1
|
Colazzo L, Urdaniz C, Jung Y, Fang L, Phark SH, Wolf C, Schneider WD, Heinrich A, Jang WJ. Engineering Spin Interaction Channels of FePc on Au(111). NANO LETTERS 2025. [PMID: 39836867 DOI: 10.1021/acs.nanolett.4c05391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
We demonstrate the reversible control of interactions between a local molecular spin, hosted within an iron phthalocyanine (FePc) molecule, and the conduction electrons of a supporting Au(111) surface. Using the tip of a scanning tunneling microscope, we deliberately and reversibly manipulate the adsorption configuration of the molecule relative to the underlying substrate lattice. Different rotation configurations lead to noticeable changes in the differential conductance measured on the FePc molecules. In one configuration, a Kondo resonance is observed, while in others, spin excitations are revealed. To further explore the impact of the local environment, we designed a series of molecular assemblies in which neighboring molecules surrounding the target molecule are incrementally increased. In this structured approach, we observed a step-by-step transition of the spin excitation state to a Kondo resonance, ultimately resulting in a pure Kondo feature.
Collapse
Affiliation(s)
- Luciano Colazzo
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Corina Urdaniz
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Yeonjin Jung
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Lei Fang
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Soo-Hyon Phark
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| | - Wolf-Dieter Schneider
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut de Physique, CH-1015 Lausanne, Switzerland
| | - Andreas Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Won-Jun Jang
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
- Ewha Womans University, Seoul 03760, South Korea
| |
Collapse
|
2
|
Wang X, Zhu X, Wu P, Li Q, Li Z, Zhang X, Liu Z, Zhang Y, Du P. Differences in Kondo Splitting of Surface Quantum Systems Induced by Two Distinct Magnetic Tips: A Joint Method of DFT and HEOM. J Phys Chem A 2024; 128:4750-4760. [PMID: 38832647 DOI: 10.1021/acs.jpca.4c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The interactions between a magnetic tip and local spin impurities initiate unconventional Kondo phenomena, such as asymmetric suppression or even splitting of the Kondo peak. However, a lack of realistic theoretical models and comprehensive explanations for this phenomenon persists due to the complexity of the interactions. This research employs a joint method of density functional theory (DFT) and hierarchical equation of motion (HEOM) to simulate and contrast the modulation of the spin state and Kondo behavior in the Fe/Cu(100) system with two distinct magnetic tips. A cobalt tip, possessing a larger magnetic moment, incites greater atomic displacement of the iron atom, more notable alterations in electronic structure, and enhanced charge transfer with the environment compared with the control process utilizing a nickel tip. Furthermore, the Kondo resonance undergoes asymmetric splitting as a result of the ferromagnetic correlation between the iron atom and the magnetic tip. The Co tip's higher spin polarization results in a wider spacing between the splitting peaks. This investigation underscores the precision of the DFT + HEOM approach in predicting complex quantum phenomena and explaining the underlying physical principles. This provides valuable theoretical support for developing more sophisticated quantum regulation experiments.
Collapse
Affiliation(s)
- Xiaoli Wang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Xinru Zhu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Ping Wu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Qing Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Zhen Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Xiaolei Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Zhongmin Liu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Yuexing Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Pengli Du
- College of Chemical Engineering, Qinghai University, Xining 810016, PR China
| |
Collapse
|
3
|
Chatterjee AK, Takada S, Hayakawa H. Quantum Mpemba Effect in a Quantum Dot with Reservoirs. PHYSICAL REVIEW LETTERS 2023; 131:080402. [PMID: 37683159 DOI: 10.1103/physrevlett.131.080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/17/2023] [Indexed: 09/10/2023]
Abstract
We demonstrate the quantum Mpemba effect in a quantum dot coupled to two reservoirs, described by the Anderson model. We show that the system temperatures starting from two different initial values (hot and cold) cross each other at finite time (and thereby reverse their identities; i.e., hot becomes cold and vice versa) to generate thermal quantum Mpemba effect. The slowest relaxation mode believed to play the dominating role in Mpemba effect in Markovian systems does not contribute to such anomalous relaxation in the present model. In this connection, our analytical result provides necessary condition for producing quantum Mpemba effect in the density matrix elements of the quantum dot, as a combined effect of the remaining relaxation modes.
Collapse
Affiliation(s)
- Amit Kumar Chatterjee
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Takada
- Department of Mechanical Systems Engineering and Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Gao Y, Vlaic S, Gorni T, De' Medici L, Clair S, Roditchev D, Pons S. Manipulation of the Magnetic State of a Porphyrin-Based Molecule on Gold: From Kondo to Quantum Nanomagnet via the Charge Fluctuation Regime. ACS NANO 2023; 17:9082-9089. [PMID: 37162317 DOI: 10.1021/acsnano.2c12223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
By moving individual Fe-porphyrin-based molecules with the tip of a scanning tunneling microscope in the vicinity of the elbow of the herringbone-reconstructed Au(111) containing a Br atom, we reversibly and continuously control their magnetic state. Several regimes are obtained experimentally and explored theoretically: from the integer spin limit, through intermediate magnetic states with renormalized magnetic anisotropy, until the Kondo-screened regime, corresponding to a progressive increase of charge fluctuations and mixed valency due to an increase in the interaction of the molecular Fe states with the substrate Fermi sea. Our study demonstrates the potential of utilizing charge fluctuations to generate and tune quantum magnetic states in molecule-surface hybrids.
Collapse
Affiliation(s)
- Yingzheng Gao
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Sergio Vlaic
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Tommaso Gorni
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Luca De' Medici
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Sylvain Clair
- Aix Marseille University, CNRS, IM2NP, 13397 Marseille, France
| | - Dimitri Roditchev
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS UMR7588, 75005 Paris, France
| | - Stéphane Pons
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
5
|
Bhandary S, Poli E, Teobaldi G, O’Regan DD. Dynamical Screening of Local Spin Moments at Metal-Molecule Interfaces. ACS NANO 2023; 17:5974-5983. [PMID: 36881865 PMCID: PMC10062023 DOI: 10.1021/acsnano.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Transition-metal phthalocyanine molecules have attracted considerable interest in the context of spintronics device development due to their amenability to diverse bonding regimes and their intrinsic magnetism. The latter is highly influenced by the quantum fluctuations that arise at the inevitable metal-molecule interface in a device architecture. In this study, we have systematically investigated the dynamical screening effects in phthalocyanine molecules hosting a series of transition-metal ions (Ti, V, Cr, Mn, Fe, Co, and Ni) in contact with the Cu(111) surface. Using comprehensive density functional theory plus Anderson's Impurity Model calculations, we show that the orbital-dependent hybridization and electron correlation together result in strong charge and spin fluctuations. While the instantaneous spin moments of the transition-metal ions are near atomic-like, we find that screening gives rise to considerable lowering or even quenching of these. Our results highlight the importance of quantum fluctuations in metal-contacted molecular devices, which may influence the results obtained from theoretical or experimental probes, depending on their possibly material-dependent characteristic sampling time-scales.
