1
|
Sun G, Tanaka H. Surface-induced water crystallisation driven by precursors formed in negative pressure regions. Nat Commun 2024; 15:6083. [PMID: 39060256 PMCID: PMC11282091 DOI: 10.1038/s41467-024-50188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Ice nucleation is a crucial process in nature and industries; however, the role of the free surface of water in this process remains unclear. To address this, we investigate the microscopic freezing process using brute-force molecular dynamics simulations. We discover that the free surface assists ice nucleation through an unexpected mechanism. The surface-induced negative pressure enhances the formation of local structures with a ring topology characteristic of Ice 0-like symmetry, promoting ice nucleation despite the symmetry differing from ordinary ice crystals. Unlike substrate-induced nucleation via water-solid interactions that occurs directly on the surface, this negative-pressure-induced mechanism promotes ice nucleation slightly inward the surface. Our findings provide a molecular-level understanding of the mechanism and pathway behind free-surface-induced ice formation, resolving the longstanding debate. The implications of our discoveries are of substantial importance in areas such as cloud formation, food technology, and other fields where ice nucleation plays a pivotal role.
Collapse
Affiliation(s)
- Gang Sun
- Social Cooperation Research Department "Frost Protection Science", Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing, China
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Jiang J, Lai Y, Sheng D, Tang G, Zhang M, Niu D, Yu F. Two-dimensional bilayer ice in coexistence with three-dimensional ice without confinement. Nat Commun 2024; 15:5762. [PMID: 38982091 PMCID: PMC11233582 DOI: 10.1038/s41467-024-50187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Icing plays an important role in various physical-chemical process. Although the formation of two-dimensional ice requires nanoscale confinement, two-dimensional bilayer ice in coexistence with three-dimensional ice without confinement remains poorly understood. Here, a critical value of a surface energy parameter is identified to characterize the liquid-solid interface interaction, above which two-dimensional and three-dimensional coexisting ice can surprisingly form on the surface. The two-dimensional ice growth mechanisms could be revealed by capturing the growth and merged of the metastable edge structures. The phase diagram about temperature and pressure vs energy parameters is predicted to distinguish liquid water, two-dimensional ice and three-dimensional ice. Furthermore, the deicing characteristics of coexisting ice demonstrate that the ice adhesion strength is linearly related to the ratio of ice-surface interaction energy to ice temperature. In addition, for gas-solid phase transition, the phase diagram about temperature and energy parameters is predicted to distinguish gas, liquid water, two-dimensional ice and three-dimensional ice. This work gives a perspective for studying the singular structure and dynamics of ice in nanoscale and provides a guide for future experimental realization of the coexisting ice.
Collapse
Affiliation(s)
- Jing Jiang
- State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, PR China
| | - Yuanming Lai
- State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, PR China.
- Institute of Future Civil Technology, Chongqing Jiaotong University, Chongqing, PR China.
| | - Daichao Sheng
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| | - Guihua Tang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, PR China
| | - Mingyi Zhang
- State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, PR China
| | - Dong Niu
- Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian, PR China
| | - Fan Yu
- State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou, PR China
| |
Collapse
|
3
|
Câmpean ȘI, Beșchea GA, Tăbăcaru MB, Năstase G. Revealing isochoric water nucleation: a visual study. Sci Rep 2024; 14:10086. [PMID: 38698151 PMCID: PMC11066048 DOI: 10.1038/s41598-024-61053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024] Open
Abstract
The phenomena of water freezing at constant volume, or isochoric, is becoming more and more fascinating. However, because the system is subjected to extremely high pressures, it is exceedingly challenging to investigate it visually. Fewer properties have been found visually up till now, but many have been found through other means. Nevertheless, we were able to design a reactor so that it could be observed through a microscope as water was frozen and thawed at constant volume, reaching temperatures as low as - 12 °C and pressures up to 129 MPa. In this study, we observed critical characteristics visually, focusing on the location of the ice nucleus, its shape, and dynamics. Phase transitions from liquid to solid state are essential mechanisms in the physical sciences. The creation of ice stands as the quintessential and pervasive example of nucleation, playing a central role in diverse disciplines such as geology, biology, aviation, and climate research.
Collapse
Affiliation(s)
- Ștefan-Ioan Câmpean
- Department of Building Services, Faculty of Civil Engineering, Transilvania University of Brasov, Brasov, Romania
| | - George-Andrei Beșchea
- Department of Building Services, Faculty of Civil Engineering, Transilvania University of Brasov, Brasov, Romania
| | - Maria-Bianca Tăbăcaru
- Department of Building Services, Faculty of Civil Engineering, Transilvania University of Brasov, Brasov, Romania
| | - Gabriel Năstase
- Department of Building Services, Faculty of Civil Engineering, Transilvania University of Brasov, Brasov, Romania.
| |
Collapse
|
4
|
Kangas J, Hogan CJ. Prediction of temperature-dependent nucleation and growth rates from crystallization-related heat release. Phys Rev E 2024; 109:014617. [PMID: 38366471 DOI: 10.1103/physreve.109.014617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/12/2023] [Indexed: 02/18/2024]
Abstract
We propose a method for determining the time and, therefore, temperature-dependent relative nucleation and growth rates during crystallization. We do so by linking the partial differential equation governing the time dynamics of the crystal size distribution to kinetic (Avrami) parameters describing heat release. This approach is tested in silico by nucleating and growing diffusion limited aggregates with time-varying morphology and growth rates unhindered by impingement. The associated heat release is analyzed, showing that nucleation and growth rates could be extracted with high fidelity.
Collapse
Affiliation(s)
- Joseph Kangas
- Department of Mechanical Engineering, University of Minnesota. 111 Church St SE, Minneapolis MN 55455, USA
| | - Christopher J Hogan
- Department of Mechanical Engineering, University of Minnesota. 111 Church St SE, Minneapolis MN 55455, USA
| |
Collapse
|
5
|
Ma Y, Dong P, He Y, Zhao Z, Zhang X, Yang J, Yan J, Li W. Freezing of water and melting of ice: theoretical modeling at the nanoscale. NANOSCALE 2023; 15:18004-18014. [PMID: 37909355 DOI: 10.1039/d3nr02421k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Freezing of water and melting of ice at the nanoscale play critical roles in science and technology fields, including aviation systems, infrastructures, and other broad spectrum of technologies. To cope with the icing challenge, nanoscale anti-icing surface technology has been developed. The freezing and melting temperatures can be tailored by manipulating the size (the radius of water or ice); however, it lacks systemic research. In this work, the size effect on the melting temperature of ice nanocrystals was first established, which considered the variation of bond energy and equivalent heat energy from the perspective of the force-heat equivalence energy density principle. Based on the heterogeneous nucleation mode and by further considering the size and temperature effects on the interface energy involved solid-liquid energy and liquid-vapor energy as well as the above developed melting temperature model, another model is established to accurately predict the freezing temperature of water nanodroplets. The parameters required by the two models established in this paper have a clear physical meaning and establish the quantitative relationships among freezing temperature, melting temperature, surface stress, interface energy, and other thermodynamic parameters. The agreement between model prediction and experimental simulation data confirms the validity and universality of the established models. The higher prediction accuracy of this work compared to the other theoretical models, due to the more detailed consideration and the reference point, captures the errors introduced by the experiment or simulation. This study contributes to a deeper understanding of the underlying mechanism of freezing of water and melting of ice nanocrystals and provides theoretical guidance for the design of cryopreservation systems and anti-icing systems for aviation.
Collapse
Affiliation(s)
- Yanli Ma
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China
| | - Pan Dong
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Yi He
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Ziyuan Zhao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Xuyao Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Jiabin Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
| | - Jiabo Yan
- High School Affiliated to Southwest University, Chongqing, 400799, China
| | - Weiguo Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China.
