1
|
Romdhane S, Huet S, Spor A, Bru D, Breuil MC, Philippot L. Manipulating the physical distance between cells during soil colonization reveals the importance of biotic interactions in microbial community assembly. ENVIRONMENTAL MICROBIOME 2024; 19:18. [PMID: 38504378 PMCID: PMC10953230 DOI: 10.1186/s40793-024-00559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/03/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Microbial communities are of tremendous importance for ecosystem functioning and yet we know little about the ecological processes driving the assembly of these communities in the environment. Here, we used an unprecedented experimental approach based on the manipulation of physical distance between neighboring cells during soil colonization to determine the role of bacterial interactions in soil community assembly. We hypothesized that experimentally manipulating the physical distance between bacterial cells will modify the interaction strengths leading to differences in microbial community composition, with increasing distance between neighbors favoring poor competitors. RESULTS We found significant differences in both bacterial community diversity, composition and co-occurrence networks after soil colonization that were related to physical distancing. We show that reducing distances between cells resulted in a loss of bacterial diversity, with at least 41% of the dominant OTUs being significantly affected by physical distancing. Our results suggest that physical distancing may differentially modulate competitiveness between neighboring species depending on the taxa present in the community. The mixing of communities that assembled at high and low cell densities did not reveal any "home field advantage" during coalescence. This confirms that the observed differences in competitiveness were due to biotic rather than abiotic filtering. CONCLUSIONS Our study demonstrates that the competitiveness of bacteria strongly depends on cell density and community membership, therefore highlighting the fundamental role of microbial interactions in the assembly of soil communities.
Collapse
Affiliation(s)
- Sana Romdhane
- Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, F-21000, Dijon, France.
| | - Sarah Huet
- Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, F-21000, Dijon, France
| | - Aymé Spor
- Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, F-21000, Dijon, France
| | - David Bru
- Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, F-21000, Dijon, France
| | - Marie-Christine Breuil
- Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, F-21000, Dijon, France
| | - Laurent Philippot
- Univ. Bourgogne Franche-Comté, INRAE, Institut Agro, Agroécologie, F-21000, Dijon, France
| |
Collapse
|
2
|
Liu Z, Good BH. Dynamics of bacterial recombination in the human gut microbiome. PLoS Biol 2024; 22:e3002472. [PMID: 38329938 PMCID: PMC10852326 DOI: 10.1371/journal.pbio.3002472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/14/2023] [Indexed: 02/10/2024] Open
Abstract
Horizontal gene transfer (HGT) is a ubiquitous force in microbial evolution. Previous work has shown that the human gut is a hotspot for gene transfer between species, but the more subtle exchange of variation within species-also known as recombination-remains poorly characterized in this ecosystem. Here, we show that the genetic structure of the human gut microbiome provides an opportunity to measure recent recombination events from sequenced fecal samples, enabling quantitative comparisons across diverse commensal species that inhabit a common environment. By analyzing recent recombination events in the core genomes of 29 human gut bacteria, we observed widespread heterogeneities in the rates and lengths of transferred fragments, which are difficult to explain by existing models of ecological isolation or homology-dependent recombination rates. We also show that natural selection helps facilitate the spread of genetic variants across strain backgrounds, both within individual hosts and across the broader population. These results shed light on the dynamics of in situ recombination, which can strongly constrain the adaptability of gut microbial communities.
Collapse
Affiliation(s)
- Zhiru Liu
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Benjamin H. Good
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- Chan Zuckerberg Biohub–San Francisco, San Francisco, California, United States of America
| |
Collapse
|
3
|
Miller ZR, Clenet M, Della Libera K, Massol F, Allesina S. Coexistence of many species under a random competition-colonization trade-off. Proc Natl Acad Sci U S A 2024; 121:e2314215121. [PMID: 38261621 PMCID: PMC10835059 DOI: 10.1073/pnas.2314215121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
The competition-colonization (CC) trade-off is a well-studied coexistence mechanism for metacommunities. In this setting, it is believed that the coexistence of all species requires their traits to satisfy restrictive conditions limiting their similarity. To investigate whether diverse metacommunities can assemble in a CC trade-off model, we study their assembly from a probabilistic perspective. From a pool of species with parameters (corresponding to traits) sampled at random, we compute the probability that any number of species coexist and characterize the set of species that emerges through assembly. Remarkably, almost exactly half of the species in a large pool typically coexist, with no saturation as the size of the pool grows, and with little dependence on the underlying distribution of traits. Through a mix of analytical results and simulations, we show that this unlimited niche packing emerges as assembly actively moves communities toward overdispersed configurations in niche space. Our findings also apply to a realistic assembly scenario where species invade one at a time from a fixed regional pool. When diversity arises de novo in the metacommunity, richness still grows without bound, but more slowly. Together, our results suggest that the CC trade-off can support the robust emergence of diverse communities, even when coexistence of the full species pool is exceedingly unlikely.
Collapse
Affiliation(s)
- Zachary R. Miller
- Department of Ecology & Evolution, University of Chicago, Chicago, IL60637
- Department of Plant Biology, University of Illinois, Urbana, IL, 61801
| | - Maxime Clenet
- Laboratoire d’Informatique Gaspard-Monge, UMR 8049, CNRS, Université Gustave Eiffel, Marne-la-Vallée77454, France
| | - Katja Della Libera
- Department of Ecology & Evolution, University of Chicago, Chicago, IL60637
| | - François Massol
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019–UMR 9017–Center for Infection and Immunity of Lille, LilleF-59000, France
| | - Stefano Allesina
- Department of Ecology & Evolution, University of Chicago, Chicago, IL60637
| |
Collapse
|
4
|
Ontiveros VJ, Capitán JA, Casamayor EO, Alonso D. Colonization-persistence trade-offs in natural bacterial communities. Proc Biol Sci 2023; 290:20230709. [PMID: 37403500 PMCID: PMC10320335 DOI: 10.1098/rspb.2023.0709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Fitness equalizing mechanisms, such as trade-offs, are recognized as one of the main factors promoting species coexistence in community ecology. However, they have rarely been explored in microbial communities. Although microbial communities are highly diverse, the coexistence of their multiple taxa is largely attributed to niche differences and high dispersal rates, following the principle 'everything is everywhere, but the environment selects'. We use a dynamical stochastic model based on the theory of island biogeography to study highly diverse bacterial communities over time across three different systems (soils, alpine lakes and shallow saline lakes). Assuming fitness equalization mechanisms, here we newly analytically derive colonization-persistence trade-offs, and report a signal of such trade-offs in natural bacterial communities. Moreover, we show that different subsets of species in the community drive this trade-off. Rare taxa, which are occasional and more likely to follow independent colonization/extinction dynamics, drive this trade-off in the aquatic communities, while the core sub-community did it in the soils. We conclude that equalizing mechanisms may be more important than previously recognized in bacterial communities. Our work also emphasizes the fundamental value of dynamical models for understanding temporal patterns and processes in highly diverse communities.
