1
|
Martins Rodrigues F, Terekhanova NV, Imbach KJ, Clauser KR, Esai Selvan M, Mendizabal I, Geffen Y, Akiyama Y, Maynard M, Yaron TM, Li Y, Cao S, Storrs EP, Gonda OS, Gaite-Reguero A, Govindan A, Kawaler EA, Wyczalkowski MA, Klein RJ, Turhan B, Krug K, Mani DR, Leprevost FDV, Nesvizhskii AI, Carr SA, Fenyö D, Gillette MA, Colaprico A, Iavarone A, Robles AI, Huang KL, Kumar-Sinha C, Aguet F, Lazar AJ, Cantley LC, Marigorta UM, Gümüş ZH, Bailey MH, Getz G, Porta-Pardo E, Ding L. Precision proteogenomics reveals pan-cancer impact of germline variants. Cell 2025; 188:2312-2335.e26. [PMID: 40233739 DOI: 10.1016/j.cell.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/29/2024] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
We investigate the impact of germline variants on cancer patients' proteomes, encompassing 1,064 individuals across 10 cancer types. We introduced an approach, "precision peptidomics," mapping 337,469 coding germline variants onto peptides from patients' mass spectrometry data, revealing their potential impact on post-translational modifications, protein stability, allele-specific expression, and protein structure by leveraging the relevant protein databases. We identified rare pathogenic and common germline variants in cancer genes potentially affecting proteomic features, including variants altering protein abundance and structure and variants in kinases (ERBB2 and MAP2K2) impacting phosphorylation. Precision peptidome analysis predicted destabilizing events in signal-regulatory protein alpha (SIRPA) and glial fibrillary acid protein (GFAP), relevant to immunomodulation and glioblastoma diagnostics, respectively. Genome-wide association studies identified quantitative trait loci for gene expression and protein levels, spanning millions of SNPs and thousands of proteins. Polygenic risk scores correlated with distal effects from risk variants. Our findings emphasize the contribution of germline genetics to cancer heterogeneity and high-throughput precision peptidomics.
Collapse
Affiliation(s)
- Fernanda Martins Rodrigues
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nadezhda V Terekhanova
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kathleen J Imbach
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain; Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Translational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Derio, Spain
| | - Yifat Geffen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Yo Akiyama
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Tomer M Yaron
- Meyer Cancer Center, Department of Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Erik P Storrs
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Olivia S Gonda
- Department of Biology, Brigham Young University, Salt Lake City, UT, USA
| | - Adrian Gaite-Reguero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Akshay Govindan
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Emily A Kawaler
- Applied Bioinformatics Laboratories, New York University Langone Health, New York City, NY, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Berk Turhan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karsten Krug
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - D R Mani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Neurological Surgery, Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD, USA
| | - Kuan-Lin Huang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Alexander J Lazar
- Departments of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Urko M Marigorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthew H Bailey
- Department of Biology, Brigham Young University, Salt Lake City, UT, USA.
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Eduard Porta-Pardo
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain; Barcelona Supercomputing Center (BSC), Barcelona, Spain.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, Saint Louis, MO, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Lai PH, Tyrer JP, Pharoah P, Gayther SA, Jones MR, Peng PC. Characterizing somatic mutations in ovarian cancer germline risk regions. Commun Biol 2025; 8:676. [PMID: 40301634 PMCID: PMC12041368 DOI: 10.1038/s42003-025-08072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
Epithelial ovarian cancer (EOC) genetics research has been focused on germline or somatic mutations independently. Emerging evidence suggests that the somatic mutational landscape can be shaped by the germline genetic background. In this study, we aim to unravel the role of somatic alterations within EOC germline susceptibility regions by incorporating functional annotations. We investigate somatic events, including mutational signatures, point mutations, copy number alterations, and transcription factor binding disruptions, within 33 EOC germline susceptibility regions. Our analysis identifies significant associations between candidate germline susceptibility genes and somatic mutational signatures known to be key risk factors for EOC, such as mismatch repair deficiency, age-related mutagenesis, and homologous recombination deficiency. In addition, we find somatic point mutations and copy number alterations are significantly enriched in histotype-specific active enhancers and promoters within EOC risk loci. Furthermore, we examine the impact of germline variants and somatic mutations on transcription factor binding sites, identifying cancer developmental transcription factor motifs frequently affected by both types of mutations. Overall, our study highlights the importance of integrating germline and somatic mutations with regulatory and epigenomic data to gain insights into the genetic basis of EOC.
Collapse
Affiliation(s)
- Ping-Hung Lai
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Jonathan P Tyrer
- CR-UK Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Paul Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Simon A Gayther
- Center for Inherited Oncogenesis, Department of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Michelle R Jones
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pei-Chen Peng
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA.
| |
Collapse
|
3
|
Vanoye CG, Desai RR, John JD, Hoffman SC, Fink N, Zhang Y, Venkatesh OG, Roe J, Adusumilli S, Jairam NP, Sanders CR, Gordon AS, George AL. Functional profiling of KCNE1 variants informs population carrier frequency of Jervell and Lange-Nielsen syndrome type 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646046. [PMID: 40236191 PMCID: PMC11996308 DOI: 10.1101/2025.03.28.646046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Congenital long-QT syndrome (LQTS) is most often associated with pathogenic variants in KCNQ1 encoding the pore-forming voltage-gated potassium channel subunit of the slow delayed rectifier current ( I Ks ). Generation of I Ks requires assembly of KCNQ1 with an auxiliary subunit encoded by KCNE1 , which is also associated with LQTS but causality of autosomal dominant disease is disputed. By contrast, KCNE1 is an accepted cause of recessive type 2 Jervell and Lange-Nielson syndrome (JLN2). The functional consequences of most KCNE1 variants have not been determined and the population prevalence of JLN2 is unknown. Methods : We determined the functional properties of 95 KCNE1 variants co-expressed with KCNQ1 in heterologous cells using high-throughput voltage-clamp recording. Experiments were conducted with each KCNE1 variant expressed in the homozygous state and then a subset was studied in the heterozygous state. The carrier frequency of JLN2 was estimated by considering the population prevalence of dysfunctional variants. Results : There is substantial overlap between disease-associated and population KCNE1 variants. When examined in the homozygous state, 68 KCNE1 variants exhibited significant differences in at least one functional property compared to WT KCNE1, whereas 27 variants did not significantly affect function. Most dysfunctional variants exhibited loss-of-function properties. We observed no evidence of dominant-negative effects. Most variants were scored as variants of uncertain significance (VUS) and inclusion of functional data resulted in revised classifications for only 14 variants. The population carrier frequency of JLN2 was calculated as 1 in 1034. Peak current density and activation voltage-dependence but no other biophysical properties were correlated with findings from a mutational scan of KCNE1. Conclusions : Among 95 disease-associated or population KCNE1 variants, many exhibit abnormal functional properties but there was no evidence of dominant-negative behaviors. Using functional data, we inferred a population carrier frequency for recessive JLN2. This work helps clarify the pathogenicity of KCNE1 variants.
Collapse
|
4
|
Zhan S, Chen F, Huang L, Chen L, Jia H, Ma S, Tang M, Zhou C, Chen Y, Yang Y. The Clinical Pathological Characteristics and Prognostic Relevance of Homologous Recombination Repair Gene Mutations in Ovarian Cancer Patients: A Prospective Cohort Study. Obstet Gynecol Int 2025; 2025:5578247. [PMID: 40166687 PMCID: PMC11957853 DOI: 10.1155/ogi/5578247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Backgrouds: Whether homologous recombination repair (HRR) mutation has a differential effect on the prognosis has not been confirmed by current studies. The purpose of this study was to explore the clinical importance, prognostic value, and frequency of pathogenic changes in HRR genes in patients with ovarian cancer (OC). Methods: We analyze information including HRR mutation and clinical prognosis of OC patients both in our cohort and in the TCGA-OV database. Blood and/or tumor samples from 98 women admitted to Shanghai General Hospital between January 2021 and May 2024, and DNA sequencing was performed on these samples for all patients included in this retrospective study. Testing was performed for HRR mutations, including germline BRCA1/2 mutations, and defects in HRR were defined as detrimental mutations within relevant genes. Comprehensive medical records were gathered for all patients, with a follow-up period recorded for 74 of them. Results: HRR pathway genes, including BRCA1/2, CDK12, RAD54L, RAD51, ATM, MRE11, and BRIP2, are highly expressed in FIGO Stages I-II OCs among 482 patients in the TCGA-OV database, and 95.06% samples presented mutations. The alignment diagram analyzed by logistic and Cox regression was derived to investigate HRR genes on overall survival (OS < 763 days) of OC patients. A total of 98 patients were enrolled in our study, with 70 harboring HRR mutations (HRRmt) and 28 having the HRR wild-type (HRRwt). The predominant pathological type across all four patient groups was high-grade serous adenocarcinoma, with similar prevalence in HRRmt (84.30%) versus HRRwt (75%, p=0.360) and BRCAmt (94.20%) versus BRCAwt (74.60%, p=0.151) groups. Survival prediction data were collected from 74 patients, and the HRRmt group (n = 50) exhibited a numerically longer PFS compared to the HRRwt group (n = 24), with 23 months versus 17 months, respectively. A significant disparity was noted in the percentage of patients administered PARPi medication between the HRRmt and HRRwt groups (58.00% vs. 20.20%; p=0.003). Patients in both the HRRmt group (p=0.049) and the BRCAwt group (p=0.046) receiving PARPi treatment have extended PFS. Significant differences were identified between HRRmt and HRRwt groups in the size of the initial debulking surgery achieving R0 status (p=0.005), low CA125 levels (< 1000 U/mL) at diagnosis (p=0.015), and the use of PARP inhibitors (PARPi) (p=0.024) and antiangiogenic drugs (p < 0.001). For patients with HRR mutations, the use of PARPi significantly impacted PFS (p=0.049), and achieving R0 status (p=0.005) significantly influenced PFS. Conclusions: This study indicates that mutations in the HRR gene possess significant potential as a prognostic marker in OC. Our aim was to comprehensively explore how HRR gene mutations, including but not limited to BRCA, might influence the clinical course and survival of patients, shedding light on potential new avenues for personalized treatment strategies.