Collapse
Affiliation(s)
- Sumanta Bhandary
- School
of Physics and CRANN Institute, Trinity
College Dublin, The University
of Dublin, Dublin 2, Ireland
| | - Emiliano Poli
- Scientific
Computing Department, STFC UKRI, Rutherford
Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Gilberto Teobaldi
- Scientific
Computing Department, STFC UKRI, Rutherford
Appleton Laboratory, Didcot OX11 0QX, United Kingdom
- School
of Chemistry, University of Southampton, Highfield SO17 1BJ, Southampton, United Kingdom
| | - David D. O’Regan
- School
of Physics and CRANN Institute, Trinity
College Dublin, The University
of Dublin, Dublin 2, Ireland
| |
Collapse
|
6
|
Wang X, Zhuang Q, Wu P, Liu L, Wang F, Zhang X, Li X, Zheng X. Tweezer-like magnetic tip control of the local spin state in the FeOEP/Pb(111) adsorption system: a preliminary exploration based on first-principles calculations. NANOSCALE 2023; 15:2369-2376. [PMID: 36648279 DOI: 10.1039/d2nr04379c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The magnetic interactions between the spin-polarized scanning tunnelling microscopy (SP-STM) tip and the localized spin impurities lead to various forms of the Kondo effect. Although these intriguing phenomena enrich Kondo physics, detailed theoretical simulations and explanations are still lacking due to the rather complex formation mechanisms. Here, by combining density functional theory (DFT), complete active space self-consistent field (CASSCF) theory, and hierarchical equations of motion (HEOM) methods, we perform first-principles-based simulation to elaborate the regulation process of the magnetic Co-tip on the spin state and transport behaviour of FeOEP/Pb(111) system. Compared with the non-magnetic tip, the stronger interaction between the magnetic tip and FeOEP molecule results in a more drastic deformation of the molecular structure with more electron transfer from the local environment to Fe-3d orbitals. The magnetic anisotropy of FeOEP changes very drastically from positive values in the tunnelling region to negative values in the contact region. The ferromagnetic electron correlation between the magnetic tip and the molecule induces an asymmetric Kondo line-shape near the Fermi level. This work highlights that the DFT + CASSCF + HEOM approach can not only predict complex quantum phenomena and explain underlying physical mechanisms, but also facilitate the design of more fascinating quantum control experiments.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Qingfeng Zhuang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ping Wu
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Leifang Liu
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xiaolei Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Xiangyang Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiao Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
7
|
Kawaguchi R, Hashimoto K, Kakudate T, Katoh K, Yamashita M, Komeda T. Spatially Resolving Electron Spin Resonance of π-Radical in Single-molecule Magnet. NANO LETTERS 2023; 23:213-219. [PMID: 36585948 PMCID: PMC9838557 DOI: 10.1021/acs.nanolett.2c04049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The spintronic properties of magnetic molecules have attracted significant scientific attention. Special emphasis has been placed on the qubit for quantum information processing. The single-molecule magnet bis(phthalocyaninato (Pc)) Tb(III) (TbPc2) is one of the best examined cases in which the delocalized π-radical electron spin of the Pc ligand plays the key role in reading and intermediating the localized Tb spin qubits. We utilized the electron spin resonance (ESR) technique implemented on a scanning tunneling microscope (STM) and use it to measure local the ESR of a single TbPc2 molecule decoupled from the Cu(100) substrate by a two-monolayer NaCl film to identify the π-radical spin. We detected the ESR signal at the ligand positions under the resonance condition expected for an S = 1/2 spin. The results reveal that the π-radical electron is delocalized within the ligands and exhibits intramolecular coupling susceptible to the chemical environment.
Collapse
Affiliation(s)
- Ryo Kawaguchi
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, Sendai980-0877, Japan
| | - Katsushi Hashimoto
- Department
of Physics, Graduate School of Sciences, Tohoku University, Sendai980-8578, Japan
- Center
for Science and Innovation in Spintronics (Core Research Cluster), Tohoku University, Sendai980-8577, Japan
| | - Toshiyuki Kakudate
- Department
of Industrial Systems Engineering, National
Institute of Technology (KOSEN), Hachinohe
College, 16-1 Uwanotai, Tamonoki, Hachinohe039-1192, Japan
| | - Keiichi Katoh
- Department
of Chemistry, Graduate School of Science, Josai University, Sakado, Saitama350-0295, Japan
| | - Masahiro Yamashita
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai980-8578, Japan
- School
of Materials Science and Engineering, Nankai
University, Tianjin300350, People’s Republic of China
| | - Tadahiro Komeda
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, Sendai980-0877, Japan
- Center
for Science and Innovation in Spintronics (Core Research Cluster), Tohoku University, Sendai980-8577, Japan
| |
Collapse
|
8
|
Zhang D, Zuo L, Ye L, Chen ZH, Wang Y, Xu RX, Zheng X, Yan Y. Hierarchical equations of motion approach for accurate characterization of spin excitations in quantum impurity systems. J Chem Phys 2023; 158:014106. [PMID: 36610957 DOI: 10.1063/5.0131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent technological advancement in scanning tunneling microscopes has enabled the measurement of spin-field and spin-spin interactions in single atomic or molecular junctions with an unprecedentedly high resolution. Theoretically, although the fermionic hierarchical equations of motion (HEOM) method has been widely applied to investigate the strongly correlated Kondo states in these junctions, the existence of low-energy spin excitations presents new challenges to numerical simulations. These include the quest for a more accurate and efficient decomposition for the non-Markovian memory of low-temperature environments and a more careful handling of errors caused by the truncation of the hierarchy. In this work, we propose several new algorithms, which significantly enhance the performance of the HEOM method, as exemplified by the calculations on systems involving various types of low-energy spin excitations. Being able to characterize both the Kondo effect and spin excitation accurately, the HEOM method offers a sophisticated and versatile theoretical tool, which is valuable for the understanding and even prediction of the fascinating quantum phenomena explored in cutting-edge experiments.
Collapse
Affiliation(s)
- Daochi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lijun Zuo
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Hao Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Wang Y, Li X. Unravelling the robustness of magnetic anisotropy of a nickelocene molecule in different environments: a first-principles-based study. Phys Chem Chem Phys 2022; 24:21122-21130. [PMID: 36039704 DOI: 10.1039/d2cp02793c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent scanning tunneling spectroscopy with single metallocene molecule-functionalized tips have proved to be a powerful tool to probe and control individual spins and spin-spin exchange interactions due to the robustness of the magnetic properties of the metallocene molecule in different surroundings. However, accurate prediction of such robustness at a first-principles-based level by the conventional density functional theory (DFT) has remained challenging. In this paper, we have performed a detailed investigation of the evolution of electronic and magnetic properties of a nickelocene molecule (NiCp2) in different environments, i.e., free-standing, adsorbed on Cu(100) and as a functionalized tip apex. Using an embedding method, which combines DFT and the complete active space self-consistent field (CASSCF) method recently developed, we demonstrate that the nickelocene molecule almost preserves its spin and magnetic anisotropy upon adsorption on Cu(100), and also in the position of the tip apex. In particular, the cyclic π* orbital of the Cp rings could hybridize with the singly occupied dπ orbitals of the Ni center of the molecule, protecting these orbitals from external states. Hence the molecular spin maintains S = 1, the same as in the free-standing case, and its magnetic anisotropy is also robust with energies of 3.56, 3.34, and 3.51 meV in free-standing, adsorbed on Cu(100), and functionalized tip apex states, respectively, in good agreement with previous theoretical and experimental results. This work thus provides a first-principles-based understanding of the relevant experiments. Such agreement between theoretical simulations and experimental measurements highlights the potential usefulness of the method for investigating the local electronic and spin states of organometallic molecule-surface composite systems.