Collapse
Affiliation(s)
- Vicente J. Ontiveros
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - José A. Capitán
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
- Complex Systems Group. Department of Applied Mathematics, Universidad Politécnica de Madrid. Av. Juan de Herrera, 6. E-28040 Madrid, Spain
| | - Emilio O. Casamayor
- Integrative Freshwater Ecology Group, Centre of Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - David Alonso
- Theoretical and Computational Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Spanish Council for Scientific Research, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| |
Collapse
|
5
|
Deterministic Assembly Processes Strengthen the Effects of β-Diversity on Community Biomass of Marine Bacterioplankton. mSystems 2023; 8:e0097022. [PMID: 36511690 PMCID: PMC9948717 DOI: 10.1128/msystems.00970-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The presence of more species in the community of a sampling site (α diversity) typically increases ecosystem functions via nonrandom processes like resource partitioning. When considering multiple communities, we hypothesize that higher compositional difference (β diversity) increases overall functions of these communities. Further, we hypothesize that the β diversity effect is more positive when β diversity is increased by nonrandom assembly processes. To test these hypotheses, we collected bacterioplankton along a transect of 6 sampling sites in the southern East China Sea in 14 cruises. For any pairs of the 6 sites within a cruise, we calculated the Bray-Curtis index to represent β diversity and summed bacterial biomass as a proxy to indicate the overall function of the two communities. We then calculated deviation of observed mean pairwise phylogenetic similarities among species in two communities from random to represent the influences of nonrandom processes. The bacterial β diversity was found to positively affect the summed bacterial biomass; however, the effect varied among cruises. Cross-cruise comparison indicated that the β diversity effect increased with the nonrandom processes selecting for phylogenetically dissimilar species. This study extends biodiversity-ecosystem functioning research to the scale of multiple sites and enriches the framework by considering community assembly processes. IMPORTANCE The implications of our analyses are twofold. First, we emphasize the importance of studying β diversity. We expanded the current biodiversity-ecosystem functioning framework from single to multiple sampling sites and investigated the influences of species compositional differences among sites on the overall functioning of these sites. Since natural ecological communities never exist alone, our analyses allow us to more holistically perceive the role of biodiversity in natural ecosystems. Second, we took community assembly processes into account to attain a more mechanistic understanding of the impacts of biodiversity on ecosystem functioning.
Collapse
|
6
|
Ferzoco IMC, McCauley SJ. Breaking down the components of the competition-colonization trade-off: New insights into its role in diverse systems. J Anim Ecol 2023; 92:352-366. [PMID: 36385373 DOI: 10.1111/1365-2656.13845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
Performance trade-offs between competition and colonization can be an important mechanism facilitating regional coexistence of competitors. However, empirical evidence for this trade-off is mixed, raising questions about the extent to which it shapes diverse ecological communities. Here, we outline a framework that can be used to improve empirical tests of the competition-colonization trade-off. We argue that tests of the competition-colonization trade-off have been diverted into unproductive paths when dispersal mode and/or competition type have been inadequately defined. To generate comparative predictions of associations between dispersal and competitive performance, we develop a conceptual trait-based framework that clarifies how dispersal mode and type of competitor shape this trade-off at the stage of dispersal and establishment in a variety of systems. Our framework suggests that competition-colonization trade-offs may be less common for passively dispersing organisms when competitive dominants are those best able to withstand resource depletion (competitive response), and for active dispersers when traits for dispersal performance are positively associated with resource pre-emption (competitive effect). The framework presented here is designed to provide common ground for researchers working in different systems in order to prompt more effective assessment of this performance trade-off and its role in shaping community structure. By delineating key system properties that mediate the trade-off between competitive and colonization performance and their relationship to individual-level traits, researchers in disparate systems can structure their predictions about this trade-off more effectively and compare across systems more clearly.
Collapse
Affiliation(s)
- Ilia Maria C Ferzoco
- Biology Department, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Shannon J McCauley
- Biology Department, University of Toronto Mississauga, Mississauga, Ontario, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Hammer TJ, Easton-Calabria A, Moran NA. Microbiome assembly and maintenance across the lifespan of bumble bee workers. Mol Ecol 2023; 32:724-740. [PMID: 36333950 PMCID: PMC9871002 DOI: 10.1111/mec.16769] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
How a host's microbiome changes over its lifespan can influence development and ageing. As these temporal patterns have only been described in detail for a handful of hosts, an important next step is to compare microbiome succession more broadly and investigate why it varies. Here we characterize the temporal dynamics and stability of the bumble bee worker gut microbiome. Bumble bees have simple and host-specific gut microbiomes, and their microbial dynamics may influence health and pollination services. We used 16S rRNA gene sequencing, quantitative PCR and metagenomics to characterize gut microbiomes over the lifespan of Bombus impatiens workers. We also sequenced gut transcriptomes to examine host factors that may control the microbiome. At the community level, microbiome assembly is highly predictable and similar to patterns of primary succession observed in the human gut. However, at the strain level, partitioning of bacterial variants among colonies suggests stochastic colonization events similar to those observed in flies and nematodes. We also find strong differences in temporal dynamics among symbiont species, suggesting ecological differences among microbiome members in colonization and persistence. Finally, we show that both the gut microbiome and host transcriptome-including expression of key immunity genes-stabilize, as opposed to senesce, with age. We suggest that in highly social groups such as bumble bees, maintenance of both microbiomes and immunity contribute to inclusive fitness, and thus remain under selection even in old age. Our findings provide a foundation for exploring the mechanisms and functional outcomes of bee microbiome succession.
Collapse
Affiliation(s)
- Tobin J. Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697,Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703,Corresponding author:
| | | | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78703
| |
Collapse
|
8
|
O’Sullivan JD, Terry JCD, Wilson R, Rossberg AG. Community composition exceeds area as a predictor of long-term conservation value. PLoS Comput Biol 2023; 19:e1010804. [PMID: 36716317 PMCID: PMC9946215 DOI: 10.1371/journal.pcbi.1010804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 02/22/2023] [Accepted: 12/09/2022] [Indexed: 02/01/2023] Open
Abstract
Conserving biodiversity often requires deciding which sites to prioritise for protection. Predicting the impact of habitat loss is a major challenge, however, since impacts can be distant from the perturbation in both space and time. Here we study the long-term impacts of habitat loss in a mechanistic metacommunity model. We find that site area is a poor predictor of long-term, regional-scale extinctions following localised perturbation. Knowledge of the compositional distinctness (average between-site Bray-Curtis dissimilarity) of the removed community can markedly improve the prediction of impacts on regional assemblages, even when biotic responses play out at substantial spatial or temporal distance from the initial perturbation. Fitting the model to two empirical datasets, we show that this conclusions holds in the empirically relevant parameter range. Our results robustly demonstrate that site area alone is not sufficient to gauge conservation priorities; analysis of compositional distinctness permits improved prioritisation at low cost.
Collapse
Affiliation(s)
- Jacob D. O’Sullivan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| | - J. Christopher D. Terry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Ramesh Wilson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Axel G. Rossberg
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
McMullen JG, Lennon JT. Mark-recapture of microorganisms. Environ Microbiol 2023; 25:150-157. [PMID: 36310117 DOI: 10.1111/1462-2920.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/21/2023]
Affiliation(s)
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
10
|
Kuhn T, Mamin M, Bindschedler S, Bshary R, Estoppey A, Gonzalez D, Palmieri F, Junier P, Richter XYL. Spatial scales of competition and a growth-motility trade-off interact to determine bacterial coexistence. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211592. [PMID: 36483758 PMCID: PMC9727664 DOI: 10.1098/rsos.211592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The coexistence of competing species is a long-lasting puzzle in evolutionary ecology research. Despite abundant experimental evidence showing that the opportunity for coexistence decreases as niche overlap increases between species, bacterial species and strains competing for the same resources are commonly found across diverse spatially heterogeneous habitats. We thus hypothesized that the spatial scale of competition may play a key role in determining bacterial coexistence, and interact with other mechanisms that promote coexistence, including a growth-motility trade-off. To test this hypothesis, we let two Pseudomonas putida strains compete at local and regional scales by inoculating them either in a mixed droplet or in separate droplets in the same Petri dish, respectively. We also created conditions that allow the bacterial strains to disperse across abiotic or fungal hyphae networks. We found that competition at the local scale led to competitive exclusion while regional competition promoted coexistence. When competing in the presence of dispersal networks, the growth-motility trade-off promoted coexistence only when the strains were inoculated in separate droplets. Our results provide a mechanism by which existing laboratory data suggesting competitive exclusion at a local scale is reconciled with the widespread coexistence of competing bacterial strains in complex natural environments with dispersal.