Collapse
Affiliation(s)
- Shitong Zhan
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Feng Chen
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Lijuan Huang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Lin Chen
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Haoyi Jia
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Shaofei Ma
- Pathology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Min Tang
- Surgery Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Chongzhi Zhou
- Educational Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Yanmin Chen
- Educational Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| | - Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, Hongkou, Shanghai 200080, China
| |
Collapse
|
5
|
Moser SC, Jonkers J. Thirty Years of BRCA1: Mechanistic Insights and Their Impact on Mutation Carriers. Cancer Discov 2025; 15:461-480. [PMID: 40025950 PMCID: PMC11893084 DOI: 10.1158/2159-8290.cd-24-1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
SIGNIFICANCE Here, we explore the impact of three decades of BRCA1 research on the lives of mutation carriers and propose strategies to improve the prevention and treatment of BRCA1-associated cancer.
Collapse
Affiliation(s)
- Sarah C. Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Lawson-Michod KA, Johnson CE, Barnard ME, Davidson N, Collin LJ, Nix DA, Huff C, Berchuck A, Salas LA, Greene C, Marks JR, Peres LC, Doherty JA, Schildkraut JM. Homologous recombination deficiency in ovarian high-grade serous carcinoma by self-reported race. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.21.25320918. [PMID: 39974072 PMCID: PMC11838950 DOI: 10.1101/2025.01.21.25320918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background Approximately half of ovarian high-grade serous carcinomas (HGSC) have homologous recombination deficiency (HRD). However, HRD is not well-characterized in Black individuals. Objective To characterize HGSC HRD by self-reported race and evaluate whether differences in HRD are associated with ovarian cancer mortality. Study population Cohort study using data collected from two population-based case-control studies of ovarian cancer. Cases were selected based on self-reported race (178 Black, 123 White) and pathologically-confirmed HGSC. Exposures HRD features identified using matched tumor-normal whole-exome DNA sequencing and categorized as germline or somatic variants in homologous recombination pathway genes, or the SBS3 HRD-associated signature. Outcomes Median difference and 95% confidence intervals (CI) for age at diagnosis and tumor mutation burden, and age and stage-adjusted hazard ratios (HR) and 95%CIs for survival, comparing individuals with an HRD feature to those without, separately by self-reported race. Results More of the germline and somatic variants detected among Black individuals compared with White individuals were unannotated or variants of uncertain significance (VUS; germline 65% versus 45%; somatic 62% versus 50%, respectively). While the prevalences of many HRD features were similar between Black individuals and White individuals, Black individuals had a higher prevalence of the HRD signature identified using de novo mutational signature analysis (40% versus 29%) and germline BRCA2 variants (8% versus 2%) compared with White individuals. We observed that among Black individuals, BRCA2 variants were associated with better survival (somatic HR=0.23, 95%CI 0.07-0.76; germline HR=0.48, 95%CI 0.22-1.03), while germline BRCA1 variants were associated with worse survival (HR=2.11, 95%CI 1.14-3.88). When we restricted to VUS and unannotated variants, we observed similar associations with survival for BRCA2 among Black individuals (somatic HR=0.18, 95%CI 0.04-0.75; germline HR=0.40, 95%CI 0.15-1.09). Conclusions and Relevance HRD testing informs precision-based medicine approaches that improve outcomes, but a higher proportion of VUS among Black individuals may complicate referral for such care. Our findings emphasize the importance of recruiting diverse individuals in genomics research and better characterizing VUS.
Collapse
Affiliation(s)
- Katherine A. Lawson-Michod
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences at the Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Courtney E. Johnson
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mollie E. Barnard
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences at the Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Natalie Davidson
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lindsay J. Collin
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences at the Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - David A. Nix
- Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Chad Huff
- MD Anderson Cancer Center, Houston, TX, USA
| | - Andy Berchuck
- Division of Gynecologic Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth Cancer Center, Lebanon, NH, USA
| | - Casey Greene
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey R. Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lauren C. Peres
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jennifer A. Doherty
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences at the Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Chapagain U, Huecker JB, Sun L. Morphologic Correlations With Homologous Recombination Deficiency in High-grade Serous Carcinomas. Int J Gynecol Pathol 2025:00004347-990000000-00217. [PMID: 39868725 DOI: 10.1097/pgp.0000000000001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
High-grade serous carcinomas (HGSCs) with homologous recombination deficiency (HRD) respond favorably to platinum therapy and poly ADP ribose polymerase (PARP) inhibitors. Mutations in BRCA1 and BRCA2 commonly cause HRD and have been associated with Solid, pseudoEndometrioid, and Transitional-like (SET-like) histology. Mutations in other homologous recombination repair (HRR) genes as well as epigenetic changes can also result in HRD; however, morphologic correlates have not been well-explored in these cases. We hypothesized that HGSCs with HRD, regardless of the etiology, are associated with specific morphologic features. Forty-three cases of HGSC with genomic profiling, which included HRR gene mutation analysis and HRD score, were evaluated. The morphologic patterns, degree of nuclear atypia, necrosis, mitotic index, and tumor-infiltrating lymphocytes (TILs) were determined. The results showed that HRD-high status was significantly associated with the presence of BRCA1/2 mutation, SET-like morphology, geographic necrosis, and severe nuclear atypia. Additional HRR pathway genes with oncogenic mutations identified included ATM, BRIP1, BLM, FANCC, CDK12, CHEK2, RAD51C, and RAD51D. Almost one-third of HRD-high tumors did not have mutations in any HRR pathway genes identified. In conclusion, HGSC with HRD, regardless of BRCA1/2-status, was associated with SET-like morphology and more severe nuclear atypia. Identifying and reporting these patterns of tumor morphology can prompt genomic profiling with prognostic, therapeutic, and genetic counseling implications.
Collapse
Affiliation(s)
- Udita Chapagain
- Department of Pathology and Immunology, Washington University
| | - Julia B Huecker
- Center for Biostatistics and Data Science, Washington University, St. Louis, Missouri
| | - Lulu Sun
- Department of Pathology and Immunology, Washington University
| |
Collapse
|
8
|
Li H, Meng L, Wang H, Cui L, Sheng H, Zhao P, Hong S, Du X, Yan S, Xing Y, Feng S, Zhang Y, Fang H, Bai J, Liu Y, Lan S, Liu T, Guan Y, Xia X, Yi X, Cheng Y. Precise identification of somatic and germline variants in the absence of matched normal samples. Brief Bioinform 2024; 26:bbae677. [PMID: 39737564 DOI: 10.1093/bib/bbae677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Somatic variants play a crucial role in the occurrence and progression of cancer. However, in the absence of matched normal controls, distinguishing between germline and somatic variants becomes challenging in tumor samples. The existing tumor-only genomic analysis methods either suffer from limited performance or insufficient interpretability due to an excess of features. Therefore, there is an urgent need for an alternative approach that can address these issues and have practical implications. Here, we presented OncoTOP, a computational method for genomic analysis without matched normal samples, which can accurately distinguish somatic mutations from germline variants. Reference sample analysis revealed a 0% false positive rate and 99.7% reproducibility for variant calling. Assessing 2864 tumor samples across 18 cancer types yielded a 99.8% overall positive percent agreement and a 99.9% positive predictive value. OncoTOP can also accurately detect clinically actionable variants and subclonal mutations associated with drug resistance. For the prediction of mutation origins, the positive percent agreement stood at 97.4% for predicting somatic mutations and 95.7% for germline mutations. High consistency of tumor mutational burden (TMB) was observed between the results generated by OncoTOP and tumor-normal paired analysis. In a cohort of 97 lung cancer patients treated with immunotherapy, TMB-high patients had prolonged PFS (P = .02), proving the reliability of our approach in estimating TMB to predict therapy response. Furthermore, microsatellite instability status showed a strong concordance (97%) with polymerase chain reaction results, and leukocyte antigens class I subtypes and homozygosity achieved an impressive concordance rate of 99.3% and 99.9% respectively, compared to its tumor-normal paired analysis. Thus, OncoTOP exhibited high reliability in variant calling, mutation origin prediction, and biomarker estimation. Its application will promise substantial advantages for clinical genomic testing.
Collapse
Affiliation(s)
- Hui Li
- The Medical Oncology Translational Research Laboratory, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China
| | - Lu Meng
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Hongke Wang
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Liang Cui
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Heyu Sheng
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Peiyan Zhao
- The Medical Oncology Translational Research Laboratory, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China
| | - Shuo Hong
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Xinhua Du
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Shi Yan
- The Medical Oncology Translational Research Laboratory, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China
| | - Yun Xing
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Shicheng Feng
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Yan Zhang
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Huan Fang
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Jing Bai
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
- College of Future Technology, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yan Liu
- The Medical Oncology Translational Research Laboratory, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China
| | - Shaowei Lan
- The Medical Oncology Translational Research Laboratory, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China
| | - Tao Liu
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Yanfang Guan
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Xin Yi
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Ying Cheng
- The Department of Medical Oncology, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China
| |
Collapse
|
9
|
Yoon KA, Kim Y, Jung SY, Ryu JS, Kim KH, Lee EG, Chae H, Kwon Y, Kim J, Park JB, Kong SY. Proteogenomic analysis dissects early-onset breast cancer patients with prognostic relevance. Exp Mol Med 2024; 56:2382-2394. [PMID: 39482530 PMCID: PMC11612404 DOI: 10.1038/s12276-024-01332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 11/03/2024] Open
Abstract
Early-onset breast cancer is known for its aggressive clinical characteristics and high prevalence in East Asian countries, but a comprehensive understanding of its molecular features is still lacking. In this study, we conducted a proteogenomic analysis of 126 treatment-naïve primary tumor tissues obtained from Korean patients with young breast cancer (YBC) aged ≤40 years. By integrating genomic, transcriptomic, and proteomic data, we identified five distinct functional subgroups that accurately represented the clinical characteristics and biological behaviors of patients with YBC. Our integrated approach could be used to determine the proteogenomic status of HER2, enhancing its clinical significance and prognostic value. Furthermore, we present a proteome-based homologous recombination deficiency (HRD) analysis that has the potential to overcome the limitations of conventional genomic HRD tests, facilitating the identification of new patient groups requiring targeted HR deficiency treatments. Additionally, we demonstrated that protein-RNA correlations can be used to predict the late recurrence of hormone receptor-positive breast cancer. Within each molecular subtype of breast cancer, we identified functionally significant protein groups whose differential abundance was closely correlated with the clinical progression of breast cancer. Furthermore, we derived a recurrence predictive index capable of predicting late recurrence, specifically in luminal subtypes, which plays a crucial role in guiding decisions on treatment durations for YBC patients. These findings improve the stratification and clinical implications for patients with YBC by contributing to the optimal adjuvant treatment and duration for favorable clinical outcomes.