Collapse
Affiliation(s)
- Yu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Zhou WH, Zhang J, Nan N, Li W, He ZD, Zhu ZW, Wu YP, Xiong YC. Correlation anisotropy driven Kosterlitz-Thouless-type quantum phase transition in a Kondo simulator. Phys Chem Chem Phys 2022; 24:20040-20049. [PMID: 35833449 DOI: 10.1039/d2cp01668k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine molecule adsorbed on the Au(111) surface with a two-impurity Anderson model, we demonstrate that the quantum states of such a system could be adjusted by the uniaxial magnetic anisotropy Dz. For negative Dz, the ground state is dominated by a parallel configuration of the z component of local spins, whereas it turns to be an antiparallel one when Dz becomes positive. Interestingly, we found that these two phases are separated by a Kosterlitz-Thouless-type quantum phase transition, which is confirmed by the critical behaviors of the transmission coefficient and the local magnetic moment. Both phases are associated with spin correlation anisotropy, thus move against the Kondo effect. When the external magnetic field is applied, it first plays a role in compensating for the effect of Dz, and then it contributes significantly to the Zeeman effect for positive Dz, accompanied by the reappearance and the splitting of the Kondo peak, respectively. For fixed negative Dz, only the Zeeman behavior is revealed. Our results provide deep insights into the manipulation of the quantum phase within a single molecular junction.
Collapse
Affiliation(s)
- Wang-Huai Zhou
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China. .,Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Jun Zhang
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China. .,Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Nan Nan
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China. .,Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Wei Li
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China. .,Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| | - Ze-Dong He
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China.
| | - Zhan-Wu Zhu
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China.
| | - Yun-Pei Wu
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China.
| | - Yong-Chen Xiong
- School of Mathematics, Physics and Optoelectronic Engineering, and Collaborative Innovation Center for Optoelectronic Technology, Hubei University of Automotive Technology, Shiyan, Hubei, P. R. China. .,Shiyan Industrial Technology Research Institute of Chinese Academy of Engineering, Shiyan 442002, People's Republic of China
| |
Collapse
|
11
|
Numerical renormalization group study of the Loschmidt echo in Kondo systems. Sci Rep 2022; 12:9799. [PMID: 35697737 PMCID: PMC9192593 DOI: 10.1038/s41598-022-14108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
We study the dynamical properties of the one-channel and two-channel spin-1/2 Kondo models after quenching in Hamiltonian variables. Eigen spectrum of the initial and final Hamiltonians is calculated by using the numerical renormalization group method implemented within the matrix product states formalism. We consider multiple quench protocols in the considered Kondo systems, also in the presence of external magnetic field of different intensities. The main emphasis is put on the analysis of the behavior of the Loschmidt echo L(t), which measures the ability of the system's revival to its initial state after a quench. We show that the decay of the Loschmidt echo strongly depends on the type of quench and the ground state of the system. For the one-channel Kondo model, we show that L(t) decays as, [Formula: see text], where [Formula: see text] is the Kondo temperature, while for the two-channel Kondo model, we demonstrate that the decay is slower and given by [Formula: see text]. In addition, we also determine the dynamical behavior of the impurity's magnetization, which sheds light on identification of the relevant time scales in the system's dynamics.
Collapse
|
12
|
Xiong YC, Wang JN, Wang PC, Zhou Y, Ma Y, Zhou WH, Tong R. Trapping integrated molecular devices via a local transport circulation. Phys Chem Chem Phys 2022; 24:5522-5528. [DOI: 10.1039/d1cp04813a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions between quantum systems and their environments may always result in inevitable decoherence. Isolation of the quantum system from the undesired environment noise brings us a great challenge for an...
Collapse
|
13
|
Pyurbeeva E, Hsu C, Vogel D, Wegeberg C, Mayor M, van der Zant H, Mol JA, Gehring P. Controlling the Entropy of a Single-Molecule Junction. NANO LETTERS 2021; 21:9715-9719. [PMID: 34766782 DOI: 10.1021/acs.nanolett.1c03591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single molecules are nanoscale thermodynamic systems with few degrees of freedom. Thus, the knowledge of their entropy can reveal the presence of microscopic electron transfer dynamics that are difficult to observe otherwise. Here, we apply thermocurrent spectroscopy to directly measure the entropy of a single free radical molecule in a magnetic field. Our results allow us to uncover the presence of a singlet to triplet transition in one of the redox states of the molecule, not detected by conventional charge transport measurements. This highlights the power of thermoelectric measurements which can be used to determine the difference in configurational entropy between the redox states of a nanoscale system involved in conductance without any prior assumptions about its structure or microscopic dynamics.
Collapse
Affiliation(s)
- Eugenia Pyurbeeva
- School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Chunwei Hsu
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft 2628 CJ, The Netherlands
| | - David Vogel
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Marcel Mayor
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
- Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU), 510275 Guangzhou, China
| | - Herre van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft 2628 CJ, The Netherlands
| | - Jan A Mol
- School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Pascal Gehring
- IMCN/NAPS, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
14
|
Zhang X, Wolf C, Wang Y, Aubin H, Bilgeri T, Willke P, Heinrich AJ, Choi T. Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions. Nat Chem 2021; 14:59-65. [PMID: 34764471 DOI: 10.1038/s41557-021-00827-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Electron spin resonance (ESR) spectroscopy is a crucial tool, through spin labelling, in investigations of the chemical structure of materials and of the electronic structure of materials associated with unpaired spins. ESR spectra measured in molecular systems, however, are established on large ensembles of spins and usually require a complicated structural analysis. Recently, the combination of scanning tunnelling microscopy with ESR has proved to be a powerful tool to image and coherently control individual atomic spins on surfaces. Here we extend this technique to single coordination complexes-iron phthalocyanines (FePc)-and investigate the magnetic interactions between their molecular spin with either another molecular spin (in FePc-FePc dimers) or an atomic spin (in FePc-Ti pairs). We show that the molecular spin density of FePc is both localized at the central Fe atom and also distributed to the ligands (Pc), which yields a strongly molecular-geometry-dependent exchange coupling.
Collapse
Affiliation(s)
- Xue Zhang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Ewha Womans University, Seoul, Republic of Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Ewha Womans University, Seoul, Republic of Korea
| | - Yu Wang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Ewha Womans University, Seoul, Republic of Korea
| | - Hervé Aubin
- Universités Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - Tobias Bilgeri
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philip Willke
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Ewha Womans University, Seoul, Republic of Korea.,Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea. .,Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| | - Taeyoung Choi
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea. .,Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Žitko R, Blesio GG, Manuel LO, Aligia AA. Iron phthalocyanine on Au(111) is a "non-Landau" Fermi liquid. Nat Commun 2021; 12:6027. [PMID: 34654828 PMCID: PMC8521586 DOI: 10.1038/s41467-021-26339-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
The paradigm of Landau’s Fermi liquid theory has been challenged with the finding of a strongly interacting Fermi liquid that cannot be adiabatically connected to a non-interacting system. A spin-1 two-channel Kondo impurity with anisotropy D has a quantum phase transition between two topologically different Fermi liquids with a peak (dip) in the Fermi level for D < Dc (D > Dc). Extending this theory to general multi-orbital problems with finite magnetic field, we reinterpret in a unified and consistent fashion several experimental studies of iron phthalocyanine molecules on Au(111) that were previously described in disconnected and conflicting ways. The differential conductance shows a zero-bias dip that widens when the molecule is lifted from the surface (reducing the Kondo couplings) and is transformed continuously into a peak under an applied magnetic field. We reproduce all features and propose an experiment to induce the topological transition. Single molecules on metal surfaces are paradigmatic systems for the study of many-body phenomena. Here, the authors show that several spectroscopic experiments on iron phthalocyanine on Au(111) surface can be described in a unified way in terms of a strongly interacting topologically non-trivial (non-Landau) Fermi liquid.