Collapse
Affiliation(s)
- Thierry Kuhn
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Marine Mamin
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Redouan Bshary
- Laboratory of Eco-Ethology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Aislinn Estoppey
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Diego Gonzalez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Xiang-Yi Li Richter
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, Institute of Biology, University of Neuchâtel, Rue Émile-Argand 11, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
11
|
Wetherington MT, Nagy K, Dér L, Ábrahám Á, Noorlag J, Galajda P, Keymer JE. Ecological succession and the competition-colonization trade-off in microbial communities. BMC Biol 2022; 20:262. [PMID: 36447225 PMCID: PMC9710175 DOI: 10.1186/s12915-022-01462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND During range expansion in spatially distributed habitats, organisms differ from one another in terms of their patterns of localization versus propagation. To exploit locations or explore the landscape? This is the competition-colonization trade-off, a dichotomy at the core of ecological succession. In bacterial communities, this trade-off is a fundamental mechanism towards understanding spatio-temporal fluxes in microbiome composition. RESULTS Using microfluidics devices as structured bacterial habitats, we show that, in a synthetic two-species community of motile strains, Escherichia coli is a fugitive species, whereas Pseudomonas aeruginosa is a slower colonizer but superior competitor. We provide evidence highlighting the role of succession and the relevance of this trade-off in the community assembly of bacteria in spatially distributed patchy landscapes. Furthermore, aggregation-dependent priority effects enhance coexistence which is not possible in well-mixed environments. CONCLUSIONS Our findings underscore the interplay between micron-scale landscape structure and dispersal in shaping biodiversity patterns in microbial ecosystems. Understanding this interplay is key to unleash the technological revolution of microbiome applications.
Collapse
Affiliation(s)
- Miles T. Wetherington
- grid.7870.80000 0001 2157 0406Department of Ecology, School of Biological Sciences, P. Catholic University of Chile, Santiago, Chile ,grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary ,grid.5386.8000000041936877XSchool of Applied and Engineering Physics, Cornell University, Ithaca, USA
| | - Krisztina Nagy
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - László Dér
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - Ágnes Ábrahám
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Janneke Noorlag
- grid.7870.80000 0001 2157 0406Department of Ecology, School of Biological Sciences, P. Catholic University of Chile, Santiago, Chile ,grid.501187.a0000000463647645Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| | - Peter Galajda
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - Juan E. Keymer
- grid.7870.80000 0001 2157 0406Department of Ecology, School of Biological Sciences, P. Catholic University of Chile, Santiago, Chile ,grid.7870.80000 0001 2157 0406Institute of Physics, School of Physics, P. Catholic University of Chile, Santiago, Chile ,grid.501187.a0000000463647645Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| |
Collapse
|
12
|
Marasco R, Fusi M, Ramond JB, Van Goethem MW, Seferji K, Maggs-Kölling G, Cowan DA, Daffonchio D. The plant rhizosheath-root niche is an edaphic "mini-oasis" in hyperarid deserts with enhanced microbial competition. ISME COMMUNICATIONS 2022; 2:47. [PMID: 37938683 PMCID: PMC9723607 DOI: 10.1038/s43705-022-00130-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 06/17/2023]
Abstract
Plants have evolved unique morphological and developmental adaptations to cope with the abiotic stresses imposed by (hyper)arid environments. Such adaptations include the formation of rhizosheath-root system in which mutualistic plant-soil microbiome associations are established: the plant provides a nutrient-rich and shielded environment to microorganisms, which in return improve plant-fitness through plant growth promoting services. We hypothesized that the rhizosheath-root systems represent refuge niches and resource islands for the desert edaphic microbial communities. As a corollary, we posited that microorganisms compete intensively to colonize such "oasis" and only those beneficial microorganisms improving host fitness are preferentially selected by plant. Our results show that the belowground rhizosheath-root micro-environment is largely more hospitable than the surrounding gravel plain soil with higher nutrient and humidity contents, and cooler temperatures. By combining metabarcoding and shotgun metagenomics, we demonstrated that edaphic microbial biomass and community stability increased from the non-vegetated soils to the rhizosheath-root system. Concomitantly, non-vegetated soil communities favored autotrophy lifestyle while those associated with the plant niches were mainly heterotrophs and enriched in microbial plant growth promoting capacities. An intense inter-taxon microbial competition is involved in the colonization and homeostasis of the rhizosheath zone, as documented by significant enrichment of antibiotic resistance genes and CRISPR-Cas motifs. Altogether, our results demonstrate that rhizosheath-root systems are "edaphic mini-oases" and microbial diversity hotspots in hyperarid deserts. However, to colonize such refuge niches, the desert soil microorganisms compete intensively and are therefore prepared to outcompete potential rivals.
Collapse
Affiliation(s)
- Ramona Marasco
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - Marco Fusi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marc W Van Goethem
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Kholoud Seferji
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
13
|
Gómez P, Hall AR, Paterson S, Buckling A. Rapid decline of adaptation of Pseudomonas fluorescens to soil biotic environment. Biol Lett 2022; 18:20210593. [PMID: 35259940 PMCID: PMC8905175 DOI: 10.1098/rsbl.2021.0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interactions between microbes can both constrain and enhance their adaptation to the environment. However, most studies to date have employed simplified microbial communities and environmental conditions. We determined how the presence of a commercial potting compost microbial community affected adaptation of the soil bacterium Pseudomonas fluorescens SBW25 in potting compost. Pseudomonas fluorescens clones isolated from populations evolved in both the presence and absence of the community showed similar fitness increases when measured in the absence of the community. This suggests the presence of the community did not constrain adaptation. By contrast, fitness measured in the presence of the community increased for community-evolved populations, but decreased below the ancestral state for populations evolved in the absence of the community. This suggests some, but not all, mutations that were beneficial with respect to the abiotic environment were costly in the presence of the community, with the former selected against in the presence of the community. Whole-genome sequencing supports this interpretation: most mutations underpinning fitness changes were clone-specific, suggesting multiple genetic pathways to adaptation. Such extreme mutational effects have not been observed in comparable in vitro studies, suggesting that caution is needed when extrapolating results from simplified in vitro systems to natural contexts.
Collapse
Affiliation(s)
- Pedro Gómez
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Alex R Hall
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| | - Steve Paterson
- Department of Ecology, Evolution and Behaviour, University of Liverpool, Liverpool, UK
| | - Angus Buckling
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| |
Collapse
|
14
|
Klassert TE, Leistner R, Zubiria-Barrera C, Stock M, López M, Neubert R, Driesch D, Gastmeier P, Slevogt H. Bacterial colonization dynamics and antibiotic resistance gene dissemination in the hospital environment after first patient occupancy: a longitudinal metagenetic study. MICROBIOME 2021; 9:169. [PMID: 34380550 PMCID: PMC8359561 DOI: 10.1186/s40168-021-01109-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/02/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Humans spend the bulk of their time in indoor environments. This space is shared with an indoor ecosystem of microorganisms, which are in continuous exchange with the human inhabitants. In the particular case of hospitals, the environmental microorganisms may influence patient recovery and outcome. An understanding of the bacterial community structure in the hospital environment is pivotal for the prevention of hospital-acquired infections and the dissemination of antibiotic resistance genes. In this study, we performed a longitudinal metagenetic approach in a newly opened ward at the Charité Hospital (Berlin) to characterize the dynamics of the bacterial colonization process in the hospital environment after first patient occupancy. RESULTS The sequencing data showed a site-specific taxonomic succession, which led to stable community structures after only a few weeks. This data was further supported by network analysis and beta-diversity metrics. Furthermore, the fast colonization process was characterized by a significant increase of the bacterial biomass and its alpha-diversity. The compositional dynamics could be linked to the exchange with the patient microbiota. Over a time course of 30 weeks, we did not detect a rise of pathogenic bacteria in the hospital environment, but a significant increase of antibiotic resistance determinants on the hospital floor. CONCLUSIONS The results presented in this study provide new insights into different aspects of the environmental microbiome in the clinical setting, and will help to adopt infection control strategies in hospitals and health care-related buildings. Video Abstract.