Collapse
Affiliation(s)
- Kyong-Ah Yoon
- Department of Biochemistry, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Youngwook Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - So-Youn Jung
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Center for Breast Cancer, National Cancer Center, Goyang, Korea
| | - Jin-Sun Ryu
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea
- Laboratory Animal Research Facility, Research Institute, National Cancer Center, Goyang, Korea
| | - Kyung-Hee Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
- Proteomics Core Facility, Research Core Center, Research Institute, National Cancer Center, Goyang, Korea
| | - Eun-Gyeong Lee
- Center for Breast Cancer, National Cancer Center, Goyang, Korea
| | - Heejung Chae
- Cancer Data Center, Control Institute, National Cancer Center, Goyang, Korea
- Division of Medical Oncology, Hospital, National Cancer Center, Goyang, Korea
| | - Youngmee Kwon
- Center for Breast Cancer, National Cancer Center, Goyang, Korea
| | | | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
| | - Sun-Young Kong
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea.
- Department of Laboratory Medicine, Research Institute, National Cancer Center Korea, Goyang, Korea.
- Department of Targeted Therapy Branch, Research Institute, National Cancer Center, Goyang, Korea.
| |
Collapse
|
10
|
Pal M, Das D, Pandey M. Understanding genetic variations associated with familial breast cancer. World J Surg Oncol 2024; 22:271. [PMID: 39390525 PMCID: PMC11465949 DOI: 10.1186/s12957-024-03553-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Breast cancer is the most frequent cancer among women. Genetics are the main risk factor for breast cancer. Statistics show that 15-25% of breast cancers are inherited among those with cancer-prone relatives. BRCA1, BRCA2, TP53, CDH1, PTEN, and STK11 are the most frequent genes for familial breast cancer, which occurs 80% of the time. In rare situations, moderate-penetrance gene mutations such CHEK2, BRIP1, ATM, and PALB2 contribute 2-3%. METHODS A search of the PubMed database was carried out spanning from 2005 to July 2024, yielding a total of 768 articles that delve into the realm of familial breast cancer, concerning genes and genetic syndromes. After exclusion 150 articles were included in the final review. RESULTS We report on a set of 20 familial breast cancer -associated genes into high, moderate, and low penetrance levels. Additionally, 10 genetic disorders were found to be linked with familial breast cancer. CONCLUSION Familial breast cancer has been linked to several genetic diseases and mutations, according to studies. Screening for genetic disorders is recommended by National Comprehensive Cancer Network recommendations. Evaluation of breast cancer candidate variations and risk loci may improve individual risk assessment. Only high- and moderate-risk gene variations have clinical guidelines, whereas low-risk gene variants require additional investigation. With increasing use of NGS technology, more linkage with rare genes is being discovered.
Collapse
Affiliation(s)
- Manjusha Pal
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Doutrina Das
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
11
|
Ye BJ, Li DF, Li XY, Hao JL, Liu DJ, Yu H, Zhang CD. Methylation synthetic lethality: Exploiting selective drug targets for cancer therapy. Cancer Lett 2024; 597:217010. [PMID: 38849016 DOI: 10.1016/j.canlet.2024.217010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
In cancer, synthetic lethality refers to the drug-induced inactivation of one gene and the inhibition of another in cancer cells by a drug, resulting in the death of only cancer cells; however, this effect is not present in normal cells, leading to targeted killing of cancer cells. Recent intensive epigenetic research has revealed that aberrant epigenetic changes are more frequently observed than gene mutations in certain cancers. Recently, numerous studies have reported various methylation synthetic lethal combinations involving DNA damage repair genes, metabolic pathway genes, and paralogs with significant results in cellular models, some of which have already entered clinical trials with promising results. This review systematically introduces the advantages of methylation synthetic lethality and describes the lethal mechanisms of methylation synthetic lethal combinations that have recently demonstrated success in cellular models. Furthermore, we discuss the future opportunities and challenges of methylation synthetic lethality in targeted anticancer therapies.
Collapse
Affiliation(s)
- Bing-Jie Ye
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Fei Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Jia-Lin Hao
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Jie Liu
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Hang Yu
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Chun-Dong Zhang
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
12
|
Chehade H, Gogoi R, Adzibolosu NK, Galoforo S, Fehmi RA, Kheil M, Fox A, Kim S, Rattan R, Hou Z, Morris RT, Matherly LH, Mor G, Alvero AB. BRCA Status Dictates Wnt Responsiveness in Epithelial Ovarian Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:2075-2088. [PMID: 39028933 PMCID: PMC11320024 DOI: 10.1158/2767-9764.crc-24-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The association of BRCA1 and BRCA2 mutations with increased risk for developing epithelial ovarian cancer is well established. However, the observed clinical differences, particularly the improved therapy response and patient survival in BRCA2-mutant patients, are unexplained. Our objective is to identify molecular pathways that are differentially regulated upon the loss of BRCA1 and BRCA2 functions in ovarian cancer. Transcriptomic and pathway analyses comparing BRCA1-mutant, BRCA2-mutant, and homologous recombination wild-type ovarian tumors showed differential regulation of the Wnt/β-catenin pathway. Using Wnt3A-treated BRCA1/2 wild-type, BRCA1-null, and BRCA2-null mouse ovarian cancer cells, we observed preferential activation of canonical Wnt/β-catenin signaling in BRCA1/2 wild-type ovarian cancer cells, whereas noncanonical Wnt/β-catenin signaling was preferentially activated in the BRCA1-null ovarian cancer cells. Interestingly, BRCA2-null mouse ovarian cancer cells demonstrated a unique response to Wnt3A with the preferential upregulation of the Wnt signaling inhibitor Axin2. In addition, decreased phosphorylation and enhanced stability of β-catenin were observed in BRCA2-null mouse ovarian cancer cells, which correlated with increased inhibitory phosphorylation on GSK3β. These findings open venues for the translation of these molecular observations into modalities that can impact patient survival. SIGNIFICANCE We show that BRCA1 and BRCA2 mutation statuses differentially impact the regulation of the Wnt/β-catenin signaling pathway, a major effector of cancer initiation and progression. Our findings provide a better understanding of molecular mechanisms that promote the known differential clinical profile in these patient populations.
Collapse
Affiliation(s)
- Hussein Chehade
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan.
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| | - Radhika Gogoi
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| | - Nicholas K. Adzibolosu
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| | - Sandra Galoforo
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| | - Rouba-Ali Fehmi
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| | - Mira Kheil
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| | - Alexandra Fox
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| | - Seongho Kim
- Karmanos Cancer Institute, Detroit, Michigan.
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Ramandeep Rattan
- Division of Gynecology Oncology, Department of Women’s Health Services, Henry Ford Cancer Institute and Henry Ford Health System, Detroit, Michigan.
| | - Zhanjun Hou
- Karmanos Cancer Institute, Detroit, Michigan.
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Robert T. Morris
- Karmanos Cancer Institute, Detroit, Michigan.
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Larry H. Matherly
- Karmanos Cancer Institute, Detroit, Michigan.
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Gil Mor
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| | - Ayesha B. Alvero
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
- Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
13
|
Aisagbonhi O, Ghlichloo I, Hong DS, Roma A, Fadare O, Eskander R, Saenz C, Fisch KM, Song W. Comprehensive next-generation sequencing identifies novel putative pathogenic or likely pathogenic germline variants in patients with concurrent tubo-ovarian and endometrial serous and endometrioid carcinomas or precursors. Gynecol Oncol 2024; 187:241-248. [PMID: 38833993 DOI: 10.1016/j.ygyno.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Endometrial serous carcinoma (ESC) and tubo-ovarian high-grade serous carcinoma (HGSC) are characterized by late-stage presentation and high mortality. Current guidelines for prevention recommend risk-reducing salpingo-oophorectomy (RRSO) in patients with hereditary mutations in cancer susceptibility genes. However, HGSC displays extensive genetic heterogeneity with alterations in 168 genes identified in TCGA study, but current germline testing panels are often limited to the handful of recurrently mutated genes, leaving families with rare hereditary gene mutations potentially at-risk. OBJECTIVE To determine if there are rare germline mutations that may aid in early identification of more patients at-risk for ESC and/or HGSC by evaluating patients with concurrent ESC, HGSC or precursor lesions, and endometrial atypical hyperplasia (CAH) or low-grade endometrial endometrioid adenocarcinoma (LGEEA). METHODS We performed targeted next-generation sequencing using TSO 500, a 523 gene panel, on formalin-fixed paraffin-embedded tumor and matched benign non-tumor tissue blocks from 5 patients with concurrent ESC, HGSC or precursor lesions, and CAH or LGEEA. RESULTS We identified germline pathogenic, likely pathogenic or uncertain significance variants in cancer susceptibility genes in 4 of 5 patients - affected genes included GLI1, PIK3R1, FOXP1, FANCD2, INPP4B and H3F3C. Notably, none of these genes were included in the commercially available germline testing panels initially used to evaluate the patients at the time of their diagnoses. CONCLUSION Comprehensive germline testing of patients with concurrent LGEEA or CAH and ESC, HGSC or precursor lesions may aid in early identification of relatives at-risk for cancer who may be candidates for RRSO with hysterectomy.
Collapse
Affiliation(s)
- Omonigho Aisagbonhi
- Department of Pathology, University of California San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| | - Ida Ghlichloo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Duncan S Hong
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Division of Blood and Marrow Transplantation, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andres Roma
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ramez Eskander
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Cheryl Saenz
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - Wei Song
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Taylor SJ, Hollis RL, Gourley C, Herrington CS, Langdon SP, Arends MJ. FANCD2 expression affects platinum response and further characteristics of high grade serous ovarian cancer in cells with different genetic backgrounds. Exp Mol Pathol 2024; 138:104916. [PMID: 38959632 DOI: 10.1016/j.yexmp.2024.104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most prevalent subtype of ovarian cancer and demonstrates 5-year survival of just 40%. One of the major causes of mortality is the development of tumour resistance to platinum-based chemotherapy, which can be modulated by dysregulation of DNA damage repair pathways. We therefore investigated the contribution of the DNA interstrand crosslink repair protein FANCD2 to chemosensitivity in HGSOC. Increased FANCD2 protein expression was observed in some cell line models of platinum resistant HGSOC compared with paired platinum sensitive models. Knockdown of FANCD2 in some cell lines, including the platinum resistant PEO4, led to increased carboplatin sensitivity. Investigation into mechanisms of FANCD2 regulation showed that increased FANCD2 expression in platinum resistant cells coincides with increased expression of mTOR. Treatment with mTOR inhibitors resulted in FANCD2 depletion, suggesting that mTOR can mediate platinum sensitivity via regulation of FANCD2. Tumours from a cohort of HGSOC patients showed varied nuclear and cytoplasmic FANCD2 expression, however this was not significantly associated with clinical characteristics. Knockout of FANCD2 was associated with increased cell migration, which may represent a non-canonical function of cytoplasmic FANCD2. We conclude that upregulation of FANCD2, possibly mediated by mTOR, is a potential mechanism of chemoresistance in HGSOC and modulation of FANCD2 expression can influence platinum sensitivity and other tumour cell characteristics.
