 2019. [DOI: 10.1002/slct.201901524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiuqing Liu
- School of Metallurgy and EnvironmentCental South University, Hunan Changsha 410083 China
| | - Haijun Zhao
- School of Metallurgy and EnvironmentCental South University, Hunan Changsha 410083 China
| | - Fangfang Zhu
- School of Metallurgy and EnvironmentCental South University, Hunan Changsha 410083 China
| | - Wanjing Yu
- School of Metallurgy and EnvironmentCental South University, Hunan Changsha 410083 China
| | - Jie Li
- School of Metallurgy and EnvironmentCental South University, Hunan Changsha 410083 China
| | - Qihou Li
- School of Metallurgy and EnvironmentCental South University, Hunan Changsha 410083 China
| | - Cheng Wang
- School of Metallurgy and EnvironmentCental South University, Hunan Changsha 410083 China
| |
Collapse
|
12
|
Shu C, Wang J, Long J, Liu HK, Dou SX. Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804587. [PMID: 30767276 DOI: 10.1002/adma.201804587] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/17/2018] [Indexed: 06/09/2023]
Abstract
The aprotic lithium-oxygen (Li-O2 ) battery has excited huge interest due to it having the highest theoretical energy density among the different types of rechargeable battery. The facile achievement of a practical Li-O2 battery has been proven unrealistic, however. The most significant barrier to progress is the limited understanding of the reaction processes occurring in the battery, especially during the charging process on the positive electrode. Thus, understanding the charging mechanism is of crucial importance to enhance the Li-O2 battery performance and lifetime. Here, recent progress in understanding the electrochemistry and chemistry related to charging in Li-O2 batteries is reviewed along with the strategies to address the issues that exist in the charging process at the present stage. The properties of Li2 O2 and the mechanisms of Li2 O2 oxidation to O2 on charge are discussed comprehensively, as are the accompanied parasitic chemistries, which are considered as the underlying issues hindering the reversibility of Li-O2 batteries. Based on the detailed discussion of the charging mechanism, innovative strategies for addressing the issues for the charging process are discussed in detail. This review has profound implications for both a better understanding of charging chemistry and the development of reliable rechargeable Li-O2 batteries in the future.
Collapse
Affiliation(s)
- Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, P. R. China
- Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1# Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, P. R. China
| | - Hua-Kun Liu
- Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
| | - Shi-Xue Dou
- Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia
| |
Collapse
|
13
|
Zhang P, Liu L, He X, Liu X, Wang H, He J, Zhao Y. Promoting Surface-Mediated Oxygen Reduction Reaction of Solid Catalysts in Metal–O2 Batteries by Capturing Superoxide Species. J Am Chem Soc 2019; 141:6263-6270. [DOI: 10.1021/jacs.8b13568] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Peng Zhang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Liangliang Liu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Xiaofeng He
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Xiao Liu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Hua Wang
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Jinling He
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, People’s Republic of China
| |
Collapse
|
14
|
Nandy A, Smiatek J. Mixtures of LiTFSI and urea: ideal thermodynamic behavior as key to the formation of deep eutectic solvents? Phys Chem Chem Phys 2019; 21:12279-12287. [PMID: 31139787 DOI: 10.1039/c9cp01440c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We studied the dynamic and structural properties of deep eutectic solvents composed of LiTFSI salts in presence of urea.