Collapse
Affiliation(s)
- Tilman E Klassert
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany.
| | - Rasmus Leistner
- Institute for Hygiene and Environmental Medicine and Department for Medicine (Gastroenterology, Infectious diseases, Rheumatology), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Magdalena Stock
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany
| | - Mercedes López
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, San Cristóbal de La Laguna, Spain
| | - Robert Neubert
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany
| | | | - Petra Gastmeier
- Institute for Hygiene and Environmental Medicine, Charité-Universitätsmedizin, Berlin, Germany
| | - Hortense Slevogt
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany
| |
Collapse
|
15
|
King WL, Bell TH. Can dispersal be leveraged to improve microbial inoculant success? Trends Biotechnol 2021; 40:12-21. [PMID: 33972105 DOI: 10.1016/j.tibtech.2021.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/24/2023]
Abstract
Microorganisms have long been isolated from soils to develop microbial inoculants, with the goal of spiking them into new soils to augment target functions. However, establishment can be sporadic, and we assume that inoculants simply arrive at their destination. Here, we posit a need for integrating dispersal into inoculant development and deployment. We argue that consideration for an inoculant's dispersal ability, whether via active (e.g., chemotaxis) or passive (e.g., attachment to other organisms) means, and including methods of deployment that allow multiple establishment attempts could help increase the predictability of inoculant success. Dispersal can influence many key aspects of in-field survival, including the ability to escape stressors, seek favorable colonization sites, facilitate multiple establishment attempts, and engage in multikingdom interactions.
Collapse
Affiliation(s)
- William L King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA.
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA; Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
16
|
Arumugam R, Lutscher F, Guichard F. Tracking unstable states: ecosystem dynamics in a changing world. OIKOS 2021. [DOI: 10.1111/oik.08051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Frithjof Lutscher
- Dept of Mathematics and Statistics, Dept of Biology, Univ. of Ottawa Ottawa ON Canada
| | | |
Collapse
|
17
|
Abstract
Perhaps more than any other ecological discipline, invasion biology has married the practices of basic science and the application of that science. The conceptual frameworks of population regulation, metapopulations, supply-side ecology, and community assembly have all to some degree informed the regulation, management, and prevention of biological invasions. Invasion biology needs to continue to adopt emerging frameworks and paradigms to progress as both a basic and applied science. This need is urgent as the biological invasion problem continues to worsen. The development of metacommunity theory in the last two decades represents a paradigm-shifting approach to community ecology that emphasizes the multi-scale nature of community assembly and biodiversity regulation. Work on metacommunities has demonstrated that even relatively simple processes at local scales are often heavily influenced by regional-scale processes driven primarily by the dispersal of organisms. Often the influence of dispersal interacts with, or even swamps, the influence of local-scale drivers like environmental conditions and species interactions. An emphasis on dispersal and a focus on multi-scale processes enable metacommunity theory to contribute strongly to the advancement of invasion biology. Propagule pressure of invaders has been identified as one of the most important drivers facilitating invasion, so the metacommunity concept, designed to address how dispersal-driven dynamics affect community structure, can directly address many of the central questions of invasion biology. Here we revisit many of the important concepts and paradigms of biological invasions—propagule pressure, biotic resistance, enemy release, functional traits, neonative species, human-assisted transport,—and view those concepts through the lens of metacommunity theory. In doing so, we accomplish several goals. First, we show that work on metacommunities has generated multiple predictions, models, and the tools that can be directly applied to invasion scenarios. Among these predictions is that invasibility of a community should decrease with both local controls on community assembly, and the dispersal rates of native species. Second, we demonstrate that framing biological invasions in metacommunity terms actually unifies several seemingly disparate concepts central to invasion biology. Finally, we recommend several courses of action for the control and management of invasive species that emerge from applying the concepts of metacommunity theory.
Collapse
|
18
|
Tissot T, Massol F, Ujvari B, Alix-Panabieres C, Loeuille N, Thomas F. Metastasis and the evolution of dispersal. Proc Biol Sci 2019; 286:20192186. [PMID: 31771479 DOI: 10.1098/rspb.2019.2186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite significant progress in oncology, metastasis remains the leading cause of mortality of cancer patients. Understanding the foundations of this phenomenon could help contain or even prevent it. As suggested by many ecologists and cancer biologists, metastasis could be considered through the lens of biological dispersal: the movement of cancer cells from their birth site (the primary tumour) to other habitats where they resume proliferation (metastatic sites). However, whether this model can consistently be applied to the emergence and dynamics of metastasis remains unclear. Here, we provide a broad review of various aspects of the evolution of dispersal in ecosystems. We investigate whether similar ecological and evolutionary principles can be applied to metastasis, and how these processes may shape the spatio-temporal dynamics of disseminating cancer cells. We further discuss complementary hypotheses and propose experimental approaches to test the relevance of the evolutionary ecology of dispersal in studying metastasis.
Collapse
Affiliation(s)
- Tazzio Tissot
- Institute of Ecology and Environmental Sciences, Sorbonne University/CNRS/INRA/IRD/UPEC/Paris-Diderot University, Paris, France.,Eco-Anthropology, MNHN/CNRS/Paris-Diderot University, Paris, France
| | - François Massol
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Catherine Alix-Panabieres
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
| | - Nicolas Loeuille
- Institute of Ecology and Environmental Sciences, Sorbonne University/CNRS/INRA/IRD/UPEC/Paris-Diderot University, Paris, France
| | - Frédéric Thomas
- CREEC (CREES), Unité Mixte de Recherches, IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Size, weapons, and armor as predictors of competitive outcomes in fossil and contemporary marine communities. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Durack J, Lynch SV. The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med 2019; 216:20-40. [PMID: 30322864 PMCID: PMC6314516 DOI: 10.1084/jem.20180448] [Citation(s) in RCA: 513] [Impact Index Per Article: 102.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/12/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, our view of human-associated microbes has expanded beyond that of a few species toward an appreciation of the diverse and niche-specialized microbial communities that develop in the human host with chronological age. The largest reservoir of microbes exists in the distal gastrointestinal tract, both in the lumen, where microbes facilitate primary and secondary metabolism, and on mucosal surfaces, where they interact with host immune cell populations. While local microbial-driven immunomodulation in the gut is well described, more recent studies have demonstrated a role for the gut microbiome in influencing remote organs and mucosal and hematopoietic immune function. Unsurprisingly, therefore, perturbation to the composition and function of the gut microbiota has been associated with chronic diseases ranging from gastrointestinal inflammatory and metabolic conditions to neurological, cardiovascular, and respiratory illnesses. Considerable effort is currently focused on understanding the natural history of microbiome development in humans in the context of health outcomes, in parallel with improving our knowledge of microbiome-host molecular interactions. These efforts ultimately aim to develop effective approaches to rehabilitate perturbed human microbial ecosystems as a means to restore health or prevent disease. This review details the role of the gut microbiome in modulating host health with a focus on immunomodulation and discusses strategies for manipulating the gut microbiome for the management or prevention of chronic inflammatory conditions.