Collapse
Affiliation(s)
- Sarah J Taylor
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| | - Robert L Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - C Simon Herrington
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom; Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P Langdon
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
15
|
Cao X, Huber S, Ahari AJ, Traube FR, Seifert M, Oakes CC, Secheyko P, Vilov S, Scheller IF, Wagner N, Yépez VA, Blombery P, Haferlach T, Heinig M, Wachutka L, Hutter S, Gagneur J. Analysis of 3760 hematologic malignancies reveals rare transcriptomic aberrations of driver genes. Genome Med 2024; 16:70. [PMID: 38769532 PMCID: PMC11103968 DOI: 10.1186/s13073-024-01331-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/04/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Rare oncogenic driver events, particularly affecting the expression or splicing of driver genes, are suspected to substantially contribute to the large heterogeneity of hematologic malignancies. However, their identification remains challenging. METHODS To address this issue, we generated the largest dataset to date of matched whole genome sequencing and total RNA sequencing of hematologic malignancies from 3760 patients spanning 24 disease entities. Taking advantage of our dataset size, we focused on discovering rare regulatory aberrations. Therefore, we called expression and splicing outliers using an extension of the workflow DROP (Detection of RNA Outliers Pipeline) and AbSplice, a variant effect predictor that identifies genetic variants causing aberrant splicing. We next trained a machine learning model integrating these results to prioritize new candidate disease-specific driver genes. RESULTS We found a median of seven expression outlier genes, two splicing outlier genes, and two rare splice-affecting variants per sample. Each category showed significant enrichment for already well-characterized driver genes, with odds ratios exceeding three among genes called in more than five samples. On held-out data, our integrative modeling significantly outperformed modeling based solely on genomic data and revealed promising novel candidate driver genes. Remarkably, we found a truncated form of the low density lipoprotein receptor LRP1B transcript to be aberrantly overexpressed in about half of hairy cell leukemia variant (HCL-V) samples and, to a lesser extent, in closely related B-cell neoplasms. This observation, which was confirmed in an independent cohort, suggests LRP1B as a novel marker for a HCL-V subclass and a yet unreported functional role of LRP1B within these rare entities. CONCLUSIONS Altogether, our census of expression and splicing outliers for 24 hematologic malignancy entities and the companion computational workflow constitute unique resources to deepen our understanding of rare oncogenic events in hematologic cancers.
Collapse
Affiliation(s)
- Xueqi Cao
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Graduate School of Quantitative Biosciences (QBM), Munich, Germany
| | - Sandra Huber
- Munich Leukemia Laboratory (MLL), Munich, Germany
| | - Ata Jadid Ahari
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Franziska R Traube
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christopher C Oakes
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Polina Secheyko
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sergey Vilov
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Ines F Scheller
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Vicente A Yépez
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Piers Blombery
- Peter MacCallum Cancer Centre, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Torsten Haferlach Leukämiediagnostik Stiftung, Munich, Germany
| | | | - Matthias Heinig
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Leonhard Wachutka
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
| | | | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Graduate School of Quantitative Biosciences (QBM), Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Human Genetics, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
16
|
Rogges E, Corati T, Amato M, Campagna D, Farro J, De Toffol S, Fortunato L, Costarelli L. Pleomorphic/solid lobular carcinoma of male breast with PALB2 germline mutation: case report and literature review. Pathologica 2024; 116:62-68. [PMID: 38482676 PMCID: PMC10938273 DOI: 10.32074/1591-951x-936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 03/17/2024] Open
Abstract
Male breast cancer (MBC) accounts for approximately 1% of all breast cancers and among these infiltrating lobular carcinomas (ILC) represents only 1-2% of all MBC cases. Pleomorphic invasive lobular carcinoma (PILC) is an aggressive variant of ILC with only eight cases reported until now in males. Up to 10% of MBC cases have a germline pathogenic variant in a predisposing gene such as BRCA1 and BRCA2 genes. Mutations in PALB2 (partner and localizer of BRCA2) have been reported in men with breast cancer, with a frequency that ranges from 0.8 to 6.4%, but it has never been reported in male ILC. Here, we report a rare and interesting case of an invasive pleomorphic/solid lobular carcinoma, which carries a pathogenic variant in PALB2 gene, and a family history of breast cancer without other well defined risk factors for developing this type of neoplasia. In addition, we review the current literature.
Collapse
Affiliation(s)
- Evelina Rogges
- Department of Pathology, San Giovanni-Addolorata Hospital, Rome, Italy
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, Rome, Italy
| | - Tiberio Corati
- Department of Pathology, San Giovanni-Addolorata Hospital, Rome, Italy
- Department of Clinical and Molecular Medicine, Sant’Andrea Hospital, Sapienza University, Rome, Italy
| | - Michelina Amato
- Department of Pathology, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Domenico Campagna
- Department of Pathology, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Juliette Farro
- Department of Genetics, San Giovanni-Addolorata Hospital, Rome, Italy
| | - Simona De Toffol
- Laboratory of Medical Genetics, TOMA Advanced Biomedical Assays S.p.A., Busto Arsizio VA, Italy
| | - Lucio Fortunato
- Breast Center, Department of Surgery, San Giovanni-Addolorata Hospital, Rome, Italy
| | | |
Collapse
|
17
|
Minello A, Carreira A. BRCA1/2 Haploinsufficiency: Exploring the Impact of Losing one Allele. J Mol Biol 2024; 436:168277. [PMID: 37714298 DOI: 10.1016/j.jmb.2023.168277] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Since their discovery in the late 20th century, significant progress has been made in elucidating the functions of the tumor suppressor proteins BRCA1 and BRCA2. These proteins play vital roles in maintaining genome integrity, including DNA repair, replication fork protection, and chromosome maintenance. It is well-established that germline mutations in BRCA1 and BRCA2 increase the risk of breast and ovarian cancer; however, the precise mechanism underlying tumor formation in this context is not fully understood. Contrary to the long-standing belief that the loss of the second wild-type allele is necessary for tumor development, a growing body of evidence suggests that tumorigenesis can occur despite the presence of a single functional allele. This entails that heterozygosity in BRCA1/2 confers haploinsufficiency, where a single copy of the gene is not sufficient to fully suppress tumor formation. Here we provide an overview of the findings and the ongoing debate regarding BRCA haploinsufficiency. We further put out the challenges in studying this topic and discuss its potential relevance in the prevention and treatment of BRCA-related cancers.
Collapse
Affiliation(s)
- Anna Minello
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France; Genome Instability and Cancer Predisposition Lab, Department of Genome Dynamics and Function, Centro de Biologia Molecular Severo Ochoa (CBMSO, CSIC-UAM), Madrid 28049, Spain.
| |
Collapse
|
18
|
Horackova K, Janatova M, Kleiblova P, Kleibl Z, Soukupova J. Early-Onset Ovarian Cancer <30 Years: What Do We Know about Its Genetic Predisposition? Int J Mol Sci 2023; 24:17020. [PMID: 38069345 PMCID: PMC10707471 DOI: 10.3390/ijms242317020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Ovarian cancer (OC) is one of the leading causes of cancer-related deaths in women. Most patients are diagnosed with advanced epithelial OC in their late 60s, and early-onset adult OC diagnosed ≤30 years is rare, accounting for less than 5% of all OC cases. The most significant risk factor for OC development are germline pathogenic/likely pathogenic variants (GPVs) in OC predisposition genes (including BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, Lynch syndrome genes, or BRIP1), which contribute to the development of over 20% of all OC cases. GPVs in BRCA1/BRCA2 are the most prevalent. The presence of a GPV directs tailored cancer risk-reducing strategies for OC patients and their relatives. Identification of OC patients with GPVs can also have therapeutic consequences. Despite the general assumption that early cancer onset indicates higher involvement of hereditary cancer predisposition, the presence of GPVs in early-onset OC is rare (<10% of patients), and their heritability is uncertain. This review summarizes the current knowledge on the genetic predisposition to early-onset OC, with a special focus on epithelial OC, and suggests other alternative genetic factors (digenic, oligogenic, polygenic heritability, genetic mosaicism, imprinting, etc.) that may influence the development of early-onset OC in adult women lacking GPVs in known OC predisposition genes.
Collapse
Affiliation(s)
- Klara Horackova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
| | - Marketa Janatova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic
| | - Jana Soukupova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (K.H.); (M.J.); (P.K.); (Z.K.)
| |
Collapse
|
19
|
Ho GY, Vandenberg CJ, Lim R, Christie EL, Garsed DW, Lieschke E, Nesic K, Kondrashova O, Ratnayake G, Radke M, Penington JS, Carmagnac A, Heong V, Kyran EL, Zhang F, Traficante N, Australian Ovarian Cancer Study, Huang R, Dobrovic A, Swisher EM, McNally O, Kee D, Wakefield MJ, Papenfuss AT, Bowtell DDL, Barker HE, Scott CL. The microtubule inhibitor eribulin demonstrates efficacy in platinum-resistant and refractory high-grade serous ovarian cancer patient-derived xenograft models. Ther Adv Med Oncol 2023; 15:17588359231208674. [PMID: 38028140 PMCID: PMC10666702 DOI: 10.1177/17588359231208674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Despite initial response to platinum-based chemotherapy and PARP inhibitor therapy (PARPi), nearly all recurrent high-grade serous ovarian cancer (HGSC) will acquire lethal drug resistance; indeed, ~15% of individuals have de novo platinum-refractory disease. Objectives To determine the potential of anti-microtubule agent (AMA) therapy (paclitaxel, vinorelbine and eribulin) in platinum-resistant or refractory (PRR) HGSC by assessing response in patient-derived xenograft (PDX) models of HGSC. Design and methods Of 13 PRR HGSC PDX, six were primary PRR, derived from chemotherapy-naïve samples (one was BRCA2 mutant) and seven were from samples obtained following chemotherapy treatment in the clinic (five were mutant for either BRCA1 or BRCA2 (BRCA1/2), four with prior PARPi exposure), recapitulating the population of individuals with aggressive treatment-resistant HGSC in the clinic. Molecular analyses and in vivo treatment studies were undertaken. Results Seven out of thirteen PRR PDX (54%) were sensitive to treatment with the AMA, eribulin (time to progressive disease (PD) ⩾100 days from the start of treatment) and 11 out of 13 PDX (85%) derived significant benefit from eribulin [time to harvest (TTH) for each PDX with p < 0.002]. In 5 out of 10 platinum-refractory HGSC PDX (50%) and one out of three platinum-resistant PDX (33%), eribulin was more efficacious than was cisplatin, with longer time to PD and significantly extended TTH (each PDX p < 0.02). Furthermore, four of these models were extremely sensitive to all three AMA tested, maintaining response until the end of the experiment (120d post-treatment start). Despite harbouring secondary BRCA2 mutations, two BRCA2-mutant PDX models derived from heavily pre-treated individuals were sensitive to AMA. PRR HGSC PDX models showing greater sensitivity to AMA had high proliferative indices and oncogene expression. Two PDX models, both with prior chemotherapy and/or PARPi exposure, were refractory to all AMA, one of which harboured the SLC25A40-ABCB1 fusion, known to upregulate drug efflux via MDR1. Conclusion The efficacy observed for eribulin in PRR HGSC PDX was similar to that observed for paclitaxel, which transformed ovarian cancer clinical practice. Eribulin is therefore worthy of further consideration in clinical trials, particularly in ovarian carcinoma with early failure of carboplatin/paclitaxel chemotherapy.