Collapse
Affiliation(s)
- R Žitko
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia. .,Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Ljubljana, Slovenia.
| | - G G Blesio
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Instituto de Física Rosario (CONICET) and Universidad Nacional de Rosario, Bv. 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - L O Manuel
- Instituto de Física Rosario (CONICET) and Universidad Nacional de Rosario, Bv. 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - A A Aligia
- Instituto de Nanociencia y Nanotecnología CNEA-CONICET, Centro Atómico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina
| |
Collapse
|
16
|
Song C, Bo T, Liu X, Guo P, Meng S, Wu K. Local Kondo scattering in 4d-electron RuO x nanoclusters on atomically-resolved ultrathin SrRuO 3 films. Phys Chem Chem Phys 2021; 23:22526-22531. [PMID: 34590637 DOI: 10.1039/d1cp02738g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perovskite SrRuO3 is a unique 4d transition metal oxide with coexisting spin-orbit coupling (SOC) and electron-electron correlation. However, the intrinsic, non-reconstructed surface structure of SrRuO3 has not been reported so far. Here we report an atomic imaging of the non-reconstructed, SrO-terminated SrRuO3 surface by scanning tunneling microscopy/spectroscopy. Moreover, a Kondo resonant behavior is revealed in RuOx clusters located on top of the nonmagnetic SrO surface layer. The density functional theory calculations confirm that RuOx clusters possess localized 4d-electron-involved spin moments and hybridize with the conduction electrons in the metal host, resulting in the appearance of the Kondo resonance features around the Fermi level. Our work demonstrates that artificially-engineered transition metal oxides provide new opportunities to explore the Kondo physics in 4d multi-orbital systems.
Collapse
Affiliation(s)
- Chuangye Song
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China. .,Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Bo
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China. .,Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Liu
- Swiss Light Source, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Pengjie Guo
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China. .,Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Sheng Meng
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China. .,Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kehui Wu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China. .,Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Fernández J, Roura-Bas P, Aligia AA. Theory of Differential Conductance of Co on Cu(111) Including Co s and d Orbitals, and Surface and Bulk Cu States. PHYSICAL REVIEW LETTERS 2021; 126:046801. [PMID: 33576682 DOI: 10.1103/physrevlett.126.046801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
We revisit the theory of the Kondo effect observed by a scanning-tunneling microscope (STM) for transition-metal atoms (TMAs) on noble-metal surfaces, including d and s orbitals of the TMA, surface and bulk conduction states of the metal, and their hopping to the tip of the STM. Fitting the experimentally observed STM differential conductance for Co on Cu(111) including both the Kondo feature near the Fermi energy and the resonance below the surface band, we conclude that the STM senses mainly the Co s orbital and that the Kondo antiresonance is due to interference between states with electrons in the s orbital and a localized d orbital mediated by the conduction states.
Collapse
Affiliation(s)
- J Fernández
- Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina, Instituto Balseiro, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas, 1025 CABA, Argentina
| | - P Roura-Bas
- Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina, Instituto Balseiro, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas, 1025 CABA, Argentina
| | - A A Aligia
- Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina, Instituto Balseiro, Comisión Nacional de Energía Atómica, 8400 Bariloche, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas, 1025 CABA, Argentina
| |
Collapse
|
18
|
Manipulation of Molecular Spin State on Surfaces Studied by Scanning Tunneling Microscopy. NANOMATERIALS 2020; 10:nano10122393. [PMID: 33266045 PMCID: PMC7761235 DOI: 10.3390/nano10122393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
The adsorbed magnetic molecules with tunable spin states have drawn wide attention for their immense potential in the emerging fields of molecular spintronics and quantum computing. One of the key issues toward their application is the efficient controlling of their spin state. This review briefly summarizes the recent progress in the field of molecular spin state manipulation on surfaces. We focus on the molecular spins originated from the unpaired electrons of which the Kondo effect and spin excitation can be detected by scanning tunneling microscopy and spectroscopy (STM and STS). Studies of the molecular spin-carriers in three categories are overviewed, i.e., the ones solely composed of main group elements, the ones comprising 3d-metals, and the ones comprising 4f-metals. Several frequently used strategies for tuning molecular spin state are exemplified, including chemical reactions, reversible atomic/molecular chemisorption, and STM-tip manipulations. The summary of the successful case studies of molecular spin state manipulation may not only facilitate the fundamental understanding of molecular magnetism and spintronics but also inspire the design of the molecule-based spintronic devices and materials.
Collapse
|
19
|
Liu J, Gao Y, Wang T, Xue Q, Hua M, Wang Y, Huang L, Lin N. Collective Spin Manipulation in Antiferroelastic Spin-Crossover Metallo-Supramolecular Chains. ACS NANO 2020; 14:11283-11293. [PMID: 32790285 DOI: 10.1021/acsnano.0c03163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coupled spin-crossover complexes in supramolecular systems feature rich spin phases that can exhibit collective behaviors. Here, we report on a molecular-level exploration of the spin phase and collective spin-crossover dynamics in metallo-supramolecular chains. Using scanning tunneling microscopy, spectroscopy, and density functional theory calculations, we identify an antiferroelastic phase in the metal-organic chains, where the Ni atoms coordinated by deprotonated tetrahydroxybenzene linkers on Au(111) are at a low-spin (S = 0) or a high-spin (S = 1) state alternately along the chains. We demonstrate that the spin phase is stabilized by the combined effects of intrachain interactions and substrate commensurability. The stability of the antiferroelastic structure drives the collective spin-state switching of multiple Ni atoms in the same chain in response to electron/hole tunneling to a Ni atom via a domino-like magnetostructural relaxation process. These results provide insights into the magnetostructural dynamics of the supramolecular structures, offering a route toward their spintronic manipulations.
Collapse
Affiliation(s)
- Jing Liu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
- Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, 100193 Beijing, China
| | - Yifan Gao
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Physics, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Tong Wang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiang Xue
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, 100871 Beijing, China
| | - Muqing Hua
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongfeng Wang
- Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, 100193 Beijing, China
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, 100871 Beijing, China
| | - Li Huang
- Department of Physics, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Nian Lin
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
20
|
Wasielewski MR, Forbes MDE, Frank NL, Kowalski K, Scholes GD, Yuen-Zhou J, Baldo MA, Freedman DE, Goldsmith RH, Goodson T, Kirk ML, McCusker JK, Ogilvie JP, Shultz DA, Stoll S, Whaley KB. Exploiting chemistry and molecular systems for quantum information science. Nat Rev Chem 2020; 4:490-504. [PMID: 37127960 DOI: 10.1038/s41570-020-0200-5] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2020] [Indexed: 12/21/2022]
Abstract
The power of chemistry to prepare new molecules and materials has driven the quest for new approaches to solve problems having global societal impact, such as in renewable energy, healthcare and information science. In the latter case, the intrinsic quantum nature of the electronic, nuclear and spin degrees of freedom in molecules offers intriguing new possibilities to advance the emerging field of quantum information science. In this Perspective, which resulted from discussions by the co-authors at a US Department of Energy workshop held in November 2018, we discuss how chemical systems and reactions can impact quantum computing, communication and sensing. Hierarchical molecular design and synthesis, from small molecules to supramolecular assemblies, combined with new spectroscopic probes of quantum coherence and theoretical modelling of complex systems, offer a broad range of possibilities to realize practical quantum information science applications.