Collapse
Affiliation(s)
- Juliana Durack
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
21
|
Shen D, Langenheder S, Jürgens K. Dispersal Modifies the Diversity and Composition of Active Bacterial Communities in Response to a Salinity Disturbance. Front Microbiol 2018; 9:2188. [PMID: 30294307 PMCID: PMC6159742 DOI: 10.3389/fmicb.2018.02188] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 08/27/2018] [Indexed: 11/21/2022] Open
Abstract
Dispersal can influence the response of bacterial communities to environmental changes and disturbances. However, the extent to which dispersal contributes to the community response in dependence of the character and strength of the disturbance remains unclear. Here, we conducted a transplant experiment using dialysis bags in which bacterioplankton originating from brackish and marine regions of the Saint Lawrence Estuary were reciprocally incubated in the two environments for 5 days. Dispersal treatments were set-up by subjecting half of the microcosms in each environment to an exchange of cells between the marine and brackish assemblages at a daily exchange rate of 6% (v/v), and the other half of microcosms were kept as the non-dispersal treatments. Bacterial 16S rRNA sequencing was then used to examine the diversity and composition of the active communities. Alpha diversity of the marine communities that were exposed to the brackish environment was elevated greatly by dispersal, but declined in the absence of dispersal. This indicates that dispersal compensated the loss of diversity in the marine communities after a disturbance by introducing bacterial taxa that were able to thrive and coexist with the remaining community members under brackish conditions. On the contrary, alpha diversity of the brackish communities was not affected by dispersal in either environment. Furthermore, dispersal led to an increase in similarity between marine and brackish communities in both of the environments, with a greater similarity when the communities were incubated in the brackish environment. These results suggest that the higher initial diversity in the brackish than in the marine starting community made the resident community less susceptible to dispersing bacteria. Altogether, this study shows that dispersal modifies the diversity and composition of the active communities in response to a salinity disturbance, and enables the local adjustment of specific bacteria under brackish environmental conditions.
Collapse
Affiliation(s)
- Dandan Shen
- Section of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| | - Silke Langenheder
- Department of Ecology and Genetic/Limnology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Klaus Jürgens
- Section of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| |
Collapse
|
22
|
Limdi A, Pérez-Escudero A, Li A, Gore J. Asymmetric migration decreases stability but increases resilience in a heterogeneous metapopulation. Nat Commun 2018; 9:2969. [PMID: 30061665 PMCID: PMC6065393 DOI: 10.1038/s41467-018-05424-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/11/2018] [Indexed: 12/04/2022] Open
Abstract
Many natural populations are spatially distributed, forming a network of subpopulations linked by migration. Migration patterns are often asymmetric and heterogeneous, with important consequences on the ecology and evolution of the species. Here we investigate experimentally how asymmetric migration and heterogeneous structure affect a simple metapopulation of budding yeast, formed by one strain that produces a public good and a non-producer strain that benefits from it. We study metapopulations with star topology and asymmetric migration, finding that all their subpopulations have a higher fraction of producers than isolated populations. Furthermore, the metapopulations have lower tolerance to challenging environments but higher resilience to transient perturbations. This apparent paradox occurs because tolerance to a constant challenge depends on the weakest subpopulations of the network, while resilience to a transient perturbation depends on the strongest ones. Asymmetrical movement among patches could affect the stability of ecological metapopulations, but this is difficult to test empirically. Here, Limdi et al. use experimental yeast metapopulations to show that asymmetric migration decreases stability but increases resilience to transient shocks.
Collapse
Affiliation(s)
- Anurag Limdi
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Alfonso Pérez-Escudero
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse Cedex, France
| | - Aming Li
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Center for Systems and Control, College of Engineering, Peking University, Beijing, 100871, China.,Center for Complex Network Research and Department of Physics, Northeastern University, Boston, MA, 02115, USA.,Chair of Systems Design, ETH Zürich, Weinbergstrasse 56/58, Zürich, CH-8092, Switzerland
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
23
|
Smith GR, Steidinger BS, Bruns TD, Peay KG. Competition-colonization tradeoffs structure fungal diversity. THE ISME JOURNAL 2018; 12:1758-1767. [PMID: 29491493 PMCID: PMC6018791 DOI: 10.1038/s41396-018-0086-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/28/2018] [Accepted: 02/07/2018] [Indexed: 01/13/2023]
Abstract
Findings of immense microbial diversity are at odds with observed functional redundancy, as competitive exclusion should hinder coexistence. Tradeoffs between dispersal and competitive ability could resolve this contradiction, but the extent to which they influence microbial community assembly is unclear. Because fungi influence the biogeochemical cycles upon which life on earth depends, understanding the mechanisms that maintain the richness of their communities is critically important. Here, we focus on ectomycorrhizal fungi, which are microbial plant mutualists that significantly affect global carbon dynamics and the ecology of host plants. Synthesizing theory with a decade of empirical research at our study site, we show that competition-colonization tradeoffs structure diversity in situ and that models calibrated only with empirically derived competition-colonization tradeoffs can accurately predict species-area relationships in this group of key eukaryotic microbes. These findings provide evidence that competition-colonization tradeoffs can sustain the landscape-scale diversity of microbes that compete for a single limiting resource.
Collapse
Affiliation(s)
- Gabriel R Smith
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | | | - Thomas D Bruns
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
24
|
DiBlasi E, Johnson KP, Stringham SA, Hansen AN, Beach AB, Clayton DH, Bush SE. Phoretic dispersal influences parasite population genetic structure. Mol Ecol 2018; 27:2770-2779. [PMID: 29752753 DOI: 10.1111/mec.14719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 01/01/2023]
Abstract
Dispersal is a fundamental component of the life history of most species. Dispersal influences fitness, population dynamics, gene flow, genetic drift and population genetic structure. Even small differences in dispersal can alter ecological interactions and trigger an evolutionary cascade. Linking such ecological processes with evolutionary patterns is difficult, but can be carried out in the proper comparative context. Here, we investigate how differences in phoretic dispersal influence the population genetic structure of two different parasites of the same host species. We focus on two species of host-specific feather lice (Phthiraptera: Ischnocera) that co-occur on feral rock pigeons (Columba livia). Although these lice are ecologically very similar, "wing lice" (Columbicola columbae) disperse phoretically by "hitchhiking" on pigeon flies (Diptera: Hippoboscidae), while "body lice" (Campanulotes compar) do not. Differences in the phoretic dispersal of these species are thought to underlie observed differences in host specificity, as well as the degree of host-parasite cospeciation. These ecological and macroevolutionary patterns suggest that body lice should exhibit more genetic differentiation than wing lice. We tested this prediction among lice on individual birds and among lice on birds from three pigeon flocks. We found higher levels of genetic differentiation in body lice compared to wing lice at two spatial scales. Our results indicate that differences in phoretic dispersal can explain microevolutionary differences in population genetic structure and are consistent with macroevolutionary differences in the degree of host-parasite cospeciation.
Collapse
Affiliation(s)
- Emily DiBlasi
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | | | - Angela N Hansen
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Andrew B Beach
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Dale H Clayton
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Sarah E Bush
- Department of Biology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
25
|
Spiesman BJ, Stapper AP, Inouye BD. Patch size, isolation, and matrix effects on biodiversity and ecosystem functioning in a landscape microcosm. Ecosphere 2018. [DOI: 10.1002/ecs2.2173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Brian J. Spiesman
- Department of Biological Science Florida State University Tallahassee Florida 32306 USA
| | - Andres P. Stapper
- Department of Otolaryngology Stanford University Stanford California 94304 USA
| | - Brian D. Inouye
- Department of Biological Science Florida State University Tallahassee Florida 32306 USA
| |
Collapse
|
26
|
Niederdorfer R, Besemer K, Battin TJ, Peter H. Ecological strategies and metabolic trade-offs of complex environmental biofilms. NPJ Biofilms Microbiomes 2017; 3:21. [PMID: 28955480 PMCID: PMC5612939 DOI: 10.1038/s41522-017-0029-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 01/29/2023] Open
Abstract
Microorganisms aggregated into matrix-enclosed biofilms dominate microbial life in most natural, engineered, and medical systems. Despite this, the ecological adaptations and metabolic trade-offs of the formation of complex biofilms are currently poorly understood. Here, exploring the dynamics of bacterial ribosomal RNA operon (rrn) copy numbers, we unravel the genomic underpinning of the formation and success of stream biofilms that contain hundreds of bacterial taxa. Experimenting with stream biofilms, we found that nascent biofilms in eutrophic systems had reduced lag phases and higher growth rates, and more taxa with higher rrn copy number than biofilms from oligotrophic systems. Based on these growth-related traits, our findings suggest that biofilm succession was dominated by slow-but-efficient bacteria likely with leaky functions, such as the production of extracellular polymeric substances at the cost of rapid growth. Expanding our experimental findings to biofilms from 140 streams, we found that rrn copy number distribution reflects functional trait allocation and ecological strategies of biofilms to be able to thrive in fluctuating environments. These findings suggest that alternative trade-offs dominating over rate-yield trade-offs contribute to the evolutionary success of stream biofilms. Analyzing natural biofilms containing many types of bacteria yields insights into microbial strategies for success in complex biofilms. The ecological adaptations and metabolic trade-offs involved in the formation of multi-bacterial biofilms in the environment are not well understood. Researchers in Switzerland and Austria, led by Tom Battin and Hannes Peter at the École Polytechnique Fédérale de Lausanne, performed genetic analysis of biofilms sampled from 140 streams. The biofilms contained hundreds of types of bacteria, unlike the mono-bacterial biofilms examined in many laboratory studies. Genetic analysis techniques revealed a diversity of metabolic strategies that allow bacteria to survive within the rich ecology of natural biofilms. Slow-growing but metabolically efficient bacteria that release more extracellular biofilm components thrive better than those adapted for quick growth alone. The findings significantly improve understanding of biofilm ecology in the natural environment.