Collapse
Affiliation(s)
- Gwo Yaw Ho
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- The Royal Women’s Hospital, Parkville, VIC, Australia
- School of Clinical Sciences, Monash University, Clayton Road, Clayton, VIC 3168, Australia
| | - Cassandra J. Vandenberg
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ratana Lim
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Dale W. Garsed
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Marc Radke
- University of Washington, Seattle, WA, USA
| | - Jocelyn S. Penington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Amandine Carmagnac
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Valerie Heong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Elizabeth L. Kyran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Fan Zhang
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | | | | | - Alexander Dobrovic
- Department of Surgery, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | | | - Orla McNally
- The Royal Women’s Hospital, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| | - Damien Kee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Oncology, Austin Hospital, Heidelberg, VIC, Australia
| | - Matthew J. Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| | - Anthony T. Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Holly E. Barker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- The Royal Women’s Hospital, Parkville, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Wu M, Zhou S. Harnessing tumor immunogenomics: Tumor neoantigens in ovarian cancer and beyond. Biochim Biophys Acta Rev Cancer 2023; 1878:189017. [PMID: 37935309 DOI: 10.1016/j.bbcan.2023.189017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Ovarian cancer is a major cause of death among gynecological cancers due to its highly aggressive nature. Immunotherapy has emerged as a promising avenue for ovarian cancer treatment, offering targeted approaches with reduced off-target effects. With the advent of next-generation sequencing, it has become possible to identify genomic alterations that can serve as potential targets for immunotherapy. Furthermore, immunogenomics research has revealed the importance of genetic alterations in shaping the cancer immune responses. However, the heterogeneity of immunogenicity and the low tumor mutation burden pose challenges for neoantigen-based immunotherapies. Further research is needed to identify neoantigen-specific tumor-infiltrating lymphocytes (TIL) and establish guidelines for patient inclusion criteria in TIL-based therapy. The study of neoantigens and their implications in ovarian cancer immunotherapy holds great promise, and efforts focused on personalized treatment strategies, refined neoantigen selection, and optimized therapeutic combinations will contribute to improving patient outcomes in the future.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, PR China.
| |
Collapse
|
21
|
Narayan P, Ahsan MD, Webster EM, Perez L, Levi SR, Harvey B, Wolfe I, Beaumont S, Brewer JT, Siegel D, Thomas C, Christos P, Hickner A, Chapman-Davis E, Cantillo E, Holcomb K, Sharaf RN, Frey MK. Partner and localizer of BRCA2 (PALB2) pathogenic variants and ovarian cancer: A systematic review and meta-analysis. Gynecol Oncol 2023; 177:72-85. [PMID: 37651980 DOI: 10.1016/j.ygyno.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVE Approximately 20% of ovarian cancers are due to an underlying germline pathogenic variant. While pathogenic variants in several genes have been well-established in the development of hereditary ovarian cancer (e.g. BRCA1/2, RAD51C, RAD51D, BRIP1, mismatch repair genes), the role of partner and localizer of BRCA2 (PALB2) remains uncertain. We sought to utilize meta-analysis to evaluate the association between PALB2 germline pathogenic variants and ovarian cancer. METHODS We conducted a systematic review and meta-analysis. We searched key electronic databases to identify studies evaluating multigene panel testing in people with ovarian cancer. Eligible trials were subjected to meta-analysis. RESULTS Fifty-five studies met inclusion criteria, including 48,194 people with ovarian cancer and information available on germline PALB2 pathogenic variant status. Among people with ovarian cancer and available PALB2 sequencing data, 0.4% [95% CI 0.3-0.4] harbored a germline pathogenic variant in the PALB2 gene. The pooled odds ratio (OR) for carrying a PALB2 pathogenic variant among the ovarian cancer population of 20,474 individuals who underwent germline testing was 2.48 [95% CI 1.57-3.90] relative to 123,883 controls. CONCLUSIONS Our meta-analysis demonstrates that the pooled OR for harboring a PALB2 germline pathogenic variant among people with ovarian cancer compared to the general population is 2.48 [95% CI 1.57-3.90]. Prospective studies evaluating the role of germline PALB2 pathogenic variants in the development of ovarian cancer are warranted.
Collapse
|
22
|
An J, Oh JH, Oh B, Oh YJ, Ju JS, Kim W, Kang HJ, Sung CO, Shim JH. Clinicogenomic characteristics and synthetic lethal implications of germline homologous recombination-deficient hepatocellular carcinoma. Hepatology 2023; 78:452-467. [PMID: 36177702 DOI: 10.1002/hep.32812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUNDS AND AIMS We performed an in-depth examination of pathogenic germline variants (PGVs) and somatic variants in DNA damage response (DDR) genes in hepatocellular carcinoma (HCC) to explore their clinical and genomic impacts. APPROACH AND RESULTS We used a merged whole-exome or RNA sequencing data set derived from in-house ( n = 230) and The Cancer Genome Atlas ( n = 362) databases of multiethnic HCC samples. We also evaluated synthetic lethal approaches targeting mutations in homologous recombination (HR) genes using HCC cells selected from five genomic databases of cancer cell lines. A total of 110 PGVs in DDR pathways in 96 patients were selected. Of the PGV carriers, 44 were HR-altered and found to be independently associated with poorer disease-free survival after hepatectomy. The most frequently altered HR gene in both germline and somatic tissues was POLQ , and this variant was detected in 22.7% (10/44) and 23.8% (5/21) of all the corresponding carriers, respectively. PGVs in HR were significantly associated with upregulation of proliferation and replication-related genes and familial risk of HCC. Samples harboring PGVs in HR with loss of heterozygosity were most strongly correlated with the genomic footprints of deficient HR, such as mutation burden and denovoSig2 (analogous to Catalogue of Somatic Mutations in Cancer [COSMIC] 3), and poor outcome. Pharmacologic experiments with HCC cells defective in BRCA2 or POLQ suggested that tumors with this phenotype are synthetic lethal with poly(ADP-ribose) polymerase inhibitors. CONCLUSIONS Our findings suggest that germline HR defects in HCC tend to confer a poor prognosis and result in distinctive genomic scarring. Tests of the clinical benefits of HR-directed treatments in the affected patients are needed.
Collapse
Affiliation(s)
- Jihyun An
- Gastroenterology and Hepatology , Hanyang University College of Medicine , Guri , Republic of Korea
| | - Ji-Hye Oh
- Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine , Seoul , Republic of Korea
| | - Bora Oh
- Asan Institute for Life Science, Asan Medical Center , Seoul , Republic of Korea
| | - Yoo-Jin Oh
- Asan Institute for Life Science, Asan Medical Center , Seoul , Republic of Korea
| | - Jin-Sung Ju
- Asan Institute for Life Science, Asan Medical Center , Seoul , Republic of Korea
| | - Wonkyung Kim
- Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine , Seoul , Republic of Korea
| | - Hyo Jung Kang
- Pathology, Asan Medical Center , University of Ulsan College of Medicine , Seoul , Republic of Korea
- Asan Liver Center, Asan Medical Center , University of Ulsan College of Medicine , Seoul , South Korea
| | - Chang Ohk Sung
- Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine , Seoul , Republic of Korea
- Pathology, Asan Medical Center , University of Ulsan College of Medicine , Seoul , Republic of Korea
- Center for Cancer Genome Discovery , Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center , Seoul , Republic of Korea
| | - Ju Hyun Shim
- Asan Liver Center, Asan Medical Center , University of Ulsan College of Medicine , Seoul , South Korea
- Gastroenterology, Asan Medical Center , University of Ulsan College of Medicine , Seoul , Republic of Korea
- Digestive Diseases Research Center , University of Ulsan College of Medicine , Seoul , Republic of Korea
| |
Collapse
|
23
|
Zielli T, Labidi-Galy I, Del Grande M, Sessa C, Colombo I. The clinical challenges of homologous recombination proficiency in ovarian cancer: from intrinsic resistance to new treatment opportunities. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:499-516. [PMID: 37842243 PMCID: PMC10571062 DOI: 10.20517/cdr.2023.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 10/17/2023]
Abstract
Ovarian cancer is the most lethal gynecologic cancer. Optimal cytoreductive surgery followed by platinum-based chemotherapy with or without bevacizumab is the conventional therapeutic strategy. Since 2016, the pharmacological treatment of epithelial ovarian cancer has significantly changed following the introduction of the poly (ADP-ribose) polymerase inhibitors (PARPi). BRCA1/2 mutations and homologous recombination deficiency (HRD) have been established as predictive biomarkers of the benefit from platinum-based chemotherapy and PARPi. While in the absence of HRD (the so-called homologous recombination proficiency, HRp), patients derive minimal benefit from PARPi, the use of the antiangiogenic agent bevacizumab in first line did not result in different efficacy according to the presence of homologous recombination repair (HRR) genes mutations. No clinical trials have currently compared PARPi and bevacizumab as maintenance therapy in the HRp population. Different strategies are under investigation to overcome primary and acquired resistance to PARPi and to increase the sensitivity of HRp tumors to these agents. These tumors are characterized by frequent amplifications of Cyclin E and MYC, resulting in high replication stress. Different agents targeting DNA replication stress, such as ATR, WEE1 and CHK1 inhibitors, are currently being explored in preclinical models and clinical trials and have shown promising preliminary signs of activity. In this review, we will summarize the available evidence on the activity of PARPi in HRp tumors and the ongoing research to develop new treatment options in this hard-to-treat population.