Collapse
Affiliation(s)
| | - Malcolm D E Forbes
- Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Natia L Frank
- Department of Chemistry, University of Nevada-Reno, Reno, Nevada, USA
| | - Karol Kowalski
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Joel Yuen-Zhou
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Marc A Baldo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Danna E Freedman
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Theodore Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - James K McCusker
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | | | - David A Shultz
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - K Birgitta Whaley
- Department of Chemistry, University of California, Berkeley, CA, USA
| |
Collapse
|
21
|
Witkowski N, Lüder J, Bidermane I, Farronato M, Prévot G, Bouvet M, Puglia C, Brena B. Grafting, self-organization and reactivity of double-decker rare-earth phthalocyanine. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Unveiling the interplay of semiconducting organic molecules with their environment, such as inorganic materials or atmospheric gas, is the first step to designing hybrid devices with tailored optical, electronic or magnetic properties. The present article focuses on a double-decker lutetium phthalocyanine known as an intrinsic semiconducting molecule, holding a Lu ion in its center, sandwiched between two phthalocyanine rings. Carrying out experimental investigations by means of electron spectroscopies, X-ray diffraction and scanning probe microscopies together with advanced ab initio computations, allows us to unveil how this molecule interacts with weakly or highly reactive surfaces. Our studies reveal that a molecule–surface interaction is evidenced when molecules are deposited on bare silicon or on gold surfaces together with a charge transferred from the substrate to the molecule, affecting to a higher extent the lower ring of the molecule. A new packing of the molecules on gold surfaces is proposed: an eclipse configuration in which molecules are flat and parallel to the surface, even for thick films of several hundreds of nanometers. Surprisingly, a robust tolerance of the double-decker phthalocyanine toward oxygen molecules is demonstrated, leading to weak chemisorption of oxygen below 100 K.
Collapse
Affiliation(s)
- Nadine Witkowski
- Sorbonne Université, UMR CNRS 7588, Institut des Nanosciences de Paris, 4 Pl. Jussieu, F-75005 Paris, France
| | - Johann Lüder
- Department of Physics and Astronomy, Uppsala University, BOX 516, SE-75120 Uppsala, Sweden
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ieva Bidermane
- Sorbonne Université, UMR CNRS 7588, Institut des Nanosciences de Paris, 4 Pl. Jussieu, F-75005 Paris, France
- Department of Physics and Astronomy, Uppsala University, BOX 516, SE-75120 Uppsala, Sweden
| | - Mattia Farronato
- Sorbonne Université, UMR CNRS 7588, Institut des Nanosciences de Paris, 4 Pl. Jussieu, F-75005 Paris, France
| | - Geoffroy Prévot
- Sorbonne Université, UMR CNRS 7588, Institut des Nanosciences de Paris, 4 Pl. Jussieu, F-75005 Paris, France
| | - Marcel Bouvet
- Institut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB),CNRS UMR 6302, Université Bourgogne Franche-Comté, F-21078 Dijon, France
| | - Carla Puglia
- Department of Physics and Astronomy, Uppsala University, BOX 516, SE-75120 Uppsala, Sweden
| | - Barbara Brena
- Department of Physics and Astronomy, Uppsala University, BOX 516, SE-75120 Uppsala, Sweden
| |
Collapse
|
22
|
Xiong YC, Zhou WH, Nan N, Ma YN, Li W. Synchronously voltage-manipulable spin reversing and selecting assisted by exchange coupling in a monomeric dimer with magnetic interface. Phys Chem Chem Phys 2020; 22:422-429. [PMID: 31793961 DOI: 10.1039/c9cp05316f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of the molecular spin state as a quantum of next-generation information technology is receiving impressive research attention, within which the fundamental issues include manipulating the phase transition between the spin-up and -down states and generating spin polarized current. The spinterface between ferromagnetic electrodes and a molecular bridge represents one of the most intriguing elements in this context. Herein, by means of the celebrated numerical renormalization group technique, we present an original way to realize spin reversal in a monomeric dimer. Our scheme is based on the exchange interactions between electronic spins on one monomer and those on the other one or on the electrodes, which could be easily controlled through purely electronic technology. Through a careful engineering of the interfacial parameters, one of the monomers is devoted to the spin reversing, whereas the other one contributes to the spin selecting. The charge numbers of spin-up and -down electrons swap their respective occupancies at some particular points, indicating charge sensing between different spins. The competition between the spinterface and the molecular energy level results in charge oscillating in a single spin channel, which is unfavorable to the spin selecting. The observation may provide a prospective example for a multifunctional magnetoelectronics molecular device, which works without any external magnetic field.
Collapse
Affiliation(s)
- Yong-Chen Xiong
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | | | | | | | | |
Collapse
|
23
|
Wang Y, Li X, Yang J. Spin-flip excitations induced by dehydrogenation in a magnetic single-molecule junction. J Chem Phys 2019; 151:224704. [DOI: 10.1063/1.5129288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
24
|
Xiong Y, Luo S, Huang H, Ma Y, Zhang X. Exchange-dependent spin polarized transport and phase transition in a triple monomer molecule. Phys Chem Chem Phys 2019; 21:11158-11167. [PMID: 31095151 DOI: 10.1039/c9cp01350d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular junctions contribute significantly to the fundamental understanding of the quantum information technologies in molecular spintronics. In this paper, with the aid of the state of the art numerical renormalization group method, we find a triple monomer molecule structure with strong electron-electron interactions could be a potential candidate for a multifunctional spin polarizer when an external magnetic field along the z axis is applied. It is demonstrated that the polarizing scenarios depend closely on the inter-orbital exchange couplings, and results in several kinds of spin polarizers, e.g., the unidirectional, the bidirectional, the dual, and the ternary spin polarizers. We show in detail the related phase diagram, and conclude the Zeeman effect and the charge switching for the bonding, anti-bonding and non-bonding orbitals are responsible for the spin polarizing transport. We stress even when the energy levels are chosen beyond the Kondo regime, the structure still shows a promising platform for molecular spintronics components.
Collapse
Affiliation(s)
- Yongchen Xiong
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | - Shijun Luo
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | - Haiming Huang
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | - Yanan Ma
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| | - Xiong Zhang
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China.
| |
Collapse
|
25
|
Calogero G, Papior N, Koleini M, Larsen MHL, Brandbyge M. Multi-scale approach to first-principles electron transport beyond 100 nm. NANOSCALE 2019; 11:6153-6164. [PMID: 30874281 DOI: 10.1039/c9nr00866g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multi-scale computational approaches are important for studies of novel, low-dimensional electronic devices since they are able to capture the different length-scales involved in the device operation, and at the same time describe critical parts such as surfaces, defects, interfaces, gates, and applied bias, on a atomistic, quantum-chemical level. Here we present a multi-scale method which enables calculations of electronic currents in two-dimensional devices larger than 100 nm2, where multiple perturbed regions described by density functional theory (DFT) are embedded into an extended unperturbed region described by a DFT-parametrized tight-binding model. We explain the details of the method, provide examples, and point out the main challenges regarding its practical implementation. Finally we apply it to study current propagation in pristine, defected and nanoporous graphene devices, injected by chemically accurate contacts simulating scanning tunneling microscopy probes.