Collapse
Affiliation(s)
- Robert Niederdorfer
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Limnology and Oceanography, University of Vienna, Vienna, Austria
| | | | - Tom J Battin
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hannes Peter
- Stream Biofilm and Ecosystem Research Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Halliday FW, Umbanhowar J, Mitchell CE. Interactions among symbionts operate across scales to influence parasite epidemics. Ecol Lett 2017; 20:1285-1294. [DOI: 10.1111/ele.12825] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/23/2017] [Indexed: 12/31/2022]
Affiliation(s)
| | - James Umbanhowar
- Department of Biology University of North Carolina Chapel Hill NC27599 USA
- Curriculum for the Environment and Ecology University of North Carolina Chapel Hill NC27599 USA
| | - Charles E. Mitchell
- Department of Biology University of North Carolina Chapel Hill NC27599 USA
- Curriculum for the Environment and Ecology University of North Carolina Chapel Hill NC27599 USA
| |
Collapse
|
28
|
Leibold MA, Chase JM, Ernest SKM. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 2017; 98:909-919. [DOI: 10.1002/ecy.1697] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/07/2016] [Accepted: 11/15/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Mathew A. Leibold
- Department of Integrative Biology 2415 Speedway #C0930, University of Texas at Austin Austin Texas 78712 USA
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e 04103 Leipzig Germany
- Department of Computer Science Martin Luther University Halle Germany
| | - S. K. Morgan Ernest
- Department of Wildlife Ecology and Conservation 110 Newins‐Ziegler Hall PO Box 110430, University of Florida Gainesville Florida 84322 USA
| |
Collapse
|
29
|
Laroche F, Jarne P, Perrot T, Massol F. The evolution of the competition-dispersal trade-off affects α- and β-diversity in a heterogeneous metacommunity. Proc Biol Sci 2017; 283:rspb.2016.0548. [PMID: 27122564 DOI: 10.1098/rspb.2016.0548] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/04/2016] [Indexed: 11/12/2022] Open
Abstract
Difference in dispersal ability is a key driver of species coexistence in metacommunities. However, the available frameworks for interpreting species diversity patterns in natura often overlook trade-offs and evolutionary constraints associated with dispersal. Here, we build a metacommunity model accounting for dispersal evolution and a competition-dispersal trade-off. Depending on the distribution of carrying capacities among communities, species dispersal values are distributed either around a single strategy (evolutionarily stable strategy, ESS), or around distinct strategies (evolutionary branching, EB). We show that limited dispersal generates spatial aggregation of dispersal traits in ESS and EB scenarios, and that the competition-dispersal trade-off strengthens the pattern in the EB scenario. Importantly, individuals in larger (respectively (resp.) smaller) communities tend to harbour lower (resp. higher) dispersal, especially under the EB scenario. We explore how dispersal evolution affects species diversity patterns by comparing those from our model to the predictions of a neutral metacommunity model. The most marked difference is detected under EB, with distinctive values of both α- and β-diversity (e.g. the dissimilarity in species composition between small and large communities was significantly larger than neutral predictions). We conclude that, from an empirical perspective, jointly assessing community carrying capacity with species dispersal strategies should improve our understanding of diversity patterns in metacommunities.
Collapse
Affiliation(s)
- Fabien Laroche
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, 34293 Montpellier Cedex 5, France AgroParisTech ENGREF, 19 avenue du Maine, 75732 Paris Cedex 15, France Irstea, UR EFNO, Domaine des Barres, 45290 Nogent-sur-Vernisson, France Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 75007 Uppsala, Sweden
| | - Philippe Jarne
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | - Thomas Perrot
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, 34293 Montpellier Cedex 5, France Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, 21000 Dijon, France Centre d'études biologiques de Chizé, CNRS and Université de La Rochelle, 79360 Beauvoir sur Niort, France
| | - Francois Massol
- CEFE UMR 5175, CNRS - Université de Montpellier - Université Paul Valéry Montpellier - EPHE, 1919 route de Mende, 34293 Montpellier Cedex 5, France EEP UMR 8198, CNRS/Université Lille - Sciences et Technologies, Bâtiment SN2, 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
30
|
Massol F, Altermatt F, Gounand I, Gravel D, Leibold MA, Mouquet N. How life-history traits affect ecosystem properties: effects of dispersal in meta-ecosystems. OIKOS 2017. [DOI: 10.1111/oik.03893] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- François Massol
- CNRS, Univ. de Lille, UMR 8198 Evo-Eco-Paleo, SPICI group; FR-59000 Lille France
| | - Florian Altermatt
- Dept of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Dübendorf, Switzerland, and: Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich; Zürich Switzerland
| | - Isabelle Gounand
- Dept of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Dübendorf, Switzerland, and: Dept of Evolutionary Biology and Environmental Studies, Univ. of Zürich; Zürich Switzerland
| | - Dominique Gravel
- Dépt de biologie; Univ. de Sherbrooke, Sherbrooke, Canada, and: Québec Center for Biodiversity Science; Quebec Canada
| | - Mathew A. Leibold
- Dept of Integrative Biology; Univ. of Texas at Austin; Austin TX USA
| | - Nicolas Mouquet
- 7 UMR MARBEC (MARine Biodiversity, Exploitation and Conservation); Univ. de Montpellier; Montpellier France
| |
Collapse
|
31
|
Mohd MH, Murray R, Plank MJ, Godsoe W. Effects of dispersal and stochasticity on the presence–absence of multiple species. Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2016.09.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Lutz C, Thomas T, Steinberg P, Kjelleberg S, Egan S. Effect of interspecific competition on trait variation inPhaeobacter inhibensbiofilms. Environ Microbiol 2016; 18:1635-45. [DOI: 10.1111/1462-2920.13253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/26/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Carla Lutz
- Centre for Marine Bio-Innovation
- School of Biotechnology and Biomolecular Science
| | - Torsten Thomas
- Centre for Marine Bio-Innovation
- School of Biotechnology and Biomolecular Science
| | - Peter Steinberg
- Centre for Marine Bio-Innovation
- School of Biological, Earth and Environmental Science; University of New South Wales; Sydney Australia
- Singapore Centre for Environmental Life Sciences Engineering; Nanyang Technological University; Singapore
- Sydney Institute of Marine Science; Mosman New South Wales Australia
| | - Staffan Kjelleberg
- Centre for Marine Bio-Innovation
- School of Biotechnology and Biomolecular Science
- Singapore Centre for Environmental Life Sciences Engineering; Nanyang Technological University; Singapore
| | - Suhelen Egan
- Centre for Marine Bio-Innovation
- School of Biotechnology and Biomolecular Science
| |
Collapse
|
33
|
Cronin AL, Loeuille N, Monnin T. Strategies of offspring investment and dispersal in a spatially structured environment: a theoretical study using ants. BMC Ecol 2016; 16:4. [PMID: 26847456 PMCID: PMC4743417 DOI: 10.1186/s12898-016-0058-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/25/2016] [Indexed: 11/15/2022] Open
Abstract
Background Offspring investment strategies vary markedly between and within taxa, and much of this variation is thought to stem from the trade-off between offspring size and number. While producing larger offspring can increase their competitive ability, this often comes at a cost to their colonization ability. This competition–colonization trade-off (CCTO) is thought to be an important mechanism supporting coexistence of alternative strategies in a wide range of taxa. However, the relative importance of an alternative and possibly synergistic mechanism—spatial structuring of the environment—remains the topic of some debate. In this study, we explore the influence of these mechanisms on metacommunity structure using an agent-based model built around variable life-history traits. Our model combines explicit resource competition and spatial dynamics, allowing us to tease-apart the influence of, and explore the interaction between, the CCTO and the spatial structure of the environment. We test our model using two reproductive strategies which represent extremes of the CCTO and are common in ants. Results Our simulations show that colonisers outperform competitors in environments subject to higher temporal and spatial heterogeneity and are favoured when agents mature late and invest heavily in reproduction, whereas competitors dominate in low-disturbance, high resource environments and when maintenance costs are low. Varying life-history parameters has a marked influence on coexistence conditions and yields evolutionary stable strategies for both modes of reproduction. Nonetheless, we show that these strategies can coexist over a wide range of life-history and environmental parameter values, and that coexistence can in most cases be explained by a CCTO. By explicitly considering space, we are also able to demonstrate the importance of the interaction between dispersal and landscape structure. Conclusions The CCTO permits species employing different reproductive strategies to coexist over a wide range of life-history and environmental parameters, and is likely to be an important factor in structuring ant communities. Our consideration of space highlights the importance of dispersal, which can limit the success of low-dispersers through kin competition, and enhance coexistence conditions for different strategies in spatially structured environments. Electronic supplementary material The online version of this article (doi:10.1186/s12898-016-0058-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adam L Cronin
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, 020-8550, Japan.