- College of Aerospace Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
6
|
Tonauer CM, Fidler LR, Giebelmann J, Yamashita K, Loerting T. Nucleation and growth of crystalline ices from amorphous ices. J Chem Phys 2023; 158:141001. [PMID: 37061482 DOI: 10.1063/5.0143343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
We here review mostly experimental and some computational work devoted to nucleation in amorphous ices. In fact, there are only a handful of studies in which nucleation and growth in amorphous ices are investigated as two separate processes. In most studies, crystallization temperatures Tx or crystallization rates RJG are accessed for the combined process. Our Review deals with different amorphous ices, namely, vapor-deposited amorphous solid water (ASW) encountered in many astrophysical environments; hyperquenched glassy water (HGW) produced from μm-droplets of liquid water; and low density amorphous (LDA), high density amorphous (HDA), and very high density amorphous (VHDA) ices produced via pressure-induced amorphization of ice I or from high-pressure polymorphs. We cover the pressure range of up to about 6 GPa and the temperature range of up to 270 K, where only the presence of salts allows for the observation of amorphous ices at such high temperatures. In the case of ASW, its microporosity and very high internal surface to volume ratio are the key factors determining its crystallization kinetics. For HGW, the role of interfaces between individual glassy droplets is crucial but mostly neglected in nucleation or crystallization studies. In the case of LDA, HDA, and VHDA, parallel crystallization kinetics to different ice phases is observed, where the fraction of crystallized ices is controlled by the heating rate. A key aspect here is that in different experiments, amorphous ices of different "purities" are obtained, where "purity" here means the "absence of crystalline nuclei." For this reason, "preseeded amorphous ice" and "nuclei-free amorphous ice" should be distinguished carefully, which has not been done properly in most studies. This makes a direct comparison of results obtained in different laboratories very hard, and even results obtained in the same laboratory are affected by very small changes in the preparation protocol. In terms of mechanism, the results are consistent with amorphous ices turning into an ultraviscous, deeply supercooled liquid prior to nucleation. However, especially in preseeded amorphous ices, crystallization from the preexisting nuclei takes place simultaneously. To separate the time scales of crystallization from the time scale of structure relaxation cleanly, the goal needs to be to produce amorphous ices free from crystalline ice nuclei. Such ices have only been produced in very few studies.
Collapse
Affiliation(s)
- Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Lilli-Ruth Fidler
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Giebelmann
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Keishiro Yamashita
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Luengo-Márquez J, Izquierdo-Ruiz F, MacDowell LG. Intermolecular forces at ice and water interfaces: premelting, surface freezing and regelation. J Chem Phys 2022; 157:044704. [DOI: 10.1063/5.0097378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using Lifshitz theory we assess the role of van der Waals forces at interfaces of ice and water. The results are combined with measured structural forces from computer simulations to develop a quantitative model of the surface free energy of premelting films. This input is employed within the framework of wetting theory and allows us to predict qualitatively the behavior of quasi-liquid layer thickness as a function of ambient conditions. Our results emphasize the significance of vapor pressure. The ice vapor interface is shown to exhibit only incomplete premelting, but the situation can shift to a state of complete surface melting above water saturation. The results obtained serve also to assess the role of subsurface freezing at the water-vapor interface, and we show that intermolecular forces favor subsurface ice nucleation only in conditions of water undersaturation. We show ice regelation at ambient pressure may be explained as a process of capillary freezing, without the need to invoke the action of bulk pressure melting. Our results for van der Waals forces are exploited in order to gauge dispersion interactions in empirical point charge models of water.
Collapse
Affiliation(s)
| | | | - Luis G. MacDowell
- Dpto. de Quimica Fisica, Universidad Complutense de Madrid Facultad de Ciencias Químicas, Spain
| |
Collapse
|
8
|
Kwan V, Maiti SR, Saika-Voivod I, Consta S. Salt Enrichment and Dynamics in the Interface of Supercooled Aqueous Droplets. J Am Chem Soc 2022; 144:11148-11158. [PMID: 35715222 DOI: 10.1021/jacs.2c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interconversion reaction of NaCl between the contact-ion pair (CIP) and the solvent-separated ion pair (SSIP) as well as the free-ion state in cold droplets has not yet been investigated. We report direct computational evidence that the lower is the temperature, the closer to the surface the ion interconversion reaction takes place. In supercooled droplets the enrichment of the subsurface in salt becomes more evident. The stability of the SSIP relative to the CIP increases as the ion-pairing is transferred toward the droplet's outer layers. In the free-ion state, where the ions diffuse independently in the solution, the number density of Cl- shows a broad maximum in the interior in addition to the well-known maximum in the surface. In the study of the reaction dynamics, we find a weak coupling between the interionic NaCl distance reaction coordinate and the solvent degrees of freedom, which contrasts with the diffusive crossing of the free energy barrier found in bulk solution modeling. The H2O self-diffusion coefficient is found to be at least an order of magnitude larger than that in the bulk solution. We propose to exploit the enhanced surface ion concentration at low temperature to eliminate salts from droplets in native mass spectrometry ionization methods.
Collapse
Affiliation(s)
- Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Shoubhik R Maiti
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's A1B 3X7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Martelli F, Palmer JC. Signatures of sluggish dynamics and local structural ordering during ice nucleation. J Chem Phys 2022; 156:114502. [DOI: 10.1063/5.0083638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the microscopic pathway of spontaneous crystallization in the ST2 model of water under deeply supercooled conditions via unbiased classical molecular dynamics simulations. After quenching below the liquid–liquid critical point, the ST2 model spontaneously separates into low-density liquid (LDL) and high-density liquid phases, respectively. The LDL phase, which is characterized by lower molecular mobility and enhanced structural order, fosters the formation of a sub-critical ice nucleus that, after a stabilization time, develops into the critical nucleus and grows. Polymorphic selection coincides with the development of the sub-critical nucleus and favors the formation of cubic (Ic) over hexagonal (Ih) ice. We rationalize polymorphic selection in terms of geometric arguments based on differences in the symmetry of second neighbor shells of ice Ic and Ih, which are posited to favor formation of the former. The rapidly growing critical nucleus absorbs both Ic and Ih crystallites dispersed in the liquid phase, a crystal with stacking faults. Our results are consistent with, and expand upon, recent observations of non-classical nucleation pathways in several systems.
Collapse
Affiliation(s)
- Fausto Martelli
- IBM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom
| | - Jeremy C. Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
10
|
Heterogeneous Ice Growth in Micron-Sized Water Droplets Due to Spontaneous Freezing. CRYSTALS 2022. [DOI: 10.3390/cryst12010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Understanding how ice nucleates and grows into larger crystals is of crucial importance for many research fields. The purpose of this study was to shed light on the phase and structure of ice once a nucleus is formed inside a metastable water droplet. Wide-angle X-ray scattering (WAXS) was performed on micron-sized droplets evaporatively cooled to temperatures where homogeneous nucleation occurs. We found that for our weak hits ice grows more cubic compared to the strong hits that are completely hexagonal. Due to efficient heat removal caused by evaporation, we propose that the cubicity of ice at the vicinity of the droplet’s surface is higher than for ice formed within the bulk of the droplet. Moreover, the Bragg peaks were classified based on their geometrical shapes and positions in reciprocal space, which showed that ice grows heterogeneously with a significant population of peaks indicative of truncation rods and crystal defects. Frequent occurrences of the (100) reflection with extended in-planar structure suggested that large planar ice crystals form at the droplet surface, then fracture into smaller domains to accommodate to the curvature of the droplets. Planar faulting due to misaligned domains would explain the increased cubicity close to the droplet surface.