Collapse
Affiliation(s)
- Teresa Zielli
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona 6500, Switzerland
| | - Intidhar Labidi-Galy
- Department of Oncology, Geneva University Hospitals, Geneva 1205, Switzerland
- Department of Medicine, Center of Translational Research in Onco-Hematology, Geneva 1205, Switzerland
| | - Maria Del Grande
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona 6500, Switzerland
| | - Cristiana Sessa
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona 6500, Switzerland
| | - Ilaria Colombo
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona 6500, Switzerland
| |
Collapse
|
24
|
Adamson AW, Ding YC, Steele L, Leong LA, Morgan R, Wakabayashi MT, Han ES, Dellinger TH, Lin PS, Hakim AA, Wilczynski S, Warden CD, Tao S, Bedell V, Cristea MC, Neuhausen SL. Genomic analyses of germline and somatic variation in high-grade serous ovarian cancer. J Ovarian Res 2023; 16:141. [PMID: 37460928 PMCID: PMC10351177 DOI: 10.1186/s13048-023-01234-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancers (HGSCs) display a high degree of complex genetic alterations. In this study, we identified germline and somatic genetic alterations in HGSC and their association with relapse-free and overall survival. Using a targeted capture of 557 genes involved in DNA damage response and PI3K/AKT/mTOR pathways, we conducted next-generation sequencing of DNA from matched blood and tumor tissue from 71 HGSC participants. In addition, we performed the OncoScan assay on tumor DNA from 61 participants to examine somatic copy number alterations (SCNA). RESULTS Approximately one-third of tumors had loss-of-function (LOF) germline (18/71, 25.4%) or somatic (7/71, 9.9%) variants in the DNA homologous recombination repair pathway genes BRCA1, BRCA2, CHEK2, MRE11A, BLM, and PALB2. LOF germline variants also were identified in other Fanconi anemia genes and in MAPK and PI3K/AKT/mTOR pathway genes. Most tumors harbored somatic TP53 variants (65/71, 91.5%). Using the OncoScan assay on tumor DNA from 61 participants, we identified focal homozygous deletions in BRCA1, BRCA2, MAP2K4, PTEN, RB1, SLX4, STK11, CREBBP, and NF1. In total, 38% (27/71) of HGSC patients harbored pathogenic variants in DNA homologous recombination repair genes. For patients with multiple tissues from the primary debulking or from multiple surgeries, the somatic mutations were maintained with few newly acquired point mutations suggesting that tumor evolution was not through somatic mutations. There was a significant association of LOF variants in homologous recombination repair pathway genes and high-amplitude somatic copy number alterations. Using GISTIC analysis, we identified NOTCH3, ZNF536, and PIK3R2 in these regions that were significantly associated with an increase in cancer recurrence and a reduction in overall survival. CONCLUSIONS From 71 patients with HGCS, we performed targeted germline and tumor sequencing and provided a comprehensive analysis of these 557 genes. We identified germline and somatic genetic alterations including somatic copy number alterations and analyzed their associations with relapse-free and overall survival. This single-site long-term follow-up study provides additional information on genetic alterations related to occurrence and outcome of HGSC. Our findings suggest that targeted treatments based on both variant and SCNA profile potentially could improve relapse-free and overall survival.
Collapse
Affiliation(s)
- A W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, CA, Duarte, USA
| | - Y C Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, CA, Duarte, USA
| | - L Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, CA, Duarte, USA
| | - L A Leong
- Formerly, Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - R Morgan
- Formerly, Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - M T Wakabayashi
- Currently at Regeneron Pharmaceuticals Inc, Formerly City of Hope National Medical Center, Duarte, CA, USA
- Formerly, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - E S Han
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - T H Dellinger
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - P S Lin
- Formerly, Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - A A Hakim
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - S Wilczynski
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - C D Warden
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - S Tao
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - V Bedell
- Cytogenetics Core, City of Hope National Medical Center, Duarte, CA, USA
| | - M C Cristea
- Formerly, Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
- Currently at Regeneron Pharmaceuticals Inc, Formerly City of Hope National Medical Center, Duarte, CA, USA
| | - S L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, CA, Duarte, USA.
| |
Collapse
|
25
|
Wen H, Xu Q, Sheng X, Li H, Wang X, Wu X. Prevalence and Landscape of Pathogenic or Likely Pathogenic Germline Variants and Their Association With Somatic Phenotype in Unselected Chinese Patients With Gynecologic Cancers. JAMA Netw Open 2023; 6:e2326437. [PMID: 37523182 PMCID: PMC10391307 DOI: 10.1001/jamanetworkopen.2023.26437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Importance Understanding germline and somatic status in patients with gynecologic cancers could improve risk assessment and guide therapeutic decision-making. Objective To evaluate the prevalence and landscape of germline pathogenic or likely pathogenic (P/LP) variants and explore whether these variants are associated with somatic phenotypes and cancer risk in unselected patients with gynecologic cancers. Design, Setting, and Participants This cross-sectional study retrospectively enrolled unselected patients in China with a gynecologic cancer, including ovarian, cervical, and endometrial, who underwent tumor-normal sequencing using a 520-gene panel from October 1, 2017, through May 31, 2021. Exposure Germline variants in gynecologic cancers. Main Outcomes and Measures The P/LP germline variant rates in 62 cancer predisposition genes were assessed using descriptive statistics. The associations of P/LP variant status with age, somatic profiles, and cancer risk were also investigated using the Fisher exact test or Student t test. Results A total of 1610 women (median [IQR] age, 54 [47-62] years; 1201 [74.6%] with stage III-IV disease) were included (945 with ovarian cancer, 307 with endometrial cancer, and 358 with cervical cancer). The prevalence of patients with P/LP variants was 20.5% (194 of 945) for ovarian cancer, 13.4% (41 of 307) for endometrial cancer, and 6.4% (23 of 358) for cervical cancer; 95.1% of the germline findings (n = 252) were potentially actionable, mainly in homologous recombination repair (HRR) and mismatch repair genes. Chinese patients with endometrial cancer had a higher rate of P/LP variants than a White population from The Cancer Genome Atlas (42 of 307 [13.7%] vs 24 of 367 [6.5%]; P = .003). In endometrial and cervical cancers, the prevalence of P/LP variants was 12.7% (30 of 237) and 4.8% (13 of 270), respectively, in patients diagnosed at age 45 years or older and increased to 25.0% (9 of 36; P = .09) and 12.0% (10 of 83; P = .04), respectively, for those with an onset age of less than 45 years. Mismatch repair P/LP variants were associated with a younger age at onset for ovarian cancer (46 vs 54 years; P = .02) and endometrial cancer (48 vs 57 years; P < .001), while HRR P/LP variants were associated with a younger age at onset for cervical cancer (46 vs 52 years; P = .04). Carriers of HRR P/LP variants had more prevalent somatic TP53 variants and less common somatic variants in oncogenic driver genes vs noncarriers. BRCA1/2 P/LP variants were also associated with moderate risks for endometrial and cervical cancer. Conclusions and Relevance This study delineates the landscape of germline P/LP variants in Chinese women with gynecologic cancers. The findings highlight the hereditary factor in cervical cancer that has long been neglected and suggest the importance of next-generation sequencing-based genetic testing with a large gene panel for gynecologic cancers.
Collapse
Affiliation(s)
- Hao Wen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qin Xu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xiujie Sheng
- Department of Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huawen Li
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Jiang C, Lu Y, Liu H, Cai G, Peng Z, Feng W, Lin L. Clinical characterization and genomic landscape of gynecological cancers among patients attending a Chinese hospital. Front Oncol 2023; 13:1143876. [PMID: 37064128 PMCID: PMC10101327 DOI: 10.3389/fonc.2023.1143876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundGynecological cancers are the most lethal malignancies among females, most of which are associated with gene mutations. Few studies have compared the differences in the genomic landscape among various types of gynecological cancers. In this study, we evaluated the diversity of mutations in different gynecological cancers.MethodsA total of 184 patients with gynecological cancer, including ovarian, cervical, fallopian tube, and endometrial cancer, were included. Next-generation sequencing was performed to detect the mutations and tumor mutational burden (TMB). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were also conducted.ResultsWe found that 94.57% of patients had at least one mutation, among which single nucleotide variants, insertions and InDels were in the majority. TP53, PIK3CA, PTEN, KRAS, BRCA1, BRCA2, ARID1A, KMT2C, FGFR2, and FGFR3 were the top 10 most frequently mutated genes. Patients with ovarian cancer tended to have higher frequencies of BRCA1 and BRCA2 mutations, and the frequency of germline BRCA1 mutations (18/24, 75.00%) was higher than that of BRCA2 (11/19, 57.89%). A new mutation hotspot in BRCA2 (I770) was firstly discovered among Chinese patients with gynecological cancer. Patients with TP53, PIK3CA, PTEN, and FGFR3 mutations had significantly higher TMB values than those with wild-type genes. A significant cross was discovered between the enriched KEGG pathways of gynecological and breast cancers. GO enrichment revealed that the mutated genes were crucial for the cell cycle, neuronal apoptosis, and DNA repair.ConclusionVarious gynecological cancer types share similarities and differences both in clinical characterization and genomic mutations. Taken together with the results of TMB and enriched pathways, this study provided useful information on the molecular mechanism underlying gynecological cancers and the development of targeted drugs and precision medicine.