| | - Nicolas Loeuille
- UMR 7618 Institute of Ecology and Environmental Sciences of Paris, Sorbonne Universités, UPMC Univ Paris 06, 7 quai St Bernard, 75 252, Paris, France.
| | - Thibaud Monnin
- UMR 7618 Institute of Ecology and Environmental Sciences of Paris, Sorbonne Universités, UPMC Univ Paris 06, 7 quai St Bernard, 75 252, Paris, France.
| |
Collapse
|
34
|
Fukumori K, Livingston G, Leibold MA. Disturbance-mediated colonization–extinction dynamics in experimental protist metacommunities. Ecology 2015; 96:3234-42. [DOI: 10.1890/14-2487.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Lee W, van Baalen M, Jansen VAA. Siderophore production and the evolution of investment in a public good: An adaptive dynamics approach to kin selection. J Theor Biol 2015; 388:61-71. [PMID: 26471069 DOI: 10.1016/j.jtbi.2015.09.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023]
Abstract
Like many other bacteria, Pseudomonas aeruginosa sequesters iron from the environment through the secretion, and subsequent uptake, of iron-binding molecules. As these molecules can be taken up by other bacteria in the population than those who secreted them, this is a form of cooperation through a public good. Traditionally, this problem has been studied by comparing the relative fitnesses of siderophore-producing and non-producing strains, but this gives no information about the fate of strains that do produce intermediate amounts of siderophores. Here, we investigate theoretically how the amount invested in this form of cooperation evolves. We use a mechanistic description of the laboratory protocols used in experimental evolution studies to describe the competition and cooperation of the bacteria. From this dynamical model we derive the fitness following the adaptive dynamics method. The results show how selection is driven by local siderophore production and local competition. Because siderophore production reduces the growth rate, local competition decreases with the degree of relatedness (which is a dynamical variable in our model). Our model is not restricted to the analysis of small phenotypic differences and allows for theoretical exploration of the effects of large phenotypic differences between cooperators and cheats. We predict that an intermediate ESS level of cooperation (molecule production) should exist. The adaptive dynamics approach allows us to assess evolutionary stability, which is often not possible in other kin-selection models. We found that selection can lead to an intermediate strategy which in our model is always evolutionarily stable, yet can allow invasion of strategies that are much more cooperative. Our model describes the evolution of a public good in the context of the ecology of the microorganism, which allows us to relate the extent of production of the public good to the details of the interactions.
Collapse
Affiliation(s)
- William Lee
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Minus van Baalen
- Eco-Evolutionary Mathematics, Institut Biologie de l׳ENS (UMR 8197), Ecole Normale Supérieure, 75005 Paris, France; Eco-Evolutionary Mathematics, Institut Biologie de l׳ENS (UMR 8197), Centre National de la Recherche Scientifique, 75005 Paris, France
| | - Vincent A A Jansen
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
36
|
Frenkel EM, McDonald MJ, Van Dyken JD, Kosheleva K, Lang GI, Desai MM. Crowded growth leads to the spontaneous evolution of semistable coexistence in laboratory yeast populations. Proc Natl Acad Sci U S A 2015; 112:11306-11. [PMID: 26240355 PMCID: PMC4568650 DOI: 10.1073/pnas.1506184112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Identifying the mechanisms that create and maintain biodiversity is a central challenge in biology. Stable diversification of microbial populations often requires the evolution of differences in resource utilization. Alternatively, coexistence can be maintained by specialization to exploit spatial heterogeneity in the environment. Here, we report spontaneous diversification maintained by a related but distinct mechanism: crowding avoidance. During experimental evolution of laboratory Saccharomyces cerevisiae populations, we observed the repeated appearance of "adherent" (A) lineages able to grow as a dispersed film, in contrast to their crowded "bottom-dweller" (B) ancestors. These two types stably coexist because dispersal reduces interference competition for nutrients among kin, at the cost of a slower maximum growth rate. This tradeoff causes the frequencies of the two types to oscillate around equilibrium over the course of repeated cycles of growth, crowding, and dispersal. However, further coevolution of the A and B types can perturb and eventually destroy their coexistence over longer time scales. We introduce a simple mathematical model of this "semistable" coexistence, which explains the interplay between ecological and evolutionary dynamics. Because crowded growth generally limits nutrient access in biofilms, the mechanism we report here may be broadly important in maintaining diversity in these natural environments.