Collapse
|
11
|
Hakimian A, Mohebinia M, Nazari M, Davoodabadi A, Nazifi S, Huang Z, Bao J, Ghasemi H. Freezing of few nanometers water droplets. Nat Commun 2021; 12:6973. [PMID: 34848730 PMCID: PMC8632967 DOI: 10.1038/s41467-021-27346-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022] Open
Abstract
Water-ice transformation of few nm nanodroplets plays a critical role in nature including climate change, microphysics of clouds, survival mechanism of animals in cold environments, and a broad spectrum of technologies. In most of these scenarios, water-ice transformation occurs in a heterogenous mode where nanodroplets are in contact with another medium. Despite computational efforts, experimental probing of this transformation at few nm scales remains unresolved. Here, we report direct probing of water-ice transformation down to 2 nm scale and the length-scale dependence of transformation temperature through two independent metrologies. The transformation temperature shows a sharp length dependence in nanodroplets smaller than 10 nm and for 2 nm droplet, this temperature falls below the homogenous bulk nucleation limit. Contrary to nucleation on curved rigid solid surfaces, ice formation on soft interfaces (omnipresent in nature) can deform the interface leading to suppression of ice nucleation. For soft interfaces, ice nucleation temperature depends on surface modulus. Considering the interfacial deformation, the findings are in good agreement with predictions of classical nucleation theory. This understanding contributes to a greater knowledge of natural phenomena and rational design of anti-icing systems for aviation, wind energy and infrastructures and even cryopreservation systems.
Collapse
Affiliation(s)
- Alireza Hakimian
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Mohammadjavad Mohebinia
- Department of Electrical and Computer Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Masoumeh Nazari
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Ali Davoodabadi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Sina Nazifi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Zixu Huang
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Jiming Bao
- Department of Electrical and Computer Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA
| | - Hadi Ghasemi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA.
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA.
| |
Collapse
|
12
|
Gallo P, Bachler J, Bove LE, Böhmer R, Camisasca G, Coronas LE, Corti HR, de Almeida Ribeiro I, de Koning M, Franzese G, Fuentes-Landete V, Gainaru C, Loerting T, de Oca JMM, Poole PH, Rovere M, Sciortino F, Tonauer CM, Appignanesi GA. Advances in the study of supercooled water. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:143. [PMID: 34825973 DOI: 10.1140/epje/s10189-021-00139-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
In this review, we report recent progress in the field of supercooled water. Due to its uniqueness, water presents numerous anomalies with respect to most simple liquids, showing polyamorphism both in the liquid and in the glassy state. We first describe the thermodynamic scenarios hypothesized for the supercooled region and in particular among them the liquid-liquid critical point scenario that has so far received more experimental evidence. We then review the most recent structural indicators, the two-state model picture of water, and the importance of cooperative effects related to the fact that water is a hydrogen-bonded network liquid. We show throughout the review that water's peculiar properties come into play also when water is in solution, confined, and close to biological molecules. Concerning dynamics, upon mild supercooling water behaves as a fragile glass former following the mode coupling theory, and it turns into a strong glass former upon further cooling. Connections between the slow dynamics and the thermodynamics are discussed. The translational relaxation times of density fluctuations show in fact the fragile-to-strong crossover connected to the thermodynamics arising from the existence of two liquids. When considering also rotations, additional crossovers come to play. Mobility-viscosity decoupling is also discussed in supercooled water and aqueous solutions. Finally, the polyamorphism of glassy water is considered through experimental and simulation results both in bulk and in salty aqueous solutions. Grains and grain boundaries are also discussed.
Collapse
Affiliation(s)
- Paola Gallo
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy.
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Livia E Bove
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005, Paris, France
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Gaia Camisasca
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Luis E Coronas
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Horacio R Corti
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, B1650LWP, Buenos Aires, Argentina
| | - Ingrid de Almeida Ribeiro
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
| | - Maurice de Koning
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, UNICAMP, 13083-859, Campinas, São Paulo, Brazil
- Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas, UNICAMP, 13083-861, Campinas, São Paulo, Brazil
| | - Giancarlo Franzese
- Secció de Física Estadística i Interdisciplinària-Departament de Física de la Matèria Condensada, Universitat de Barcelona, & Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, C. Martí i Franquès 1, 08028, Barcelona, Spain
| | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221, Dortmund, Germany
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | | | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Mauro Rovere
- Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Christina M Tonauer
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020, Innsbruck, Austria
| | - Gustavo A Appignanesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Avenida Alem 1253, 8000, Bahía Blanca, Argentina
| |
Collapse
|
13
|
Neffati R, Judeinstein P, Rault J. Supercooled nano-droplets of water confined in hydrophobic rubber. Phys Chem Chem Phys 2021; 23:25347-25355. [PMID: 34750601 DOI: 10.1039/d1cp03774a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrophobic elastomers are capable of absorbing a small amount of water that forms droplets around hydrophilic sites. These systems allow the study of confinement effects by a hydrophobic environment on the dynamics and thermodynamic behaviour of water molecules. The freezing-melting properties and the dynamics of water inside nano-droplets in butyl rubber are affected, as revealed by differential scanning calorimetry (DSC) and deuterium nuclear magnetic resonance (2H-NMR). Upon cooling down, all water crystalizes with a bimodal droplet population (da = 3.4 nm and db = 4.4 nm) in a temperature range associated with the droplet size distribution. However, the melting temperature is not shifted according to the Gibbs-Thomson equation. The relative decrease of the 2H-NMR longitudinal magnetization is not a single exponential and, by inverse Laplace transformation, it was deduced to be bimodal in agreement with the DSC measurements (T1,a ∼ 10 ms and T1,b ∼ 200 ms). The deduced correlation time of molecular reorientation is longer than that of bulk water and the behaviour with temperature follows the Vogel-Fulcher-Tammann (VFT) equations with a changing fragility as the droplet size is reduced when reducing hydration.
Collapse
Affiliation(s)
- R Neffati
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia. .,Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire, 1060 Tunis, Tunisia
| | - P Judeinstein
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.,Université Paris-Saclay, CNRS, CEA, Laboratoire Léon Brillouin, 91191, Gif-sur-Yvette, France
| | - J Rault
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| |
Collapse
|
14
|
Xue H, Fu Y, Lu Y, Hao D, Li K, Bai G, Ou-Yang ZC, Wang J, Zhou X. Spontaneous Freezing of Water between 233 and 235 K Is Not Due to Homogeneous Nucleation. J Am Chem Soc 2021; 143:13548-13556. [PMID: 34406749 DOI: 10.1021/jacs.1c04055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spontaneous freezing of microdroplets around 233 K has long been regarded as the occurrence of homogeneous ice nucleation. The corresponding temperature has been directly regarded as the homogeneous ice nucleation temperature, which is an intrinsic character of water. However, many recent investigations indicate that the spontaneous freezing may be still induced by surfaces of the water microdroplets or the residual impurities inside. Therefore, it is highly desired to reveal with solid evidence the exact origin of the spontaneous freezing. Here we show with no ambiguity that the spontaneous freezing between 233 and 235 K is actually triggered by the surface of microdroplets, as the nucleation rate is found to be proportional to the surface area of droplets, via systematically investigating the freezing of water droplets with varying sizes under various cooling rates followed by a new approach in data analysis. The conclusion is further consolidated by published experimental data from other groups when using our data analysis approach. This study is critical for understanding the sources of "no-man's land" and features of homogeneous nucleation, as well as studying the structure and properties of deeply supercooled liquid water.
Collapse
Affiliation(s)
- Han Xue
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yang Fu
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Youhua Lu
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dezhao Hao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Kaiyong Li
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Guoying Bai
- Research Institute for Energy Equipment Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Zhong-Can Ou-Yang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| |
Collapse
|
15
|
Malek SMA, Kwan V, Saika-Voivod I, Consta S. Low Density Interior in Supercooled Aqueous Nanodroplets Expels Ions to the Subsurface. J Am Chem Soc 2021; 143:13113-13123. [PMID: 34375522 DOI: 10.1021/jacs.1c04142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between water and ions within droplets plays a key role in the chemical reactivity of atmospheric and man-made aerosols. Here we report direct computational evidence that in supercooled aqueous nanodroplets a lower density core of tetrahedrally coordinated water expels the cosmotropic ions to the denser and more disordered subsurface. In contrast, at room temperature, depending on the nature of the ion, the radial distribution in the droplet core is nearly uniform or elevated toward the center. We analyze the spatial distribution of a single ion in terms of a reference electrostatic model. The energy of the system in the analytical model is expressed as the sum of the electrostatic and surface energy of a deformable droplet. The model predicts that the ion is subject to a harmonic potential centered at the droplet's center of mass. We name this effect "electrostatic confinement". The model's predictions are consistent with the simulation findings for a single ion at room temperature but not at supercooling. We anticipate this study to be the starting point for investigating the structure of supercooled (electro)sprayed droplets that are used to preserve the conformations of macromolecules originating from the bulk solution.