Collapse
Affiliation(s)
- Gaetano Calogero
- DTU Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
26
|
Xiong YC, Luo SJ, Zhou WH, Li W, Zhang CK. Bidirectional spin filter in a triple orbital molecule junction by tuning the magnetic field along a single direction. J Chem Phys 2019; 150:064110. [DOI: 10.1063/1.5081020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yong-Chen Xiong
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, People’s Republic of China
| | - Shi-Jun Luo
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, People’s Republic of China
| | - Wang-Huai Zhou
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, People’s Republic of China
| | - Wei Li
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, People’s Republic of China
| | - Chuan-Kun Zhang
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, People’s Republic of China
| |
Collapse
|
27
|
Malavolti L, Briganti M, Hänze M, Serrano G, Cimatti I, McMurtrie G, Otero E, Ohresser P, Totti F, Mannini M, Sessoli R, Loth S. Tunable Spin-Superconductor Coupling of Spin 1/2 Vanadyl Phthalocyanine Molecules. NANO LETTERS 2018; 18:7955-7961. [PMID: 30452271 DOI: 10.1021/acs.nanolett.8b03921] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Atomic-scale magnetic moments in contact with superconductors host rich physics based on the emergence of Yu-Shiba-Rusinov (YSR) magnetic bound states within the superconducting condensate. Here, we focus on a magnetic bound state induced into Pb nanoislands by individual vanadyl phthalocyanine (VOPc) molecules deposited on the Pb surface. The VOPc molecule is characterized by a spin magnitude of 1/2 arising from a well-isolated singly occupied d xy-orbital and is a promising candidate for a molecular spin qubit with long coherence times. X-ray magnetic circular dichroism (XMCD) measurements show that the molecular spin remains unperturbed even for molecules directly deposited on the Pb surface. Scanning tunneling spectroscopy and density functional theory (DFT) calculations identify two adsorption geometries for this "asymmetric" molecule (i.e., absence of a horizontal symmetry plane): (a) oxygen pointing toward the vacuum with the Pc laying on the Pb, showing negligible spin-superconductor interaction, and (b) oxygen pointing toward the Pb, presenting an efficient interaction with the Pb and promoting a Yu-Shiba-Rusinov bound state. Additionally, we find that in the first case a YSR state can be induced smoothly by exerting mechanical force on the molecules with the scanning tunneling microscope (STM) tip. This allows the interaction strength to be tuned continuously from an isolated molecular spin case, through the quantum critical point (where the bound state energy is zero) and beyond. DFT indicates that a gradual bending of the VO bond relative to the Pc ligand plane promoted by the STM tip can modify the interaction in a continuously tunable manner. The ability to induce a tunable YSR state in the superconductor suggests the possibility of introducing coupled spins on superconductors with switchable interaction.
Collapse
Affiliation(s)
- Luigi Malavolti
- Institute for Functional Matter and Quantum Technologies , University of Stuttgart , 70569 Stuttgart , Germany
- Max Planck Institute for the Structure and Dynamics of Matter , 22761 Hamburg , Germany
- Max Planck Institute for Solid State Research , 70569 Stuttgart , Germany
| | - Matteo Briganti
- Dipartimento di Chimica "Ugo Schiff" & INSTM RU , Università degli Studi di Firenze , Via della Lastruccia 3-13 , 150019 Sesto Fiorentino (Firenze) , Italy
| | - Max Hänze
- Institute for Functional Matter and Quantum Technologies , University of Stuttgart , 70569 Stuttgart , Germany
- Max Planck Institute for the Structure and Dynamics of Matter , 22761 Hamburg , Germany
- Max Planck Institute for Solid State Research , 70569 Stuttgart , Germany
| | - Giulia Serrano
- Dipartimento di Chimica "Ugo Schiff" & INSTM RU , Università degli Studi di Firenze , Via della Lastruccia 3-13 , 150019 Sesto Fiorentino (Firenze) , Italy
| | - Irene Cimatti
- Dipartimento di Chimica "Ugo Schiff" & INSTM RU , Università degli Studi di Firenze , Via della Lastruccia 3-13 , 150019 Sesto Fiorentino (Firenze) , Italy
| | - Gregory McMurtrie
- Institute for Functional Matter and Quantum Technologies , University of Stuttgart , 70569 Stuttgart , Germany
- Max Planck Institute for the Structure and Dynamics of Matter , 22761 Hamburg , Germany
- Max Planck Institute for Solid State Research , 70569 Stuttgart , Germany
| | - Edwige Otero
- Synchrotron SOLEIL , 4891192 Gif-sur-Yvette , France
| | | | - Federico Totti
- Dipartimento di Chimica "Ugo Schiff" & INSTM RU , Università degli Studi di Firenze , Via della Lastruccia 3-13 , 150019 Sesto Fiorentino (Firenze) , Italy
| | - Matteo Mannini
- Dipartimento di Chimica "Ugo Schiff" & INSTM RU , Università degli Studi di Firenze , Via della Lastruccia 3-13 , 150019 Sesto Fiorentino (Firenze) , Italy
| | - Roberta Sessoli
- Dipartimento di Chimica "Ugo Schiff" & INSTM RU , Università degli Studi di Firenze , Via della Lastruccia 3-13 , 150019 Sesto Fiorentino (Firenze) , Italy
| | - Sebastian Loth
- Institute for Functional Matter and Quantum Technologies , University of Stuttgart , 70569 Stuttgart , Germany
- Max Planck Institute for the Structure and Dynamics of Matter , 22761 Hamburg , Germany
- Max Planck Institute for Solid State Research , 70569 Stuttgart , Germany
| |
Collapse
|
28
|
Rolf D, Lotze C, Czekelius C, Heinrich BW, Franke KJ. Visualizing Intramolecular Distortions as the Origin of Transverse Magnetic Anisotropy. J Phys Chem Lett 2018; 9:6563-6567. [PMID: 30384611 DOI: 10.1021/acs.jpclett.8b03036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The magnetic properties of metal-organic complexes are strongly influenced by conformational changes in the ligand. The flexibility of Fe-tetra-pyridyl-porphyrin molecules leads to different adsorption configurations on a Au(111) surface. By combining low-temperature scanning tunneling spectroscopy and atomic force microscopy, we resolve a correlation of the molecular configuration with different spin states and magnitudes of magnetic anisotropy. When the macrocycle exhibits a laterally undistorted saddle shape, the molecules lie in a S = 1 state with axial anisotropy arising from a square-planar ligand field. If the symmetry in the molecular ligand field is reduced by a lateral distortion of the molecule, we find a finite contribution of transverse anisotropy. Some of the distorted molecules lie in a S = 2 state, again exhibiting substantial transverse anisotropy.