Collapse
Affiliation(s)
- Aniruddha Nandy
- Department of Mechanical Engineering
- Indian Institute of Technology
- Kharagpur
- India
- Helmholtz-Institute Münster: Ionics in Energy Storage (HIMS-IEK 12)
| | - Jens Smiatek
- Helmholtz-Institute Münster: Ionics in Energy Storage (HIMS-IEK 12)
- Forschungszentrum Jülich GmbH
- D-48149 Münster
- Germany
- Institute for Computational Physics
| |
Collapse
|
15
|
Wu S, Qiao Y, Deng H, He Y, Zhou H. Minimizing the Abnormal High-Potential Discharge Process Related to Redox Mediators in Lithium-Oxygen Batteries. J Phys Chem Lett 2018; 9:6761-6766. [PMID: 30421927 DOI: 10.1021/acs.jpclett.8b02899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nonaqueous lithium-oxygen batteries can achieve a reduced charge potential when an available redox mediator is introduced. However, there are accompanying problems, such as the shuttle effect and the abnormal high-potential discharge process (>2.96 V) after the first cycle. The shuttle effect can be addressed by developing a blocking separator or resistant solid electrolyte interphase on the anode. No attention has been paid to the abnormal discharge process. Here, we unravel the underlying mechanism causing the undesired abnormal phenomenon. Our results show that the slow reaction rate between the discharged lithium peroxide and redox mediator and the low yield of lithium peroxide should take primary responsibility for the abnormal discharge issue. The sluggish reaction kinetics results from the formed byproducts covering lithium peroxide. We propose developing redox mediator-containing hydrate-melt lithium-oxygen batteries. The lithium hydroperoxide intermediator shows high reaction activity with the redox mediator and improves battery charge ability, thus solving the abnormal discharge problem. This work sheds light on the further design of lithium-oxygen batteries using a redox mediator.
Collapse
Affiliation(s)
- Shichao Wu
- Energy Technology Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Umezono , Tsukuba 305-8568 , Japan
| | - Yu Qiao
- Energy Technology Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Umezono , Tsukuba 305-8568 , Japan
| | - Han Deng
- Energy Technology Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Umezono , Tsukuba 305-8568 , Japan
| | - Yibo He
- Energy Technology Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Umezono , Tsukuba 305-8568 , Japan
| | - Haoshen Zhou
- Energy Technology Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Umezono , Tsukuba 305-8568 , Japan
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
16
|
Huang Z, Ren J, Zhang W, Xie M, Li Y, Sun D, Shen Y, Huang Y. Protecting the Li-Metal Anode in a Li-O 2 Battery by using Boric Acid as an SEI-Forming Additive. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803270. [PMID: 30133016 DOI: 10.1002/adma.201803270] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/07/2018] [Indexed: 05/18/2023]
Abstract
The Li-O2 battery (LOB) is considered as a promising next-generation energy storage device because of its high theoretic specific energy. To make a practical rechargeable LOB, it is necessary to ensure the stability of the Li anode in an oxygen atmosphere, which is extremely challenging. In this work, an effective Li-anode protection strategy is reported by using boric acid (BA) as a solid electrolyte interface (SEI) forming additive. With the assistance of BA, a continuous and compact SEI film is formed on the Li-metal surface in an oxygen atmosphere, which can significantly reduce unwanted side reactions and suppress the growth of Li dendrites. Such an SEI film mainly consists of nanocrystalline lithium borates connected with amorphous borates, carbonates, fluorides, and some organic compounds. It is ionically conductive and mechanically stronger than conventional SEI layer in common Li-metal-based batteries. With these benefits, the cycle life of LOB is elongated more than sixfold.
Collapse
Affiliation(s)
- Zhimei Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jing Ren
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wang Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Meilan Xie
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yankai Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dan Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yue Shen
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
17
|
Wu S, Qiao Y, Yang S, Tang J, He P, Zhou H. Clean Electrocatalysis in a Li2O2 Redox-Based Li–O2 Battery Built with a Hydrate-Melt Electrolyte. ACS Catal 2018. [DOI: 10.1021/acscatal.7b02960] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shichao Wu
- Energy
Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
| | - Yu Qiao
- Energy
Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
| | - Sixie Yang
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jing Tang
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ping He
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Haoshen Zhou
- Energy
Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Umezono, Tsukuba 305-8568, Japan
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
18
|
Zhang P, Zhao Y, Zhang X. Functional and stability orientation synthesis of materials and structures in aprotic Li–O2batteries. Chem Soc Rev 2018; 47:2921-3004. [DOI: 10.1039/c8cs00009c] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review presents the recent advances made in the functional and stability orientation synthesis of materials/structures for Li–O2batteries.