Collapse
Affiliation(s)
- Shahrazad M A Malek
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's A1B 3X7, Canada
| | - Victor Kwan
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's A1B 3X7, Canada.,Department of Applied Mathematics, Western University, London, Ontario N6A 3K7, Canada
| | - Styliani Consta
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
16
|
Gai S, Peng Z, Moghtaderi B, Yu J, Doroodchi E. A theoretical model for predicting homogeneous ice nucleation rate based on molecular kinetic energy distribution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Wang C, Wu J, Wang H, Zhang Z. Classical nucleation theory of ice nucleation: Second-order corrections to thermodynamic parameters. J Chem Phys 2021; 154:234503. [PMID: 34241278 DOI: 10.1063/5.0049570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Accurately estimating the nucleation rate is crucial in studying ice nucleation and ice-promoting and anti-freeze strategies. In classical nucleation theory, estimates of the ice nucleation rate are very sensitive to thermodynamic parameters, such as the chemical potential difference between water and ice Δμ and the ice-water interfacial free energy γ. However, even today, there are still many contradictions and approximations when estimating these thermodynamic parameters, introducing a large uncertainty in any estimate of the ice nucleation rate. Starting from basic concepts for a general solid-liquid crystallization system, we expand the Gibbs-Thomson equation to second order and derive second-order analytical formulas for Δμ, γ, and the nucleation barrier ΔG*, which are used in molecular dynamics simulations. These formulas describe well the temperature dependence of these thermodynamic parameters. This may be a new method of estimating Δμ, γ, and ΔG*.
Collapse
Affiliation(s)
- Chaohong Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jianyang Wu
- Department of Physics, Research Institute for Biomimetics and Soft Matter and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hao Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
18
|
Moreau DW, Atakisi H, Thorne RE. Ice in biomolecular cryocrystallography. Acta Crystallogr D Struct Biol 2021; 77:540-554. [PMID: 33825714 PMCID: PMC8025888 DOI: 10.1107/s2059798321001170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/01/2021] [Indexed: 12/05/2022] Open
Abstract
Diffraction data acquired from cryocooled protein crystals often include diffraction from ice. Analysis of ice diffraction from crystals of three proteins shows that the ice formed within solvent cavities during rapid cooling is comprised of a stacking-disordered mixture of hexagonal and cubic planes, with the cubic plane fraction increasing with increasing cryoprotectant concentration and increasing cooling rate. Building on the work of Thorn and coworkers [Thorn et al. (2017), Acta Cryst. D73, 729-727], a revised metric is defined for detecting ice from deposited protein structure-factor data, and this metric is validated using full-frame diffraction data from the Integrated Resource for Reproducibility in Macromolecular Crystallography. Using this revised metric and improved algorithms, an analysis of structure-factor data from a random sample of 89 827 PDB entries collected at cryogenic temperatures indicates that roughly 16% show evidence of ice contamination, and that this fraction increases with increasing solvent content and maximum solvent-cavity size. By examining the ice diffraction-peak positions at which structure-factor perturbations are observed, it is found that roughly 25% of crystals exhibit ice with primarily hexagonal character, indicating that inadequate cooling rates and/or cryoprotectant concentrations were used, while the remaining 75% show ice with a stacking-disordered or cubic character.
Collapse
Affiliation(s)
- David W. Moreau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
19
|
Metya AK, Molinero V. Is Ice Nucleation by Organic Crystals Nonclassical? An Assessment of the Monolayer Hypothesis of Ice Nucleation. J Am Chem Soc 2021; 143:4607-4624. [PMID: 33729789 DOI: 10.1021/jacs.0c12012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Potent ice nucleating organic crystals display an increase in nucleation efficiency with pressure and memory effect after pressurization that set them apart from inorganic nucleants. These characteristics were proposed to arise from an ordered water monolayer at the organic-water interface. It was interpreted that ordering of the monolayer is the limiting step for ice nucleation on organic crystals, rendering their mechanism of nucleation nonclassical. Despite the importance of organics in atmospheric ice nucleation, that explanation has never been investigated. Here we elucidate the structure of interfacial water and its role in ice nucleation at ambient pressure on phloroglucinol dihydrate, the paradigmatic example of outstanding ice nucleating organic crystal, using molecular simulations. The simulations confirm the existence of an interfacial monolayer that orders on cooling and becomes fully ordered upon ice formation. The monolayer does not resemble any ice face but seamlessly connects the distinct hydrogen-bonding orders of ice and the organic surface. Although large ordered patches develop in the monolayer before ice nucleates, we find that the critical step is the formation of the ice crystallite, indicating that the mechanism is classical. We predict that the fully ordered, crystalline monolayer nucleates ice above -2 °C and could be responsible for the exceptional ice nucleation by the organic crystal at high pressures. The lifetime of the fully ordered monolayer around 0 °C, however, is too short to account for the memory effect reported in the experiments. The latter could arise from an increase in the melting temperature of ice confined by strongly ice-binding surfaces.
Collapse
Affiliation(s)
- Atanu K Metya
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
20
|
Abstract
The freezing of water into ice is one of the most important processes in the physical sciences. However, it is still not understood at the molecular level. In particular, the crystallization of cubic ice ([Formula: see text])-rather than the traditional hexagonal polytype ([Formula: see text])-has become an increasingly debated topic. Although evidence for [Formula: see text] is thought to date back almost 400 y, it is only in the last year that pure [Formula: see text] has been made in the laboratory, and these processes involved high-pressure ice phases. Since this demonstrates that pure [Formula: see text] can form, the question naturally arises if [Formula: see text] can be made from liquid water. With this in mind, we have performed a high-throughput computational screening study involving molecular dynamics simulations of nucleation on over 1,100 model substrates. From these simulations, we find that 1) many different substrates can promote the formation of pristine [Formula: see text]; 2) [Formula: see text] can be selectively nucleated for even the mildest supercooling; 3) the water contact layer's resemblance to a face of ice is the key factor determining the polytype selectivity and nucleation temperature, independent of which polytype is promoted; and 4) substrate lattice match to ice is not indicative of the polytype obtained. Through this study, we have deepened understanding of the interplay of heterogeneous nucleation and ice I polytypism and suggest routes to [Formula: see text] More broadly, the substrate design methodology presented here combined with the insight gained can be used to understand and control polymorphism and stacking disorder in materials in general.
Collapse
|
21
|
Hussain S, Haji-Akbari A. Role of Nanoscale Interfacial Proximity in Contact Freezing in Water. J Am Chem Soc 2021; 143:2272-2284. [PMID: 33507741 DOI: 10.1021/jacs.0c10663] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Contact freezing is a mode of atmospheric ice nucleation in which a collision between a dry ice nucleating particle (INP) and a water droplet results in considerably faster heterogeneous nucleation. The molecular mechanism of such an enhancement is, however, still a mystery. While earlier studies had attributed it to collision-induced transient perturbations, recent experiments point to the pivotal role of nanoscale proximity of the INP and the free interface. By simulating the heterogeneous nucleation of ice within INP-supported nanofilms of two model water-like tetrahedral liquids, we demonstrate that such nanoscale proximity is sufficient for inducing rate increases commensurate with those observed in contact freezing experiments, but only if the free interface has a tendency to enhance homogeneous nucleation. Water is suspected of possessing this latter property, known as surface freezing propensity. Our findings therefore establish a connection between the surface freezing propensity and kinetic enhancement during contact nucleation. We also observe that faster nucleation proceeds through a mechanism markedly distinct from classical heterogeneous nucleation, involving the formation of hourglass-shaped crystalline nuclei that conceive at either interface and that have a lower free energy of formation due to the nanoscale proximity of the interfaces and the modulation of the free interfacial structure by the INP. In addition to providing valuable insights into the physics of contact nucleation, our findings can assist in improving the accuracy of heterogeneous nucleation rate measurements in experiments and in advancing our understanding of ice nucleation on nonuniform surfaces such as organic, polymeric, and biological materials.
