1
|
Sacks W, Mauger A, Noat Y. Origin of the Fermi arcs in cuprates: a dual role of quasiparticle and pair excitations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:475703. [PMID: 30387443 DOI: 10.1088/1361-648x/aae7af] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Angle resolved photoemission spectroscopy (ARPES) mesurements in cuprates have given key information on the temperature and angle dependence of the gap (d-wave order parameter, Fermi arcs and pseudogap). We show that these features can be understood in terms of a Bose condensation of interacting pairons (preformed hole pairs which form in their local antiferromagnetic environment). Starting from the basic properties of the pairon wavefunction, we derive the corresponding k-space spectral function. The latter explains the variation of the ARPES spectra as a function of temperature and angle up to T *, the onset temperature of pairon formation. While Bose excitations dominate at the antinode, the fermion excitations dominate around the nodal direction, giving rise to the Fermi arcs at finite temperature. This dual role is the key feature distinguishing cuprate from conventional superconductivity.
Collapse
Affiliation(s)
- William Sacks
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, UMR 7590, 4 Place Jussieu, 75005 Paris, France
| | | | | |
Collapse
|
2
|
He Y, Hashimoto M, Song D, Chen SD, He J, Vishik IM, Moritz B, Lee DH, Nagaosa N, Zaanen J, Devereaux TP, Yoshida Y, Eisaki H, Lu DH, Shen ZX. Rapid change of superconductivity and electron-phonon coupling through critical doping in Bi-2212. Science 2018; 362:62-65. [DOI: 10.1126/science.aar3394] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 07/30/2018] [Indexed: 11/02/2022]
Affiliation(s)
- Y. He
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
- SIMES, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M. Hashimoto
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - D. Song
- National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - S.-D. Chen
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
- SIMES, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - J. He
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
- SIMES, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - I. M. Vishik
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - B. Moritz
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
- SIMES, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - D.-H. Lee
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - N. Nagaosa
- Quantum-Phase Electronics Center, Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
| | - J. Zaanen
- Instituut-Lorentz for Theoretical Physics, Leiden University, Leiden, Netherlands
| | - T. P. Devereaux
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
- SIMES, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Y. Yoshida
- National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - H. Eisaki
- National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - D. H. Lu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Z.-X. Shen
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
- SIMES, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
3
|
Katsumi K, Tsuji N, Hamada YI, Matsunaga R, Schneeloch J, Zhong RD, Gu GD, Aoki H, Gallais Y, Shimano R. Higgs Mode in the d-Wave Superconductor Bi_{2}Sr_{2}CaCu_{2}O_{8+x} Driven by an Intense Terahertz Pulse. PHYSICAL REVIEW LETTERS 2018; 120:117001. [PMID: 29601772 DOI: 10.1103/physrevlett.120.117001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/05/2018] [Indexed: 06/08/2023]
Abstract
We investigate the terahertz (THz)-pulse-driven nonlinear response in the d-wave cuprate superconductor Bi_{2}Sr_{2}CaCu_{2}O_{8+x} (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We observe an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is markedly enhanced below T_{c}. The corresponding third-order nonlinear effect exhibits both A_{1g} and B_{1g} symmetry components, which are decomposed from polarization-resolved measurements. A comparison with a BCS calculation of the nonlinear susceptibility indicates that the A_{1g} component is associated with the Higgs mode of the d-wave order parameter.
Collapse
Affiliation(s)
- Kota Katsumi
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoto Tsuji
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Yuki I Hamada
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryusuke Matsunaga
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
- JST, PRESTO, Kawaguchi 332-0012, Japan
| | | | | | - Genda D Gu
- Brookhaven National Lab, Upton, New York 11973, USA
| | - Hideo Aoki
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Physics, ETH Zürich, 8093 Zürich, Switzerland
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Yann Gallais
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
- MPQ CNRS, Université Paris Diderot, Bâtiment Condorcet, 75205 Paris Cedex 13, France
- Cryogenic Research Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ryo Shimano
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
- Cryogenic Research Center, The University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
4
|
Kunisada S, Adachi S, Sakai S, Sasaki N, Nakayama M, Akebi S, Kuroda K, Sasagawa T, Watanabe T, Shin S, Kondo T. Observation of Bogoliubov Band Hybridization in the Optimally Doped Trilayer Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+δ}. PHYSICAL REVIEW LETTERS 2017; 119:217001. [PMID: 29219391 DOI: 10.1103/physrevlett.119.217001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Indexed: 06/07/2023]
Abstract
Using a laser-excited angle-resolved photoemission spectroscopy capable of bulk sensitive and high-energy resolution measurements, we reveal a new phenomenon of superconductors in the optimally doped trilayer Bi_{2}Sr_{2}Ca_{2}Cu_{3}O_{10+δ}. We observe a hybridization of the Bogoliubov bands derived from the inner and outer CuO_{2} planes with different magnitudes of energy gaps. Our data clearly exhibit the splitting of coherent peaks and the consequent enhancement of spectral gaps. These features are reproduced by model calculations, which indicate that the gap enhancement extends over a wide range of Fermi surface up to the antinode. The significant modulation of electron pairing uncovered here might be a crucial factor to achieve the highest critical temperature in the trilayer cuprates.