Collapse
Affiliation(s)
- Daniela Rolf
- Fachbereich Physik , Freie Universität Berlin , 14195 Berlin , Germany
| | - Christian Lotze
- Fachbereich Physik , Freie Universität Berlin , 14195 Berlin , Germany
| | - Constantin Czekelius
- Institut für Organische Chemie und Makromolekulare Chemie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany
| | | | | |
Collapse
|
29
|
Farinacci L, Ahmadi G, Reecht G, Ruby M, Bogdanoff N, Peters O, Heinrich BW, von Oppen F, Franke KJ. Tuning the Coupling of an Individual Magnetic Impurity to a Superconductor: Quantum Phase Transition and Transport. PHYSICAL REVIEW LETTERS 2018; 121:196803. [PMID: 30468615 DOI: 10.1103/physrevlett.121.196803] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Indexed: 05/12/2023]
Abstract
The exchange scattering at magnetic adsorbates on superconductors gives rise to Yu-Shiba-Rusinov (YSR) bound states. Depending on the strength of the exchange coupling, the magnetic moment perturbs the Cooper pair condensate only weakly, resulting in a free-spin ground state, or binds a quasiparticle in its vicinity, leading to a (partially) screened spin state. Here, we use the flexibility of Fe-porphin (FeP) molecules adsorbed on a Pb(111) surface to reversibly and continuously tune between these distinct ground states. We find that the FeP moment is screened in the pristine adsorption state. Approaching the tip of a scanning tunneling microscope, we exert a sufficiently strong attractive force to tune the molecule through the quantum phase transition into the free-spin state. We ascertain and characterize the transition by investigating the transport processes as function of tip-molecule distance, exciting the YSR states by single-electron tunneling as well as (multiple) Andreev reflections.
Collapse
Affiliation(s)
- Laëtitia Farinacci
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gelavizh Ahmadi
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gaël Reecht
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Michael Ruby
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Nils Bogdanoff
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Olof Peters
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Benjamin W Heinrich
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Felix von Oppen
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katharina J Franke
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
30
|
Gruber M, Weismann A, Berndt R. The Kondo resonance line shape in scanning tunnelling spectroscopy: instrumental aspects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:424001. [PMID: 30191885 DOI: 10.1088/1361-648x/aadfa3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the scanning tunnelling microscope, the many-body Kondo effect leads to a zero-bias feature of the differential conductance spectra of magnetic adsorbates on surfaces. The intrinsic line shape of this Kondo resonance and its temperature dependence in principle contain valuable information. We use measurements on a molecular Kondo system, all- trans retinoic acid on Au(1 1 1), and model calculations to discuss the role of instrumental broadening. The modulation voltage used for the lock-in detection, noise on the sample voltage, and the temperature of the microscope tip are considered. These sources of broadening affect the apparent line shapes and render difficult a determination of the intrinsic line width, in particular when variable temperatures are involved.
Collapse
Affiliation(s)
- Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | | | | |
Collapse
|
31
|
Fernández J, Roura-Bas P, Camjayi A, Aligia AA. Two-stage three-channel Kondo physics for an FePc molecule on the Au(1 1 1) surface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:374003. [PMID: 30095081 DOI: 10.1088/1361-648x/aad973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We study an impurity Anderson model to describe an iron phthalocyanine (FePc) molecule on Au(1 1 1), motivated by previous results of scanning tunneling spectroscopy (STS) and theoretical studies. The model hybridizes a spin doublet consisting in one hole at the [Formula: see text] orbital of iron and two degenerate doublets corresponding to one hole either in the 3d xz or in the 3d yz orbital (called π orbitals) with two degenerate Hund-rule triplets with one hole in the 3d z orbital and another one in a π orbital. We solve the model using a slave-boson mean-field approximation (SBMFA). For reasonable parameters we can describe very well the observed STS spectrum between sample bias -60 mV to 20 mV. For these parameters the Kondo effect takes place in two stages, with different energy scales [Formula: see text] corresponding to the Kondo temperatures related with the hopping of the z 2 and π orbitals respectively. There is a strong interference between the different channels and the Kondo temperatures, particularly the lowest one is strongly reduced compared with the value in the absence of the competing channel.
Collapse
Affiliation(s)
- J Fernández
- Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica, CONICET 8400 Bariloche, Argentina
| | | | | | | |
Collapse
|
32
|
Jacob D. Simulation of inelastic spin flip excitations and Kondo effect in STM spectroscopy of magnetic molecules on metal substrates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:354003. [PMID: 30035748 DOI: 10.1088/1361-648x/aad523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-ion magnetic anisotropy in molecular magnets leads to spin flip excitations that can be measured by inelastic scanning tunneling microscope (STM) spectroscopy. Here I present a semi ab initio scheme to compute the spectral features associated with inelastic spin flip excitations and Kondo effect of single molecular magnets. To this end density functional theory calculations of the molecule on the substrate are combined with more sophisticated many-body techniques for solving the Anderson impurity problem of the spin-carrying orbitals of the magnetic molecule coupled to the rest of the system, containing a phenomenological magnetic anisotropy term. For calculating the STM spectra an exact expression for the [Formula: see text] in the ideal STM limit, when the coupling to the STM tip becomes negligibly small, is derived. In this limit the [Formula: see text] is simply related to the spectral function of the molecule-substrate system. For the case of an Fe porphyrin molecule on the Au(1 1 1) substrate, the calculated STM spectra are in good agreement with recently measured STM spectra, showing the typical step features at finite bias associated with spin flip excitation of a spin-1 quantum magnet. For the case of Kondo effect in Mn porphyrin on Au(1 1 1), the agreement with the experimental spectra is not as good due to the neglect of quantum interference in the tunneling.
Collapse
Affiliation(s)
- David Jacob
- Nano-Bio Spectroscopy Group, Dpto. de Física de Materiales, Universidad del País Vasco UPV/EHU, Avenida Tolosa 72, E-20018 San Sebastián, Spain. IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| |
Collapse
|
33
|
Nachtigallová D, Antalík A, Lo R, Sedlák R, Manna D, Tuček J, Ugolotti J, Veis L, Legeza Ö, Pittner J, Zbořil R, Hobza P. An Isolated Molecule of Iron(II) Phthalocyanin Exhibits Quintet Ground-State: A Nexus between Theory and Experiment. Chemistry 2018; 24:13413-13417. [DOI: 10.1002/chem.201803380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/31/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; v.v.i., Flemingovo nám. 2 16610 Prague 6 Czech Republic
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science, Palacký University in Olomouc; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Andrej Antalík
- J. Heyrovský Institute of Physical Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Dolejškova 3 18223 Prague 8 Czech Republic
- Faculty of Mathematics and Physics; Charles University Prague; 11636 Prague Czech Republic Republic
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; v.v.i., Flemingovo nám. 2 16610 Prague 6 Czech Republic
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science, Palacký University in Olomouc; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Robert Sedlák
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; v.v.i., Flemingovo nám. 2 16610 Prague 6 Czech Republic
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science, Palacký University in Olomouc; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Debashree Manna
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; v.v.i., Flemingovo nám. 2 16610 Prague 6 Czech Republic
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science, Palacký University in Olomouc; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Jiří Tuček
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science, Palacký University in Olomouc; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Juri Ugolotti
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science, Palacký University in Olomouc; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Dolejškova 3 18223 Prague 8 Czech Republic
| | - Örs Legeza
- Strongly Correlated Systems “ Lendület” Research group; Wigner Research Centre for Physics; 1525 Budapest Hungary
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Dolejškova 3 18223 Prague 8 Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science, Palacký University in Olomouc; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; v.v.i., Flemingovo nám. 2 16610 Prague 6 Czech Republic
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science, Palacký University in Olomouc; Šlechtitelů 27 78371 Olomouc Czech Republic
| |
Collapse
|
34
|
Wang X, Yang L, Ye L, Zheng X, Yan Y. Precise Control of Local Spin States in an Adsorbed Magnetic Molecule with an STM Tip: Theoretical Insights from First-Principles-Based Simulation. J Phys Chem Lett 2018; 9:2418-2425. [PMID: 29685031 DOI: 10.1021/acs.jpclett.8b00808] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The precise tuning of local spin states in adsorbed organometallic molecules by a mechanically controlled scanning tunneling microscope (STM) tip has become a focus of recent experiments. However, the underlying mechanisms remain somewhat unclear. We investigate theoretically the STM tip control of local spin states in a single iron(II) porphyrin molecule adsorbed on the Pb(111) substrate. A combined density functional theory and hierarchical equations of motion approach is employed to simulate the tip tuning process in conjunction with the complete active space self-consistent field method for accurate computation of magnetic anisotropy. Our first-principles-based simulation accurately reproduces the tuning of magnetic anisotropy realized in experiment. Moreover, we elucidate the evolution of geometric and electronic structures of the composite junction and disclose the delicate competition between the Kondo resonance and local spin excitation. The understanding and insight provided by the first-principles-based simulation may help to realize more fascinating quantum state manipulations.