Collapse
Affiliation(s)
- Sarwar Hussain
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
22
|
Maeda N. Brief Overview of Ice Nucleation. Molecules 2021; 26:molecules26020392. [PMID: 33451150 PMCID: PMC7828621 DOI: 10.3390/molecules26020392] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
The nucleation of ice is vital in cloud physics and impacts on a broad range of matters from the cryopreservation of food, tissues, organs, and stem cells to the prevention of icing on aircraft wings, bridge cables, wind turbines, and other structures. Ice nucleation thus has broad implications in medicine, food engineering, mineralogy, biology, and other fields. Nowadays, the growing threat of global warming has led to intense research activities on the feasibility of artificially modifying clouds to shift the Earth’s radiation balance. For these reasons, nucleation of ice has been extensively studied over many decades and rightfully so. It is thus not quite possible to cover the whole subject of ice nucleation in a single review. Rather, this feature article provides a brief overview of ice nucleation that focuses on several major outstanding fundamental issues. The author’s wish is to aid early researchers in ice nucleation and those who wish to get into the field of ice nucleation from other disciplines by concisely summarizing the outstanding issues in this important field. Two unresolved challenges stood out from the review, namely the lack of a molecular-level picture of ice nucleation at an interface and the limitations of classical nucleation theory.
Collapse
Affiliation(s)
- Nobuo Maeda
- Department of Civil & Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, 7-207 Donadeo ICE, 9211-116 Street NW, Edmonton, AB T6G1H9, Canada
| |
Collapse
|
23
|
Predicting heterogeneous ice nucleation with a data-driven approach. Nat Commun 2020; 11:4777. [PMID: 32963232 PMCID: PMC7509812 DOI: 10.1038/s41467-020-18605-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/28/2020] [Indexed: 01/05/2023] Open
Abstract
Water in nature predominantly freezes with the help of foreign materials through a process known as heterogeneous ice nucleation. Although this effect was exploited more than seven decades ago in Vonnegut's pioneering cloud seeding experiments, it remains unclear what makes a material a good ice former. Here, we show through a machine learning analysis of nucleation simulations on a database of diverse model substrates that a set of physical descriptors for heterogeneous ice nucleation can be identified. Our results reveal that, beyond Vonnegut's connection with the lattice match to ice, three new microscopic factors help to predict the ice nucleating ability. These are: local ordering induced in liquid water, density reduction of liquid water near the surface and corrugation of the adsorption energy landscape felt by water. With this we take a step towards quantitative understanding of heterogeneous ice nucleation and the in silico design of materials to control ice formation.
Collapse
|
24
|
Kang T, You Y, Jun S. Supercooling preservation technology in food and biological samples: a review focused on electric and magnetic field applications. Food Sci Biotechnol 2020; 29:303-321. [PMID: 32257514 PMCID: PMC7105587 DOI: 10.1007/s10068-020-00750-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 12/27/2022] Open
Abstract
Freezing has been widely recognized as the most common process for long-term preservation of perishable foods; however, unavoidable damages associated with ice crystal formation lead to unacceptable quality losses during storage. As an alternative, supercooling preservation has a great potential to extend the shelf-life and maintain quality attributes of fresh foods without freezing damage. Investigations for the application of external electric field (EF) and magnetic field (MF) have theorized that EF and MF appear to be able to control ice nucleation by interacting with water molecules in foods and biomaterials; however, many questions remain open in terms of their roles and influences on ice nucleation with little consensus in the literature and a lack of clear understanding of the underlying mechanisms. This review is focused on understanding of ice nucleation processes and introducing the applications of EF and MF for preservation of food and biological materials.
Collapse
Affiliation(s)
- Taiyoung Kang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822 USA
| | - Youngsang You
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii 96822 USA
| | - Soojin Jun
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii 96822 USA
| |
Collapse
|
25
|
Hussain S, Haji-Akbari A. Studying rare events using forward-flux sampling: Recent breakthroughs and future outlook. J Chem Phys 2020; 152:060901. [DOI: 10.1063/1.5127780] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sarwar Hussain
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
26
|
Xu Y, Shen Y, Tao J, Lu Y, Chen H, Hou W, Jiang B. Selective nucleation of ice crystals depending on the inclination angle of nanostructures. Phys Chem Chem Phys 2020; 22:1168-1173. [PMID: 31848543 DOI: 10.1039/c9cp05449a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterogeneous nucleation is decided by many factors, and surface morphology is one of the most important elements. This paper reports the selective ice nucleation and growth process on a series of nanorods with different inclinations, which were rarely mentioned in previous research studies. It is found that the nanorods with special inclinations can cause the selective nucleation of ice crystals because of the spatial geometry matching. On this basis, we can regulate the ice crystal types (mainly including cubic ice and hexagonal ice) accordingly and even improve the freezing efficiency via controlling the inclinations of surface nanorods. In particular, cubic ice occupies the dominant role in the ice crystal on the surface of 45°-inclination nanorods, yet 90°-inclination nanorods are more beneficial for the formation of hexagonal ice. The shape of the nanorods not only controls the type of ice crystal, but also changes the freezing efficiency because different ice crystals have an unequal nucleation energy barrier. There are no apparent differences in the freezing efficiency on nanostructures with 45°, 75° and 90° inclination nanorods, and 60°-inclination nanorods are more favorable for ice nucleation. Our studies can promote the understanding on the selective nucleation of ice crystals and provide a theoretical basis for achieving the regulation of freezing efficiency.
Collapse
Affiliation(s)
- Yangjiangshan Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Yizhou Shen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Jie Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Yang Lu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Haifeng Chen
- Department of Materials Chemistry, Qiuzhen School, Huzhou University, 759, East 2nd Road, Huzhou 313000, P. R. China
| | - Wenqing Hou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| | - Biao Jiang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
| |
Collapse
|
27
|
Abstract
The reason why ice nucleation is more efficient by contact nucleation than by immersion nucleation has been elusive for over half a century. Six proposed mechanisms are summarized in this study. Among them, the pressure perturbation hypothesis, which arose from recent experiments, can qualitatively explain nearly all existing results relevant to contact nucleation. To explore the plausibility of this hypothesis in a more quantitative fashion and to guide future investigations, this study assessed the magnitude of pressure perturbation needed to cause contact nucleation and the associated spatial scales. The pressure perturbations needed were estimated using measured contact nucleation efficiencies for illite and kaolinite, obtained from previous experiments, and immersion freezing temperatures, obtained from well-established parameterizations. Pressure perturbations were obtained by assuming a constant pressure perturbation or a Gaussian distribution of the pressure perturbation. The magnitudes of the pressure perturbations needed were found to be physically reasonable, being achievable through possible mechanisms, including bubble formation and breakup, Laplace pressure arising from the distorted contact line, and shear. The pressure perturbation hypothesis provides a physically based and experimentally constrainable foundation for parameterizing contact nucleation that may be useful in future cloud-resolving models.
Collapse
|
28
|
Leoni F, Shi R, Tanaka H, Russo J. Crystalline clusters in mW water: Stability, growth, and grain boundaries. J Chem Phys 2019; 151:044505. [DOI: 10.1063/1.5100812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Fabio Leoni
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | - Rui Shi
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - John Russo
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
29
|
Niu H, Yang YI, Parrinello M. Temperature Dependence of Homogeneous Nucleation in Ice. PHYSICAL REVIEW LETTERS 2019; 122:245501. [PMID: 31322390 DOI: 10.1103/physrevlett.122.245501] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/06/2019] [Indexed: 06/10/2023]
Abstract
Ice nucleation is a process of great relevance in physics, chemistry, technology, and environmental sciences; much theoretical effort has been devoted to its understanding, but it still remains a topic of intense research. We shed light on this phenomenon by performing atomistic based simulations. Using metadynamics and a carefully designed set of collective variables, reversible transitions between water and ice are able to be simulated. We find that water freezes into a stacking disordered structure with the all-atom transferable intermolecular potential with 4 points/ice (TIP4P/ice) model, and the features of the critical nucleus of nucleation at the microscopic level are revealed. We have also estimated the ice nucleation rates along with other nucleation parameters at different undercoolings. Our results are in agreement with recent experimental and other theoretical works, and they confirm that nucleation is preceded by a large increase in tetrahedrally coordinated water molecules.