Collapse
Affiliation(s)
- Cen Jiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiyi Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Obstetrics & Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gang Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhao Peng
- Genecast Biotechnology Co., Ltd., Wuxi, China
| | - Weiwei Feng
- Department of Obstetrics & Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Weiwei Feng, ; Lin Lin,
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Weiwei Feng, ; Lin Lin,
| |
Collapse
|
27
|
Jin J, Cao J, Li B, Li T, Zhang J, Cao J, Zhao M, Wang L, Wang B, Tao Z, Hu X. Landscape of DNA damage response gene alterations in breast cancer: A comprehensive investigation. Cancer 2023; 129:845-859. [PMID: 36655350 DOI: 10.1002/cncr.34618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND DNA damage response (DDR) gene alterations are prevalent in breast cancer (BC) and important for treatment decisions. Intensive studies on DDR alterations in BC are still needed. METHODS The authors included 438 patients with metastatic breast cancer from their next-generation sequencing database and 1091 patients with early-stage breast cancer from The Cancer Genome Atlas (TCGA) database in the analysis to characterize molecular alterations in the DDR pathway. RESULTS Germline DDR mutations were more prevalent in younger patients and those with HER2-negative cancers. Tumors with germline DDR mutations more commonly had somatic DDR mutations, especially those with germline Fanconi anemia (FA) pathway mutations. Notably, 66.67% (four of six) of patients with germline PALB2 mutations had tumors that harbored somatic PALB2 mutations. No differences in prognosis were observed in patients with germline or tumor somatic DDR mutations compared to patients and tumors that were wild-type. Compared to early BC, the frequency of somatic DDR mutations in metastatic cancers was significantly higher (24.89% vs. 16.02%, p < .001). Higher tumor mutation burdens were observed in cancers with somatic DDR mutations, but not in cancers with germline DDR mutations. Furthermore, tumors with somatic DDR mutations showed an abundance of anticancer immunological phenotypes. Somatic FA and mismatch repair pathway mutations were associated with increased expression of immune checkpoint molecules. Although most DDR genes were significantly positively associated with expression of proliferation-related genes, PARP3 expression was negatively correlated with MKI67 expression. Lower PARP3 expression was associated with a worse prognosis in TCGA database by multivariate Cox analysis. CONCLUSIONS Patients with germline FA mutations more frequently have tumors with somatic DDR mutations. Somatic DDR mutations lead to anticancer immunological phenotypes in BC. No differences in prognosis according to germline or somatic DDR mutations were found.
Collapse
Affiliation(s)
- Juan Jin
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianing Cao
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Li
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ting Li
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Cao
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingchun Zhao
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leiping Wang
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biyun Wang
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhonghua Tao
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xichun Hu
- Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Adamson AW, Ding YC, Steele L, Leong LA, Morgan R, Wakabayashi MT, Han ES, Dellinger TH, Lin PS, Hakim AA, Wilczynski S, Warden CD, Tao S, Bedell V, Cristea MC, Neuhausen SL. Genomic Analyses of Germline and Somatic Variation in High-Grade Serous Ovarian Cancer. RESEARCH SQUARE 2023:rs.3.rs-2592107. [PMID: 36865331 PMCID: PMC9980206 DOI: 10.21203/rs.3.rs-2592107/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Background High-grade serous ovarian cancers (HGSCs) display a high degree of complex genetic alterations. In this study, we identified germline and somatic genetic alterations in HGSC and their association with relapse-free and overall survival. Using a targeted capture of 577 genes involved in DNA damage response and PI3K/AKT/mTOR pathways, we conducted next-generation sequencing of DNA from matched blood and tumor tissue from 71 HGSC participants. In addition, we performed the OncoScan assay on tumor DNA from 61 participants to examine somatic copy number alterations. Results Approximately one-third of tumors had loss-of-function germline (18/71, 25.4%) or somatic (7/71, 9.9%) variants in the DNA homologous recombination repair pathway genes BRCA1, BRCA2, CHEK2, MRE11A, BLM , and PALB2 . Loss-of-function germline variants also were identified in other Fanconi anemia genes and in MAPK and PI3K/AKT/mTOR pathway genes. Most tumors harbored somatic TP53 variants (65/71, 91.5%). Using the OncoScan assay on tumor DNA from 61 participants, we identified focal homozygous deletions in BRCA1, BRCA2, MAP2K4, PTEN, RB1, SLX4, STK11, CREBBP , and NF1 . In total, 38% (27/71) of HGSC patients harbored pathogenic variants in DNA homologous recombination repair genes. For patients with multiple tissues from the primary debulking or from multiple surgeries, the somatic mutations were maintained with few newly acquired point mutations suggesting that tumor evolution was not through somatic mutations. There was a significant association of loss-of-function variants in homologous recombination repair pathway genes and high-amplitude somatic copy number alterations. Using GISTIC analysis, we identified NOTCH3, ZNF536 , and PIK3R2 in these regions that were significantly associated with an increase in cancer recurrence and a reduction in overall survival. Conclusions From 71 patients with HGCS, we performed targeted germline and tumor sequencing and provided a comprehensive analysis of these 577 genes. We identified germline and somatic genetic alterations including somatic copy number alterations and analyzed their associations with relapse-free and overall survival. This single-site long-term follow-up study provides additional information on genetic alterations related to occurrence and outcome of HGSC. Our findings suggest that targeted treatments based on both variant and SCNA profile potentially could improve relapse-free and overall survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Shu Tao
- City Of Hope National Medical Center
| | | | | | | |
Collapse
|
29
|
McCabe A, Zaheed O, McDade SS, Dean K. Investigating the suitability of in vitro cell lines as models for the major subtypes of epithelial ovarian cancer. Front Cell Dev Biol 2023; 11:1104514. [PMID: 36861035 PMCID: PMC9969113 DOI: 10.3389/fcell.2023.1104514] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most fatal gynaecological malignancy, accounting for over 200,000 deaths worldwide per year. EOC is a highly heterogeneous disease, classified into five major histological subtypes-high-grade serous (HGSOC), clear cell (CCOC), endometrioid (ENOC), mucinous (MOC) and low-grade serous (LGSOC) ovarian carcinomas. Classification of EOCs is clinically beneficial, as the various subtypes respond differently to chemotherapy and have distinct prognoses. Cell lines are often used as in vitro models for cancer, allowing researchers to explore pathophysiology in a relatively cheap and easy to manipulate system. However, most studies that make use of EOC cell lines fail to recognize the importance of subtype. Furthermore, the similarity of cell lines to their cognate primary tumors is often ignored. Identification of cell lines with high molecular similarity to primary tumors is needed in order to better guide pre-clinical EOC research and to improve development of targeted therapeutics and diagnostics for each distinctive subtype. This study aims to generate a reference dataset of cell lines representative of the major EOC subtypes. We found that non-negative matrix factorization (NMF) optimally clustered fifty-six cell lines into five groups, putatively corresponding to each of the five EOC subtypes. These clusters validated previous histological groupings, while also classifying other previously unannotated cell lines. We analysed the mutational and copy number landscapes of these lines to investigate whether they harboured the characteristic genomic alterations of each subtype. Finally we compared the gene expression profiles of cell lines with 93 primary tumor samples stratified by subtype, to identify lines with the highest molecular similarity to HGSOC, CCOC, ENOC, and MOC. In summary, we examined the molecular features of both EOC cell lines and primary tumors of multiple subtypes. We recommend a reference set of cell lines most suited to represent four different subtypes of EOC for both in silico and in vitro studies. We also identify lines displaying poor overall molecular similarity to EOC tumors, which we argue should be avoided in pre-clinical studies. Ultimately, our work emphasizes the importance of choosing suitable cell line models to maximise clinical relevance of experiments.
Collapse
Affiliation(s)
- Aideen McCabe
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
| | - Oza Zaheed
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
| | - Simon Samuel McDade
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Abstract
The partner and localiser of BRCA2 (PALB2) gene, located on chromosome 16, functions as a tumour suppressor that plays a critical role in homologous recombination repair after DNA double-strand breaks. It encodes proteins involved in the BRCA2 and BRCA1, and RAD51 pathways. Heterozygous germline mutations in PALB2 have been implicated in the development of breast, pancreatic and ovarian cancers. Whereas biallelic mutations of PALB2 have been associated with Fanconi anaaemia. Currently, 604 distinct PALB2 variants have been discovered. However, only 140 variants are thought to be pathogenic and approximately 400 are variants of unknown significance. Further studies are needed before the presence of PLAB2 mutations can be implemented as a routine clinical biomarker.
Collapse
Affiliation(s)
- Omar Hamdan
- University Health Network Laboratory Medicine Program, Toronto, Ontario, Canada
| | - Klaudia M Nowak
- University Health Network Laboratory Medicine Program, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Fierheller CT, Alenezi WM, Serruya C, Revil T, Amuzu S, Bedard K, Subramanian DN, Fewings E, Bruce JP, Prokopec S, Bouchard L, Provencher D, Foulkes WD, El Haffaf Z, Mes-Masson AM, Tischkowitz M, Campbell IG, Pugh TJ, Greenwood CMT, Ragoussis J, Tonin PN. Molecular Genetic Characteristics of FANCI, a Proposed New Ovarian Cancer Predisposing Gene. Genes (Basel) 2023; 14:genes14020277. [PMID: 36833203 PMCID: PMC9956348 DOI: 10.3390/genes14020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
FANCI was recently identified as a new candidate ovarian cancer (OC)-predisposing gene from the genetic analysis of carriers of FANCI c.1813C>T; p.L605F in OC families. Here, we aimed to investigate the molecular genetic characteristics of FANCI, as they have not been described in the context of cancer. We first investigated the germline genetic landscape of two sisters with OC from the discovery FANCI c.1813C>T; p.L605F family (F1528) to re-affirm the plausibility of this candidate. As we did not find other conclusive candidates, we then performed a candidate gene approach to identify other candidate variants in genes involved in the FANCI protein interactome in OC families negative for pathogenic variants in BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, and FANCI, which identified four candidate variants. We then investigated FANCI in high-grade serous ovarian carcinoma (HGSC) from FANCI c.1813C>T carriers and found evidence of loss of the wild-type allele in tumour DNA from some of these cases. The somatic genetic landscape of OC tumours from FANCI c.1813C>T carriers was investigated for mutations in selected genes, copy number alterations, and mutational signatures, which determined that the profiles of tumours from carriers were characteristic of features exhibited by HGSC cases. As other OC-predisposing genes such as BRCA1 and BRCA2 are known to increase the risk of other cancers including breast cancer, we investigated the carrier frequency of germline FANCI c.1813C>T in various cancer types and found overall more carriers among cancer cases compared to cancer-free controls (p = 0.007). In these different tumour types, we also identified a spectrum of somatic variants in FANCI that were not restricted to any specific region within the gene. Collectively, these findings expand on the characteristics described for OC cases carrying FANCI c.1813C>T; p.L605F and suggest the possible involvement of FANCI in other cancer types at the germline and/or somatic level.