Collapse
Affiliation(s)
- Evgeni M Frenkel
- Department of Organismic and Evolutionary Biology, Department of Physics, and Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138; Program in Biophysics, Harvard University, Boston, MA 02115
| | - Michael J McDonald
- Department of Organismic and Evolutionary Biology, Department of Physics, and Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | | | - Katya Kosheleva
- Department of Organismic and Evolutionary Biology, Department of Physics, and Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Gregory I Lang
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Department of Physics, and Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138;
| |
Collapse
|
37
|
Fronhofer EA, Klecka J, Melián CJ, Altermatt F. Condition‐dependent movement and dispersal in experimental metacommunities. Ecol Lett 2015. [DOI: 10.1111/ele.12475] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Emanuel A. Fronhofer
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Überlandstrasse 133 CH‐8600 Dübendorf Switzerland
- Institute of Evolutionary Biology and Environmental Studies University of Zurich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| | - Jan Klecka
- Department of Fish Ecology and Evolution Eawag: Swiss Federal Institute of Aquatic Science and Technology Seestrasse 79 CH‐6047 Kastanienbaum Switzerland
- Laboratory of Theoretical Ecology Institute of Entomology Biology Centre of the Czech Academy of Sciences České Budějovice Czech Republic
| | - Carlos J. Melián
- Department of Fish Ecology and Evolution Eawag: Swiss Federal Institute of Aquatic Science and Technology Seestrasse 79 CH‐6047 Kastanienbaum Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Überlandstrasse 133 CH‐8600 Dübendorf Switzerland
- Institute of Evolutionary Biology and Environmental Studies University of Zurich Winterthurerstrasse 190 CH‐8057 Zürich Switzerland
| |
Collapse
|
38
|
Duthie AB, Abbott KC, Nason JD. Trade-offs and coexistence in fluctuating environments: evidence for a key dispersal-fecundity trade-off in five nonpollinating fig wasps. Am Nat 2015; 186:151-8. [PMID: 26098346 DOI: 10.1086/681621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The ecological principle of competitive exclusion states that species competing for identical resources cannot coexist, but this principle is paradoxical because ecologically similar competitors are regularly observed. Coexistence is possible under some conditions if a fluctuating environment changes the competitive dominance of species. This change in competitive dominance implies the existence of trade-offs underlying species' competitive abilities in different environments. Theory shows that fluctuating distance between resource patches can facilitate coexistence in ephemeral patch competitors, given a functional trade-off between species dispersal ability and fecundity. We find evidence supporting this trade-off in a guild of five ecologically similar nonpollinating fig wasps and subsequently predict local among-patch species densities. We also introduce a novel colonization index to estimate relative dispersal ability among ephemeral patch competitors. We suggest that a dispersal ability-fecundity trade-off and spatiotemporally fluctuating resource availability commonly co-occur to drive population dynamics and facilitate coexistence in ephemeral patch communities.
Collapse
|
39
|
Carrara F, Giometto A, Seymour M, Rinaldo A, Altermatt F. Inferring species interactions in ecological communities: a comparison of methods at different levels of complexity. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12363] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Carrara
- Laboratory of Ecohydrology École Polytechnique Fédérale Lausanne (EPFL) 1015 Lausanne Switzerland
- Ralph M. Parsons Laboratory Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Andrea Giometto
- Laboratory of Ecohydrology École Polytechnique Fédérale Lausanne (EPFL) 1015 Lausanne Switzerland
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
| | - Mathew Seymour
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
| | - Andrea Rinaldo
- Laboratory of Ecohydrology École Polytechnique Fédérale Lausanne (EPFL) 1015 Lausanne Switzerland
- Dipartimento ICEA Università di Padova 35131 Padova Italy
| | - Florian Altermatt
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Institute of Evolutionary Biology and Environmental Studies University of Zurich 8057 Zürich Switzerland
| |
Collapse
|
40
|
Is dispersal neutral? Trends Ecol Evol 2014; 29:444-50. [DOI: 10.1016/j.tree.2014.05.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 11/15/2022]
|
41
|
Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett 2014; 17:1158-67. [DOI: 10.1111/ele.12322] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/01/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Jesse R. Lasky
- Earth Institute; Columbia University; New York NY USA
- Department of Ecology, Evolution and Environmental Biology; Columbia University; New York NY USA
| | - María Uriarte
- Department of Ecology, Evolution and Environmental Biology; Columbia University; New York NY USA
| | - Vanessa K. Boukili
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT USA
| | - David L. Erickson
- Department of Botany; National Museum of Natural History; Smithsonian Institution; Washington DC USA
| | - W. John Kress
- Department of Botany; National Museum of Natural History; Smithsonian Institution; Washington DC USA
| | - Robin L. Chazdon
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs CT USA
| |
Collapse
|
42
|
Rascalou G, Gourbière S. Competition, virulence, host body mass and the diversification of macro-parasites. J R Soc Interface 2014; 11:20131108. [PMID: 24522783 PMCID: PMC3928941 DOI: 10.1098/rsif.2013.1108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/13/2014] [Indexed: 12/17/2022] Open
Abstract
Adaptive speciation has been much debated in recent years, with a strong emphasis on how competition can lead to the diversification of ecological and sexual traits. Surprisingly, little attention has been paid to this evolutionary process to explain intrahost diversification of parasites. We expanded the theory of competitive speciation to look at the effect of key features of the parasite lifestyle, namely fragmentation, aggregation and virulence, on the conditions and rate of sympatric speciation under the standard 'pleiotropic scenario'. The conditions for competitive speciation were found similar to those for non-parasite species, but not the rate of diversification. Adaptive evolution proceeds faster in highly fragmented parasite populations and for weakly aggregated and virulent parasites. Combining these theoretical results with standard empirical allometric relationships, we showed that parasite diversification can be faster in host species of intermediate body mass. The increase in parasite load with body mass, indeed, fuels evolution by increasing mutants production, but because of the deleterious effect of virulence, it simultaneously weakens selection for resource specialization. Those two antagonistic effects lead to optimal parasite burden and host body mass for diversification. Data on the diversity of fishes' gills parasites were found consistent with the existence of such optimum.
Collapse
Affiliation(s)
- Guilhem Rascalou
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), UMR Universités Montpellier 1 and 2, CNRS 5290, IRD 224, Montpellier, France
| | - Sébastien Gourbière
- Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
- Université de Perpignan Via Domitia, EA 4218 Institut de Modélisation et d'Analyse en Géo-Environnements et Santé (IMAGES), Perpignan 66100, France
| |
Collapse
|
43
|
Competition-dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proc Natl Acad Sci U S A 2014; 111:5622-7. [PMID: 24706766 DOI: 10.1073/pnas.1318943111] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although competition-dispersal tradeoffs are commonly invoked to explain species coexistence for animals and plants in spatially structured environments, such mechanisms for coexistence remain unknown for microorganisms. Here we show that two recently speciated marine bacterioplankton populations pursue different behavioral strategies to exploit nutrient particles in adaptation to the landscape of ephemeral nutrient patches characteristic of ocean water. These differences are mediated primarily by differential colonization of and dispersal among particles. Whereas one population is specialized to colonize particles by attaching and growing biofilms, the other is specialized to disperse among particles by rapidly detecting and swimming toward new particles, implying that it can better exploit short-lived patches. Because the two populations are very similar in their genomic composition, metabolic abilities, chemotactic sensitivity, and swimming speed, this fine-scale behavioral adaptation may have been responsible for the onset of the ecological differentiation between them. These results demonstrate that the principles of spatial ecology, traditionally applied at macroscales, can be extended to the ocean's microscale to understand how the rich spatiotemporal structure of the resource landscape contributes to the fine-scale ecological differentiation and species coexistence among marine bacteria.
Collapse
|
44
|
Carrara F, Rinaldo A, Giometto A, Altermatt F. Complex interaction of dendritic connectivity and hierarchical patch size on biodiversity in river-like landscapes. Am Nat 2013; 183:13-25. [PMID: 24334732 DOI: 10.1086/674009] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Habitat fragmentation and land use changes are causing major biodiversity losses. Connectivity of the landscape or environmental conditions alone can shape biodiversity patterns. In nature, however, local habitat characteristics are often intrinsically linked to a specific connectivity. Such a link is evident in riverine ecosystems, where hierarchical dendritic structures command related scaling on habitat capacity. We experimentally disentangled the effect of local habitat capacity (i.e., the patch size) and dendritic connectivity on biodiversity in aquatic microcosm metacommunities by suitably arranging patch sizes within river-like networks. Overall, more connected communities that occupy a central position in the network exhibited higher species richness, irrespective of patch size arrangement. High regional evenness in community composition was found only in landscapes preserving geomorphological scaling properties of patch sizes. In these landscapes, some of the rarer species sustained regionally more abundant populations better tracking their own niche requirements compared to landscapes with homogeneous patch size or landscapes with spatially uncorrelated patch size. Our analysis suggests that altering the natural link between dendritic connectivity and patch size strongly affects community composition and population persistence at multiple scales. The experimental results are demonstrating a principle that can be tested in theoretical metacommunity models and eventually be projected to real riverine ecosystems.
Collapse
Affiliation(s)
- Francesco Carrara
- Laboratory of Ecohydrology, École Polytechnique Fédérale Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|