Collapse
Affiliation(s)
- Haiyang Niu
- Department of Chemistry and Applied Biosciences, ETH Zurich c/o USI Campus, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
- Facoltà di Informatica, Instituto di Scienze Computationali, and National Center for Computational Design and Discovery of Novel Materials MARVEL, Università della Svizzera Italiana, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
| | - Yi Isaac Yang
- Department of Chemistry and Applied Biosciences, ETH Zurich c/o USI Campus, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
- Facoltà di Informatica, Instituto di Scienze Computationali, and National Center for Computational Design and Discovery of Novel Materials MARVEL, Università della Svizzera Italiana, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences, ETH Zurich c/o USI Campus, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
- Facoltà di Informatica, Instituto di Scienze Computationali, and National Center for Computational Design and Discovery of Novel Materials MARVEL, Università della Svizzera Italiana, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
30
|
Smith RS, Yuan C, Petrik NG, Kimmel GA, Kay BD. Crystallization growth rates and front propagation in amorphous solid water films. J Chem Phys 2019; 150:214703. [DOI: 10.1063/1.5098481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- R. Scott Smith
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Chunqing Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Nikolay G. Petrik
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Greg A. Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Bruce D. Kay
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
31
|
Moreau DW, Atakisi H, Thorne RE. Ice formation and solvent nanoconfinement in protein crystals. IUCRJ 2019; 6:346-356. [PMID: 31098016 PMCID: PMC6503922 DOI: 10.1107/s2052252519001878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/31/2019] [Indexed: 05/06/2023]
Abstract
Ice formation within protein crystals is a major obstacle to the cryocrystallographic study of protein structure, and has limited studies of how the structural ensemble of a protein evolves with temperature in the biophysically interesting range from ∼260 K to the protein-solvent glass transition near 200 K. Using protein crystals with solvent cavities as large as ∼70 Å, time-resolved X-ray diffraction was used to study the response of protein and internal solvent during rapid cooling. Solvent nanoconfinement suppresses freezing temperatures and ice-nucleation rates so that ice-free, low-mosaicity diffraction data can be reliably collected down to 200 K without the use of cryoprotectants. Hexagonal ice (Ih) forms in external solvent, but internal crystal solvent forms stacking-disordered ice (Isd) with a near-random stacking of cubic and hexagonal planes. Analysis of powder diffraction from internal ice and single-crystal diffraction from the host protein structure shows that the maximum crystallizable solvent fraction decreases with decreasing crystal solvent-cavity size, and that an ∼6 Å thick layer of solvent adjacent to the protein surface cannot crystallize. These results establish protein crystals as excellent model systems for the study of nanoconfined solvent. By combining fast cooling, intense X-ray beams and fast X-ray detectors, complete structural data sets for high-value targets, including membrane proteins and large complexes, may be collected at ∼220-240 K that have much lower mosaicities and comparable B factors, and that may allow more confident identification of ligand binding than in current cryocrystallographic practice.
Collapse
Affiliation(s)
- David W. Moreau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
32
|
Falahati H, Haji-Akbari A. Thermodynamically driven assemblies and liquid-liquid phase separations in biology. SOFT MATTER 2019; 15:1135-1154. [PMID: 30672955 DOI: 10.1039/c8sm02285b] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sustenance of life depends on the high degree of organization that prevails through different levels of living organisms, from subcellular structures such as biomolecular complexes and organelles to tissues and organs. The physical origin of such organization is not fully understood, and even though it is clear that cells and organisms cannot maintain their integrity without consuming energy, there is growing evidence that individual assembly processes can be thermodynamically driven and occur spontaneously due to changes in thermodynamic variables such as intermolecular interactions and concentration. Understanding the phase separation in vivo requires a multidisciplinary approach, integrating the theory and physics of phase separation with experimental and computational techniques. This paper aims at providing a brief overview of the physics of phase separation and its biological implications, with a particular focus on the assembly of membraneless organelles. We discuss the underlying physical principles of phase separation from its thermodynamics to its kinetics. We also overview the wide range of methods utilized for experimental verification and characterization of phase separation of membraneless organelles, as well as the utility of molecular simulations rooted in thermodynamics and statistical physics in understanding the governing principles of thermodynamically driven biological self-assembly processes.
Collapse
Affiliation(s)
- Hanieh Falahati
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
33
|
Abstract
From intracellular freezing to cloud formation, the crystallization of water is ubiquitous and shapes life as we know it. A full comprehension of the ice nucleation process at the molecular scale remains elusive and we cannot predict where nucleation will occur. Using computational techniques we show that homogeneous nucleation in supercooled water happens in immobile liquid regions that emerge from heterogeneous dynamics. With this we link the topics of nucleation and dynamical heterogeneity and open ways to understand and control heterogeneous nucleation in solution, in confinement, or at interfaces via understanding their effects on liquid dynamics. When an ice crystal is born from liquid water, two key changes occur: (i) The molecules order and (ii) the mobility of the molecules drops as they adopt their lattice positions. Most research on ice nucleation (and crystallization in general) has focused on understanding the former with less attention paid to the latter. However, supercooled water exhibits fascinating and complex dynamical behavior, most notably dynamical heterogeneity (DH), a phenomenon where spatially separated domains of relatively mobile and immobile particles coexist. Strikingly, the microscopic connection between the DH of water and the nucleation of ice has yet to be unraveled directly at the molecular level. Here we tackle this issue via computer simulations which reveal that (i) ice nucleation occurs in low-mobility regions of the liquid, (ii) there is a dynamical incubation period in which the mobility of the molecules drops before any ice-like ordering, and (iii) ice-like clusters cause arrested dynamics in surrounding water molecules. With this we establish a clear connection between dynamics and nucleation. We anticipate that our findings will pave the way for the examination of the role of dynamical heterogeneities in heterogeneous and solution-based nucleation.
Collapse
|
34
|
Song H, Mendelev MI. Molecular dynamics simulation of phase competition in terbium. J Chem Phys 2018; 149:244501. [PMID: 30599751 DOI: 10.1063/1.5054008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The competition among multiple solid phases determines the final microstructures of a material. Such competition can originate at the very beginning of the solidification process. We report the results of molecular dynamics simulation of the phase competition between the hexagonal close-packed (hcp), face-centered cubic (fcc), and body-centered cubic (bcc) phases during the solidification of pure Tb. We found that the liquid supercooled below the hcp melting temperature has both bcc and hcp/fcc nuclei, but only the bcc nuclei grow such that the liquid always solidifies into the bcc phase, even at temperatures where the hcp phase is more stable. The hcp phase can only form in the last liquid droplet or at the bcc grain boundaries. Depending on the bcc grain orientations, the hcp phase jammed between the bcc grains either completely disappears or slowly grows via a solid-state massive transformation mechanism. Once the hcp phase becomes large enough, the stresses associated with its appearance can trigger a martensitic transformation. Yet, not the entire bcc phase is consumed by the martensitic transformation and the remaining bcc phase is transformed into the hcp phase via the solid-state massive transformation mechanism. Finally, if the supercooling is too large, the nucleation becomes almost barrier free and the liquid solidifies into a structure consisting of ultra-fine hcp and bcc grains after which the bcc phase quickly disappears.