Collapse
Affiliation(s)
- Peng Zhang
- Key Lab for Special Functional Materials of Ministry of Education
- Collaborative Innovation Center of Nano Functional Materials and Applications
- Henan University
- Kaifeng
- P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education
- Collaborative Innovation Center of Nano Functional Materials and Applications
- Henan University
- Kaifeng
- P. R. China
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
19
|
|
20
|
Hu SJ, Fan XP, Chen J, Peng JM, Wang HQ, Huang YG, Li QY. Carbon Nanotubes/Carbon Fiber Paper Supported MnO2
Cathode Catalyst for Li−Air Batteries. ChemElectroChem 2017. [DOI: 10.1002/celc.201700582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Si-Jiang Hu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials; College of Chemistry and Chemical Engineering; Huanggang Normal University; Huanggang 438000 P.R China
| | - Xiao-Ping Fan
- School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; Guilin 541004
| | - Jing Chen
- School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; Guilin 541004
| | - Ji-Ming Peng
- Hubei Key Laboratory for Processing and Application of Catalytic Materials; College of Chemistry and Chemical Engineering; Huanggang Normal University; Huanggang 438000 P.R China
| | - Hong-Qiang Wang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials; College of Chemistry and Chemical Engineering; Huanggang Normal University; Huanggang 438000 P.R China
- School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; Guilin 541004
| | - You-Guo Huang
- School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; Guilin 541004
| | - Qing-Yu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials; Guangxi Normal University; Guilin 541004 P.R. China
| |
Collapse
|
21
|
Li Y, Dong S, Chen B, Lu C, Liu K, Zhang Z, Du H, Wang X, Chen X, Zhou X, Cui G. Li-O 2 Cell with LiI(3-hydroxypropionitrile) 2 as a Redox Mediator: Insight into the Working Mechanism of I - during Charge in Anhydrous Systems. J Phys Chem Lett 2017; 8:4218-4225. [PMID: 28825835 DOI: 10.1021/acs.jpclett.7b01497] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Redox mediators (RMs) have been widely applied to reduce the charge overpotential of nonaqueous lithium-oxygen (Li-O2) batteries. Among the reported RMs, LiI is under hot debate with lots of controversial reports. However, there is a limited understanding of the charge mechanism of I- in anhydrous Li-O2 batteries. Here, we study the chemical reactivity between the oxidized state of I- and Li2O2. We confirm that the Li2O2 particles could be chemically oxidized by I2 rather than I3- species. Furthermore, our work demonstrates that the generated I- from Li2O2 oxidation would combine with I2 to give I3- species, hindering further oxidation of Li2O2 by I2. To improve the working efficiency of I- RMs, we introduce a compound LiI(3-hydroxypropionitrile)2 (LiI(HPN)2) with a high binding ability of I-. Compared with LiI, the cell that contained LiI(HPN)2 shows a significantly increased amount of I2 species during charge and enhanced Li2O2 oxidation efficiency under the same working conditions.
Collapse
Affiliation(s)
- Yang Li
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , No. 189 Songling Road, 266101 Qingdao, China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road, 100049 Beijing, China
| | - Shanmu Dong
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , No. 189 Songling Road, 266101 Qingdao, China
| | - Bingbing Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , No. 189 Songling Road, 266101 Qingdao, China
| | - Chenglong Lu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , No. 53 Zhengzhou Road, 266042 Qingdao, China
| | - Kailiang Liu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , No. 53 Zhengzhou Road, 266042 Qingdao, China
| | - Zhonghua Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , No. 189 Songling Road, 266101 Qingdao, China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road, 100049 Beijing, China
| | - Huiping Du
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , No. 189 Songling Road, 266101 Qingdao, China
- University of Chinese Academy of Sciences , No. 19A Yuquan Road, 100049 Beijing, China
| | - Xiaogang Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , No. 189 Songling Road, 266101 Qingdao, China
| | - Xiao Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , No. 189 Songling Road, 266101 Qingdao, China
| | - Xinhong Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology , No. 53 Zhengzhou Road, 266042 Qingdao, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , No. 189 Songling Road, 266101 Qingdao, China
| |
Collapse
|