Collapse
Affiliation(s)
- So Kunisada
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Shintaro Adachi
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
- MANA, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Shiro Sakai
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Nae Sasaki
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | | | - Shuntaro Akebi
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Kenta Kuroda
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Takao Sasagawa
- Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takao Watanabe
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Shik Shin
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Takeshi Kondo
- ISSP, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
5
|
A New Landscape of Multiple Dispersion Kinks in a High-T c Cuprate Superconductor. Sci Rep 2017; 7:4830. [PMID: 28684868 PMCID: PMC5500550 DOI: 10.1038/s41598-017-04983-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/23/2017] [Indexed: 11/08/2022] Open
Abstract
Conventional superconductivity is caused by electron-phonon coupling. The discovery of high-temperature superconductors raised the question of whether such strong electron-phonon coupling is realized in cuprates. Strong coupling with some collective excitation mode has been indicated by a dispersion “kink”. However, there is intensive debate regarding whether the relevant coupling mode is a magnetic resonance mode or an oxygen buckling phonon mode. This ambiguity is a consequence of the energy of the main prominent kink. Here, we show a new landscape of dispersion kinks. We report that heavily overdoping a Bi2Sr2CaCu2O8+δ superconductor results in a decline of the conventional main kink and a rise of another sharp kink, along with substantial energy shifts of both. Notably, the latter kink can be ascribed only to an oxygen-breathing phonon. Hence, the multiple phonon branches provide a consistent account of our data set on the multiple kinks. Our results suggest that strong electron-phonon coupling and its dramatic change should be incorporated into or reconciled with scenarios for the evolution of high-Tc superconductivity.
Collapse
|
6
|
Hashimoto M, Nowadnick EA, He RH, Vishik IM, Moritz B, He Y, Tanaka K, Moore RG, Lu D, Yoshida Y, Ishikado M, Sasagawa T, Fujita K, Ishida S, Uchida S, Eisaki H, Hussain Z, Devereaux TP, Shen ZX. Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi2Sr2CaCu2O(8+δ). NATURE MATERIALS 2015; 14:37-42. [PMID: 25362356 DOI: 10.1038/nmat4116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 09/19/2014] [Indexed: 06/04/2023]
Abstract
In the high-temperature (T(c)) cuprate superconductors, a growing body of evidence suggests that the pseudogap phase, existing below the pseudogap temperature T*, is characterized by some broken electronic symmetries distinct from those associated with superconductivity. In particular, recent scattering experiments have suggested that charge ordering competes with superconductivity. However, no direct link of an interplay between the two phases has been identified from the important low-energy excitations. Here, we report an antagonistic singularity at T(c) in the spectral weight of Bi2Sr2CaCu2O(8+δ) as compelling evidence for phase competition, which persists up to a high hole concentration p ~ 0.22. Comparison with theoretical calculations confirms that the singularity is a signature of competition between the order parameters for the pseudogap and superconductivity. The observation of the spectroscopic singularity at finite temperatures over a wide doping range provides new insights into the nature of the competitive interplay between the two orders and the complex phase diagram near the pseudogap critical point.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Elizabeth A Nowadnick
- 1] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA [3] Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Rui-Hua He
- 1] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA [3] Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA [4] Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Inna M Vishik
- 1] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA [3] Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Brian Moritz
- 1] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | - Yu He
- 1] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA [3] Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Kiyohisa Tanaka
- 1] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA [3] Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA [4] Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Robert G Moore
- 1] Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Donghui Lu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yoshiyuki Yoshida
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Motoyuki Ishikado
- 1] National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan [2] Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Takao Sasagawa
- Materials and Structures Laboratory, Tokyo institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Kazuhiro Fujita
- 1] Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan [2] Laboratory for Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Shigeyuki Ishida
- Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinichi Uchida
- Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Eisaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Zahid Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Thomas P Devereaux
- 1] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
| | - Zhi-Xun Shen
- 1] Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA [2] Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA [3] Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
7
|
de Mello EVL, Sonier JE. Charge segregation model for superconducting correlations in cuprates above T(c). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:492201. [PMID: 25364008 DOI: 10.1088/0953-8984/26/49/492201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a theoretical framework for understanding recent transverse field muon spin rotation (TF-µSR) experiments on cuprate superconductors in terms of localized regions of phase-coherent pairing correlations above the bulk superconducting transition temperature Tc. The local regions of phase coherence are associated with a tendency toward charge ordering, a phenomenon found recently in hole-doped cuprates. We use the Cahn-Hilliard equation as a means to phenomenologically model the inhomogeneous charge distribution of the electron system observed experimentally. For this system we perform self-consistent superconducting calculations using the Bogoliubov-deGennes method. Within this context we explore two possible scenarios: (i) the magnetic field is diamagnetically screened by the sum of varying shielding currents of isolated small-sized superconducting domains. (ii) These domains become increasingly correlated by Josephson coupling as the temperature is lowered and the main response to the applied magnetic field is from the sum of all varying tunneling currents. The results indicate that these two approaches may be used to simulate the TF-µSR data but case (ii) yields better agreement.
Collapse
Affiliation(s)
- E V L de Mello
- Instituto de Física, Universidade Federal Fluminense, Niterói, RJ 24210-340, Brazil
| | | |
Collapse
|
8
|
Ino A, Anzai H, Arita M, Namatame H, Taniguchi M, Ishikado M, Fujita K, Ishida S, Uchida S. Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212. NANOSCALE RESEARCH LETTERS 2013; 8:515. [PMID: 24314035 PMCID: PMC4029726 DOI: 10.1186/1556-276x-8-515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/20/2013] [Indexed: 06/02/2023]
Abstract
: The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.
Collapse
Affiliation(s)
- Akihiro Ino
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hiroaki Anzai
- Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Masashi Arita
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
| | - Hirofumi Namatame
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
| | - Masaki Taniguchi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan
| | - Motoyuki Ishikado
- Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
- National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
- Research Center for Neutron Science and Technology, CROSS, Tokai, Ibaraki 319-1106, Japan
| | - Kazuhiro Fujita
- Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
- Laboratory for Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Shigeyuki Ishida
- Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
- National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Shinichi Uchida
- Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|