Collapse
Affiliation(s)
- H Song
- Division of Materials Sciences and Engineering, US Department of Energy, Ames Laboratory, Ames, Iowa 50011, USA
| | - M I Mendelev
- Division of Materials Sciences and Engineering, US Department of Energy, Ames Laboratory, Ames, Iowa 50011, USA
| |
Collapse
|
35
|
Sosso GC, Whale TF, Holden MA, Pedevilla P, Murray BJ, Michaelides A. Unravelling the origins of ice nucleation on organic crystals. Chem Sci 2018; 9:8077-8088. [PMID: 30542556 PMCID: PMC6238755 DOI: 10.1039/c8sc02753f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/27/2018] [Indexed: 12/01/2022] Open
Abstract
Organic molecules such as steroids or amino acids form crystals that can facilitate the formation of ice - arguably the most important phase transition on earth. However, the origin of the ice nucleating ability of organic crystals is still largely unknown. Here, we combine experiments and simulations to unravel the microscopic details of ice formation on cholesterol, a prototypical organic crystal widely used in cryopreservation. We find that cholesterol - which is also a substantial component of cell membranes - is an ice nucleating agent more potent than many inorganic substrates, including the mineral feldspar (one of the most active ice nucleating materials in the atmosphere). Scanning electron microscopy measurements reveal a variety of morphological features on the surfaces of cholesterol crystals: this suggests that the topography of the surface is key to the broad range of ice nucleating activity observed (from -4 to -20 °C). In addition, we show via molecular simulations that cholesterol crystals aid the formation of ice nuclei in a unconventional fashion. Rather than providing a template for a flat ice-like contact layer (as found in the case of many inorganic substrates), the flexibility of the cholesterol surface and its low density of hydrophilic functional groups leads to the formation of molecular cages involving both water molecules and terminal hydroxyl groups of the cholesterol surface. These cages are made of 6- and, surprisingly, 5-membered hydrogen bonded rings of water and hydroxyl groups that favour the nucleation of hexagonal as well as cubic ice (a rare occurrence). We argue that the phenomenal ice nucleating activity of steroids such as cholesterol (and potentially of many other organic crystals) is due to (i) the ability of flexible hydrophilic surfaces to form unconventional ice-templating structures and (ii) the different nucleation sites offered by the diverse topography of the crystalline surfaces. These findings clarify how exactly organic crystals promote the formation of ice, thus paving the way toward deeper understanding of ice formation in soft and biological matter - with obvious reverberations on atmospheric science and cryobiology.
Collapse
Affiliation(s)
- Gabriele C Sosso
- Department of Chemistry and Centre for Scientific Computing , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Thomas F Whale
- School of Earth and Environment , University of Leeds , Leeds LS2 9JT , UK
| | - Mark A Holden
- School of Earth and Environment , University of Leeds , Leeds LS2 9JT , UK
- Chemistry , University of Leeds , Leeds LS2 9JT , UK
| | - Philipp Pedevilla
- Thomas Young Centre , London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Benjamin J Murray
- School of Earth and Environment , University of Leeds , Leeds LS2 9JT , UK
| | - Angelos Michaelides
- Thomas Young Centre , London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| |
Collapse
|
36
|
Metya AK, Singh JK. Ice adhesion mechanism on lubricant-impregnated surfaces using molecular dynamics simulations. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1513649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Atanu K. Metya
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Jayant K. Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
37
|
Affiliation(s)
- Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
38
|
Yang F, Cruikshank O, He W, Kostinski A, Shaw RA. Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops. Phys Rev E 2018; 97:023103. [PMID: 29548219 DOI: 10.1103/physreve.97.023103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 11/07/2022]
Abstract
Ice nucleation is the crucial step for ice formation in atmospheric clouds and therefore underlies climatologically relevant precipitation and radiative properties. Progress has been made in understanding the roles of temperature, supersaturation, and material properties, but an explanation for the efficient ice nucleation occurring when a particle contacts a supercooled water drop has been elusive for over half a century. Here, we explore ice nucleation initiated at constant temperature and observe that mechanical agitation induces freezing of supercooled water drops at distorted contact lines. Results show that symmetric motion of supercooled water on a vertically oscillating substrate does not freeze, no matter how we agitate it. However, when the moving contact line is distorted with the help of trace amounts of oil or inhomogeneous pinning on the substrate, freezing can occur at temperatures much higher than in a static droplet, equivalent to ∼10^{10} increase in nucleation rate. Several possible mechanisms are proposed to explain the observations. One plausible explanation among them, decreased pressure due to interface curvature, is explored theoretically and compared with the observational results quasiquantitatively. Indeed, the observed freezing-temperature increase scales with contact line speed in a manner consistent with the pressure hypothesis. Whatever the mechanism, the experiments demonstrate a strong preference for ice nucleation at three-phase contact lines compared to the two-phase interface, and they also show that movement and distortion of the contact line are necessary contributions to stimulating the nucleation process.
Collapse
Affiliation(s)
- Fan Yang
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA and Atmospheric Sciences Program, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Owen Cruikshank
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Alex Kostinski
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA and Atmospheric Sciences Program, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Raymond A Shaw
- Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA and Atmospheric Sciences Program, Michigan Technological University, Houghton, Michigan 49931, USA
| |
Collapse
|
39
|
Malek SMA, Poole PH, Saika-Voivod I. Thermodynamic and structural anomalies of water nanodroplets. Nat Commun 2018; 9:2402. [PMID: 29921912 PMCID: PMC6008328 DOI: 10.1038/s41467-018-04816-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/17/2018] [Indexed: 11/09/2022] Open
Abstract
Liquid water nanodroplets are important in earth's climate, and are valuable for studying supercooled water because they resist crystallisation well below the bulk freezing temperature. Bulk liquid water has well-known thermodynamic anomalies, such as a density maximum, and when supercooled is hypothesised to exhibit a liquid-liquid phase transition (LLPT) at elevated pressure. However, it is not known how these bulk anomalies might manifest themselves in nanodroplets. Here we show, using simulations of the TIP4P/2005 water model, that bulk anomalies occur in nanodroplets as small as 360 molecules. We also show that the Laplace pressure inside small droplets reaches 220 MPa at 180 K, conditions close to the LLPT of TIP4P/2005. While the density and pressure inside nanodroplets coincide with bulk values at moderate supercooling, we show that deviations emerge at lower temperature, as well as significant radial density gradients, which arise from and signal the approach to the LLPT.
Collapse
Affiliation(s)
- Shahrazad M A Malek
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Ivan Saika-Voivod
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
40
|
Richard D, Speck T. Crystallization of hard spheres revisited. I. Extracting kinetics and free energy landscape from forward flux sampling. J Chem Phys 2018; 148:124110. [PMID: 29604868 DOI: 10.1063/1.5016277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We investigate the kinetics and the free energy landscape of the crystallization of hard spheres from a supersaturated metastable liquid though direct simulations and forward flux sampling. In this first paper, we describe and test two different ways to reconstruct the free energy barriers from the sampled steady state probability distribution of cluster sizes without sampling the equilibrium distribution. The first method is based on mean first passage times, and the second method is based on splitting probabilities. We verify both methods for a single particle moving in a double-well potential. For the nucleation of hard spheres, these methods allow us to probe a wide range of supersaturations and to reconstruct the kinetics and the free energy landscape from the same simulation. Results are consistent with the scaling predicted by classical nucleation theory although a quantitative fit requires a rather large effective interfacial tension.
Collapse
Affiliation(s)
- David Richard
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
41
|
Bi Y, Porras A, Li T. Free energy landscape and molecular pathways of gas hydrate nucleation. J Chem Phys 2018; 145:211909. [PMID: 28799352 DOI: 10.1063/1.4961241] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), pB histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the pB histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.
Collapse
Affiliation(s)
- Yuanfei Bi
- Department of Civil and Environmental Engineering, George Washington University, Washington DC 20052, USA
| | - Anna Porras
- Department of Civil and Environmental Engineering, George Washington University, Washington DC 20052, USA
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington DC 20052, USA
| |
Collapse
|
42
|
Sosso GC, Tribello GA, Zen A, Pedevilla P, Michaelides A. Ice formation on kaolinite: Insights from molecular dynamics simulations. J Chem Phys 2018; 145:211927. [PMID: 28799377 DOI: 10.1063/1.4968796] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The formation of ice affects many aspects of our everyday life as well as important technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even if state-of-the-art experimental techniques are used. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long time scales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.