Collapse
Affiliation(s)
- Xiaoli Wang
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Longqing Yang
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - LvZhou Ye
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics , Guizhou Normal College , Guiyang , Guizhou 550018 , China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale & iChEM , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
35
|
Heinrich BW, Ehlert C, Hatter N, Braun L, Lotze C, Saalfrank P, Franke KJ. Control of Oxidation and Spin State in a Single-Molecule Junction. ACS NANO 2018; 12:3172-3177. [PMID: 29489330 DOI: 10.1021/acsnano.8b00312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The oxidation and spin state of a metal-organic molecule determine its chemical reactivity and magnetic properties. Here, we demonstrate the reversible control of the oxidation and spin state in a single Fe porphyrin molecule in the force field of the tip of a scanning tunneling microscope. Within the regimes of half-integer and integer spin state, we can further track the evolution of the magnetocrystalline anisotropy. Our experimental results are corroborated by density functional theory and wave function theory. This combined analysis allows us to draw a complete picture of the molecular states over a large range of intramolecular deformations.
Collapse
Affiliation(s)
- Benjamin W Heinrich
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Christopher Ehlert
- Institute of Chemistry , Universität Potsdam , Karl-Liebknecht-Strasse 24-25 , 14476 Potsdam , Germany
- Department of Chemistry , Wilfrid Laurier University , 75 University Avenue West , Waterloo , Ontario N2L3C5 , Canada
| | - Nino Hatter
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Lukas Braun
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Christian Lotze
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Peter Saalfrank
- Institute of Chemistry , Universität Potsdam , Karl-Liebknecht-Strasse 24-25 , 14476 Potsdam , Germany
| | - Katharina J Franke
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| |
Collapse
|
36
|
Chen J, Isshiki H, Baretzky C, Balashov T, Wulfhekel W. Abrupt Switching of Crystal Fields during Formation of Molecular Contacts. ACS NANO 2018; 12:3280-3286. [PMID: 29565560 DOI: 10.1021/acsnano.7b07927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetic molecules have the potential to be used as building blocks for bits in quantum computers. The spin states of the magnetic ion in the molecule can be represented by the effective spin Hamiltonian describing the zero field splitting (ZFS) of the magnetic states. We determined the ZFS of mechanically flexible metal-chelate molecules (Co, Ni, and Cu as metal ions) adsorbed on Cu2N/Cu(100) by inelastic tunneling spectroscopy at temperatures down to 30 mK. When moving the tip toward the molecule, the tunneling current abruptly jumps to higher values, indicating the sudden deformation of the molecule bridging the tunneling junction. Hand in hand with the formation of the contact, an abrupt change of the ZFS occurs. This work also implies that ZFS expected in mechanical break junctions can drastically deviate from that of adsorbed molecules probed by other techniques.
Collapse
Affiliation(s)
- Jinjie Chen
- Physikalisches Institut , Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
| | - Hironari Isshiki
- Physikalisches Institut , Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
| | - Clemens Baretzky
- Physikalisches Institut , Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
| | - Timofey Balashov
- Physikalisches Institut , Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
| | - Wulf Wulfhekel
- Physikalisches Institut , Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
| |
Collapse
|
37
|
Karan S, García C, Karolak M, Jacob D, Lorente N, Berndt R. Spin Control Induced by Molecular Charging in a Transport Junction. NANO LETTERS 2018; 18:88-93. [PMID: 29232947 DOI: 10.1021/acs.nanolett.7b03411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability of molecules to maintain magnetic multistability in nanoscale-junctions will determine their role in downsizing spintronic devices. While spin-injection from ferromagnetic leads gives rise to magnetoresistance in metallic nanocontacts, nonmagnetic leads probing the magnetic states of the junction itself have been considered as an alternative. Extending this experimental approach to molecular junctions, which are sensitive to chemical parameters, we demonstrate that the electron affinity of a molecule decisively influences its spin transport. We use a scanning tunneling microscope to trap a meso-substituted iron porphyrin, putting the iron center in an environment that provides control of its charge and spin states. A large electron affinity of peripheral ligands is shown to enable switching of the molecular S = 1 ground state found at low electron density to S = 1/2 at high density, while lower affinity keeps the molecule inactive to spin-state transition. These results pave the way for spin control using chemical design and electrical means.
Collapse
Affiliation(s)
- Sujoy Karan
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel , 24098 Kiel, Germany
- Institute of Experimental and Applied Physics, University of Regensburg , 93053 Regensburg, Germany
| | - Carlos García
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Michael Karolak
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany
| | - David Jacob
- Departamento de Física de Materiales, Universidad del País Vasco, UPV/EHU , Av. Tolosa 72, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Nicolás Lorente
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Centro de Física de Materiales CFM/MPC, CSIC-UPV/EHU , Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel , 24098 Kiel, Germany
| |
Collapse
|
38
|
Wang Y, Li X, Zheng X, Yang J. Manipulation of spin and magnetic anisotropy in bilayer magnetic molecular junctions. Phys Chem Chem Phys 2018; 20:26396-26404. [DOI: 10.1039/c8cp05759a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Kondo effect and magnetic anisotropy in bilayer TMPc/TMPc/Pb(111) junctions can be actively tuned by changing the intermediate decoupling layer.
Collapse
Affiliation(s)
- Yu Wang
- Institute for Advanced Study
- Shenzhen University
- Shenzhen 518060
- China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province
| | - Xiaoguang Li
- Institute for Advanced Study
- Shenzhen University
- Shenzhen 518060
- China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics
- University of Science and Technology of China
- Hefei 230026
- China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics
- University of Science and Technology of China
- Hefei 230026
- China
| |
Collapse
|
39
|
Li R, Li N, Wang H, Weismann A, Zhang Y, Hou S, Wu K, Wang Y. Tuning the spin-related transport properties of FePc on Au(111) through single-molecule chemistry. Chem Commun (Camb) 2018; 54:9135-9138. [PMID: 30059079 DOI: 10.1039/c8cc02994f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tuning the spin-related transport properties of FePc on Au(111) through single-molecule chemistry.
Collapse
Affiliation(s)
- Ruoning Li
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Na Li
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Hao Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik
- Christian-Albrechts-Universität zu Kiel
- 24098 Kiel
- Germany
| | - Yajie Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Shimin Hou
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Kai Wu
- BNLMS
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices
- Department of Electronics
- Peking University
- Beijing 100871
- China
| |
Collapse
|