Collapse
Affiliation(s)
- Gabriele C Sosso
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Gareth A Tribello
- Atomistic Simulation Centre, Department of Physics and Astronomy, Queen's University Belfast, University Road, Belfast BT7 1NN, United Kingdom
| | - Andrea Zen
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Philipp Pedevilla
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Angelos Michaelides
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
43
|
Engel EA, Anelli A, Ceriotti M, Pickard CJ, Needs RJ. Mapping uncharted territory in ice from zeolite networks to ice structures. Nat Commun 2018; 9:2173. [PMID: 29872048 PMCID: PMC5988809 DOI: 10.1038/s41467-018-04618-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 05/11/2018] [Indexed: 11/09/2022] Open
Abstract
Ice is one of the most extensively studied condensed matter systems. Yet, both experimentally and theoretically several new phases have been discovered over the last years. Here we report a large-scale density-functional-theory study of the configuration space of water ice. We geometry optimise 74,963 ice structures, which are selected and constructed from over five million tetrahedral networks listed in the databases of Treacy, Deem, and the International Zeolite Association. All prior knowledge of ice is set aside and we introduce "generalised convex hulls" to identify configurations stabilised by appropriate thermodynamic constraints. We thereby rediscover all known phases (I-XVII, i, 0 and the quartz phase) except the metastable ice IV. Crucially, we also find promising candidates for ices XVIII through LI. Using the "sketch-map" dimensionality-reduction algorithm we construct an a priori, navigable map of configuration space, which reproduces similarity relations between structures and highlights the novel candidates. By relating the known phases to the tractably small, yet structurally diverse set of synthesisable candidate structures, we provide an excellent starting point for identifying formation pathways.
Collapse
Affiliation(s)
- Edgar A Engel
- TCM Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Andrea Anelli
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Chris J Pickard
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Richard J Needs
- TCM Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
44
|
Malek SMA, Sciortino F, Poole PH, Saika-Voivod I. Evaluating the Laplace pressure of water nanodroplets from simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:144005. [PMID: 29469811 DOI: 10.1088/1361-648x/aab196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We calculate the components of the microscopic pressure tensor as a function of radial distance r from the centre of a spherical water droplet, modelled using the TIP4P/2005 potential. To do so, we modify a coarse-graining method for calculating the microscopic pressure (Ikeshoji et al 2003 Mol. Simul. 29 101) in order to apply it to a rigid molecular model of water. As test cases, we study nanodroplets ranging in size from 776 to 2880 molecules at 220 K. Beneath a surface region comprising approximately two molecular layers, the pressure tensor becomes approximately isotropic and constant with r. We find that the dependence of the pressure on droplet radius is that expected from the Young-Laplace equation, despite the small size of the droplets.
Collapse
Affiliation(s)
- Shahrazad M A Malek
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Santi Prestipino
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
46
|
Abstract
Water is the most common and yet least understood material on Earth. Despite its simplicity, water tends to form tetrahedral order locally by directional hydrogen bonding. This structuring is known to be responsible for a vast array of unusual properties, e.g., the density maximum at 4 °C, which play a fundamental role in countless natural and technological processes, with the Earth’s climate being one of the most important examples. By systematically tuning the degree of tetrahedrality, we succeed in continuously interpolating between water-like behavior and simple liquid-like behavior. Our approach reveals what physical factors make water so anomalous and special even compared with other tetrahedral liquids. Tetrahedral interactions describe the behavior of the most abundant and technologically important materials on Earth, such as water, silicon, carbon, germanium, and countless others. Despite their differences, these materials share unique common physical behaviors, such as liquid anomalies, open crystalline structures, and extremely poor glass-forming ability at ambient pressure. To reveal the physical origin of these anomalies and their link to the shape of the phase diagram, we systematically study the properties of the Stillinger–Weber potential as a function of the strength of the tetrahedral interaction λ. We uncover a unique transition to a reentrant spinodal line at low values of λ, accompanied with a change in the dynamical behavior, from non-Arrhenius to Arrhenius. We then show that a two-state model can provide a comprehensive understanding on how the thermodynamic and dynamic anomalies of this important class of materials depend on the strength of the tetrahedral interaction. Our work establishes a deep link between the shape of the phase diagram and the thermodynamic and dynamic properties through local structural ordering in liquids and hints at why water is so special among all substances.
Collapse
|
47
|
Nandi PK, Burnham CJ, English NJ. Electro-nucleation of water nano-droplets in No Man's Land to fault-free ice I c. Phys Chem Chem Phys 2018. [PMID: 29513305 DOI: 10.1039/c7cp07406a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elucidating water-to-ice freezing, especially in "No Man's Land" (150 K < T < 235 K), is fundamentally important (e.g., predicting upper-troposphere cirrus-cloud formation) - and elusive. An oft-neglected aspect of tropospheric ice-crystallite formation lies in inevitably-present electric fields' role. Exploring nucleation in No Man's Land is technically demanding, owing to rapid nucleation rates, to mention nothing of difficulties of applying relevant electric fields thereto. Here, we tackle these intriguing open questions, via non-equilibrium molecular-dynamics simulations of sub-microsecond formation of rhombus-shaped ice Ic nano-crystallites from aggressively-quenched supercooled water nano-droplets in the gas phase, in external static electric fields. We explore droplets' nano-confined geometries and the entropic-ordering agent of external electric fields as a means of realising cubic-ice formation, especially with very few stacking faults and defects.
Collapse
Affiliation(s)
- Prithwish K Nandi
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland. and Irish Centre for High-End Computing, Grand Canal Quay, Dublin 2, Ireland.
| | - Christian J Burnham
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Niall J English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
48
|
Nandi PK, Burnham CJ, English NJ. Electro-suppression of water nano-droplets’ solidification in no man’s land: Electromagnetic fields’ entropic trapping of supercooled water. J Chem Phys 2018; 148:044503. [DOI: 10.1063/1.5004509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Prithwish K. Nandi
- Irish Centre for High-End Computing, Grand Canal Quay, Dublin 2, Ireland
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christian J. Burnham
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niall J. English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
49
|
Fitzner M, Sosso GC, Pietrucci F, Pipolo S, Michaelides A. Pre-critical fluctuations and what they disclose about heterogeneous crystal nucleation. Nat Commun 2017; 8:2257. [PMID: 29273707 PMCID: PMC5741629 DOI: 10.1038/s41467-017-02300-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/17/2017] [Indexed: 11/29/2022] Open
Abstract
Heterogeneous crystal nucleation is ubiquitous in nature and at the heart of many industrial applications. At the molecular scale, however, major gaps in understanding this phenomenon persist. Here we investigate through molecular dynamics simulations how the formation of precritical crystalline clusters is connected to the kinetics of nucleation. Considering heterogeneous water freezing as a prototypical scenario of practical relevance, we find that precritical fluctuations connote which crystalline polymorph will form. The emergence of metastable phases can thus be promoted by templating crystal faces characteristic of specific polymorphs. As a consequence, heterogeneous classical nucleation theory cannot describe our simulation results, because the different substrates lead to the formation of different ice polytypes. We discuss how the issue of polymorphism needs to be incorporated into analysis and comparison of heterogeneous and homogeneous nucleation. Our results will help to interpret and analyze the growing number of experiments and simulations dealing with crystal polymorph selection.
Collapse
Affiliation(s)
- Martin Fitzner
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street London, London, WC1E 6BT, UK
| | - Gabriele C Sosso
- Department of Chemistry and Centre for Scientific Computing, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Fabio Pietrucci
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS UMR 7590, IRD UMR 206, MNHN, Sorbonne Universités-Université Pierre et Marie Curie Paris 6, F-75005, Paris, France
| | - Silvio Pipolo
- Université de Lille, CNRS, Centrale Lille, ENSCL, Université d' Artois UMR 8181- UCCS Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Angelos Michaelides
- Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street London, London, WC1E 6BT, UK.
| |
Collapse
|
50
|
Haji-Akbari A, Debenedetti PG. Perspective: Surface freezing in water: A nexus of experiments and simulations. J Chem Phys 2017; 147:060901. [DOI: 10.1063/1.4985879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Pablo G. Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08540, USA
| |
Collapse
|