Collapse
Affiliation(s)
- Caitlin T. Fierheller
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Wejdan M. Alenezi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medical Laboratory Technology, Taibah University, Medina 42353, Saudi Arabia
| | - Corinne Serruya
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Setor Amuzu
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Karine Bedard
- Laboratoire de Diagnostic Moléculaire, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 3E4, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Deepak N. Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Eleanor Fewings
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 1TN, UK
| | - Jeffrey P. Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Stephenie Prokopec
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Department of Medical Biology, Centres Intégrés Universitaires de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 7K9, Canada
- Centre de Recherche du Centre Hospitalier l’Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - William D. Foulkes
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Zaki El Haffaf
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal and Institut du Cancer de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 1TN, UK
| | - Ian G. Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Trevor J. Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Celia M. T. Greenwood
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC H3A 1Y7, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Correspondence:
| |
Collapse
|
32
|
Zhong L, Yin R, Song L. Resistance to PARP Inhibitors After First-Line Platinum-Based Chemotherapy in a Patient with Advanced Ovarian Cancer with a Pathogenic Somatic BRCA1 Mutation. Pharmgenomics Pers Med 2023; 16:195-200. [PMID: 36942084 PMCID: PMC10024533 DOI: 10.2147/pgpm.s397827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
PARP inhibitors (PARPi) are the maintenance therapy after first line platinum-based chemotherapy for patients with advanced epithelial ovarian cancer (EOC) with germline and pathogenic somatic BRCA1/2 mutations. However, as with chemotherapy, patients can develop resistance to PARPi. The selective pressure generated by heterogeneous somatic BRCA mutations may give rise to chemotherapy or PARPi resistant tumors. Here, we present the case of a patient harboring a pathogenic p.Glu143* (c.427G>T) somatic BRCA1 mutation conferring resistance to olaparib following cytoreductive surgery and platinum-based chemotherapy. We ordered a plasma ctDNA analysis (tissue biopsy of recurrent lesions was contraindicated due to their anatomical location) to figure out the possible resistance mechanism. Analysis of ctDNA did not detect the pathogenic somatic BRCA1 p.Glu143* (c.427G>T) mutation seen before. The tumor cells harboring the pathogenic BRCA1 mutation were probably eliminated by the platinum-based chemotherapy, leaving only those without BRCA mutations to proliferate.
Collapse
Affiliation(s)
- Lan Zhong
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Liang Song
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, People’s Republic of China
- Correspondence: Liang Song, Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, No. 20 The Third Section of South Renmin Road, Chengdu, Sichuan, 610041, People’s Republic of China, Tel +86-19828966121, Email
| |
Collapse
|
33
|
Oswald AJ, Gourley C. Development of Homologous Recombination Functional Assays for Targeting the DDR. Cancer Treat Res 2023; 186:43-70. [PMID: 37978130 DOI: 10.1007/978-3-031-30065-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Identification of tumours that have homologous recombination deficiency (HRD) has become of increasing interest following the licensing of PARP inhibitors. Potential methods to assess HRD status include; clinical selection for platinum sensitive disease, mutational/methylation status, genomic scars/signature and functional RAD51 assays. Homologous recombination (HR) is a dynamic process with the potential to evolve over a disease course, particularly in relation to previous treatment. This is one of the major drawbacks of genomic scars/signatures, as they only demonstrate historic HR status. Functional HR assays have the benefit of giving a real time HR status readout and therefore have the potential for clearer identification of patients who may benefit from PARP inhibitors at that specific time point. However, the development of RAD51 foci assays ready for clinical practice has been challenging. Pre-clinical considerations have included; controlling for variation in tumour proliferation, tissue type and whether DNA damage induction is required. Furthermore, the assays require correlation with clinical outcomes, an understanding of how they complement current testing modalities and validation of test performance in large cohorts. Despite these challenges, given the profound benefit from PARP inhibitors seen in those with an HRD phenotype to date, the ongoing development and validation of these functional HR assays remains of high clinical importance.
Collapse
Affiliation(s)
- Ailsa J Oswald
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK.
| | - Charlie Gourley
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Alenezi WM, Fierheller CT, Serruya C, Revil T, Oros KK, Subramanian DN, Bruce J, Spiegelman D, Pugh T, Campbell IG, Mes-Masson AM, Provencher D, Foulkes WD, Haffaf ZE, Rouleau G, Bouchard L, Greenwood CMT, Ragoussis J, Tonin PN. Genetic analyses of DNA repair pathway associated genes implicate new candidate cancer predisposing genes in ancestrally defined ovarian cancer cases. Front Oncol 2023; 13:1111191. [PMID: 36969007 PMCID: PMC10030840 DOI: 10.3389/fonc.2023.1111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Not all familial ovarian cancer (OC) cases are explained by pathogenic germline variants in known risk genes. A candidate gene approach involving DNA repair pathway genes was applied to identify rare recurring pathogenic variants in familial OC cases not associated with known OC risk genes from a population exhibiting genetic drift. Whole exome sequencing (WES) data of 15 OC cases from 13 families tested negative for pathogenic variants in known OC risk genes were investigated for candidate variants in 468 DNA repair pathway genes. Filtering and prioritization criteria were applied to WES data to select top candidates for further analyses. Candidates were genotyped in ancestry defined study groups of 214 familial and 998 sporadic OC or breast cancer (BC) cases and 1025 population-matched controls and screened for additional carriers in 605 population-matched OC cases. The candidate genes were also analyzed in WES data from 937 familial or sporadic OC cases of diverse ancestries. Top candidate variants in ERCC5, EXO1, FANCC, NEIL1 and NTHL1 were identified in 5/13 (39%) OC families. Collectively, candidate variants were identified in 7/435 (1.6%) sporadic OC cases and 1/566 (0.2%) sporadic BC cases versus 1/1025 (0.1%) controls. Additional carriers were identified in 6/605 (0.9%) OC cases. Tumour DNA from ERCC5, NEIL1 and NTHL1 variant carriers exhibited loss of the wild-type allele. Carriers of various candidate variants in these genes were identified in 31/937 (3.3%) OC cases of diverse ancestries versus 0-0.004% in cancer-free controls. The strategy of applying a candidate gene approach in a population exhibiting genetic drift identified new candidate OC predisposition variants in DNA repair pathway genes.
Collapse
Affiliation(s)
- Wejdan M. Alenezi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Medical Laboratory Technology, Taibah University, Medina, Saudi Arabia
| | - Caitlin T. Fierheller
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Corinne Serruya
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Kathleen K. Oros
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC, Canada
| | - Deepak N. Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jeffrey Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dan Spiegelman
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Trevor Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Ian G. Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Departement of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Diane Provencher
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montreal, QC, Canada
| | - William D. Foulkes
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC, Canada
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Zaki El Haffaf
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Service de Médecine Génique, Centre Hospitalier de l’Université de Montréal, Montreal, QC, Canada
| | - Guy Rouleau
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, Centres intégrés universitaires de santé et de services sociaux du Saguenay-Lac-Saint-Jean hôpital Universitaire de Chicoutimi, Saguenay, QC, Canada
- Centre de Recherche du Centre hospitalier l’Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Celia M. T. Greenwood
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Patricia N. Tonin,
| |
Collapse
|
35
|
Timofeeva AV, Asaturova AV, Sannikova MV, Khabas GN, Chagovets VV, Fedorov IS, Frankevich VE, Sukhikh GT. Search for New Participants in the Pathogenesis of High-Grade Serous Ovarian Cancer with the Potential to Be Used as Diagnostic Molecules. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122017. [PMID: 36556382 PMCID: PMC9784419 DOI: 10.3390/life12122017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022]
Abstract
Recent studies have attempted to develop molecular signatures of epithelial ovarian cancer (EOC) based on the quantitation of protein-coding and non-coding RNAs to predict disease prognosis. Due to the heterogeneity of EOC, none of the developed prognostic signatures were directly applied in clinical practice. Our work focuses on high-grade serous ovarian carcinoma (HGSOC) due to the highest mortality rate relative to other types of EOC. Using deep sequencing of small non-coding RNAs in combination with quantitative real-time PCR, we confirm the dualistic classification of epithelial ovarian cancers based on the miRNA signature of HGSOC (type 2), which differs from benign cystadenoma and borderline cystadenoma-precursors of low-grade serous ovarian carcinoma (type 1)-and identified two subtypes of HGSOC, which significantly differ in the level of expression of the progesterone receptor in the tumor tissue, the secretion of miR-16-5p, miR-17-5p, miR-93-5p, miR-20a-5p, the level of serum CA125, tumor size, surgical outcome (optimal or suboptimal cytoreduction), and response to chemotherapy. It was found that the combined determination of the level of miR-16-5p, miR-17-5p, miR-20a-5p, and miR-93-5p circulating in blood plasma of patients with primary HGSOC tumors makes it possible to predict optimal cytoreduction with 80.1% sensitivity and 70% specificity (p = 0.022, TPR = 0.8, FPR = 0.3), as well as complete response to adjuvant chemotherapy with 77.8% sensitivity and 90.9% specificity (p = 0.001, TPR = 0.78, FPR = 0.09). After the additional verification of the obtained data in a larger HGSOC patient cohort, the combined quantification of these four miRNAs is proposed to be used as a criterion for selecting patients either for primary cytoreduction or neoadjuvant chemotherapy followed by interval cytoreduction.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
- Correspondence: or ; Tel.: +7-495-531-4444
| | - Aleksandra V. Asaturova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Maya V. Sannikova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Grigory N. Khabas
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Vitaliy V. Chagovets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Ivan S. Fedorov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Vladimir E. Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| |
Collapse
|
36
|
Oda K, Aoki D, Tsuda H, Nishihara H, Aoyama H, Inomata H, Shimada M, Enomoto T. Japanese nationwide observational multicenter study of tumor BRCA1/2 variant testing in advanced ovarian cancer. Cancer Sci 2022; 114:271-280. [PMID: 36254756 PMCID: PMC9807512 DOI: 10.1111/cas.15518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 01/07/2023] Open
Abstract
The association between germline BRCA1 and BRCA2 pathogenic variants (mutations: gBRCAm) and ovarian cancer risk is well established. Germline testing alone cannot detect somatic BRCA1/2 pathogenic variants (sBRCAm), which is calculated based on the proportion of tumor BRCAm (tBRCAm) from tumor samples and gBRCAm. Homologous recombination deficiency (HRD) results mainly from genetic/epigenetic alterations in homologous recombination repair-related genes and can be evaluated by genomic instability status. In Japan, the prevalence of tBRCAm, sBRCAm, and HRD remains unclear. This multicenter, cross-sectional, observational study, CHaRacterIzing the croSs-secTional approach to invEstigate the prevaLence of tissue BRCA1/2 mutations in newLy diagnosEd advanced ovarian cancer patients (CHRISTELLE), evaluated the prevalence of tBRCAm, sBRCAm, and HRD in tumor specimens from newly diagnosed patients with ovarian cancer who underwent gBRCA testing. Of the 205 patients analyzed, 26.8% had a tBRCAm, including tBRCA1m (17.6%) and tBRCA2m (9.3%). The overall prevalence of tBRCAm, gBRCAm, sBRCAm, and HRD-positive status was 26.8%, 21.5%, 6.3%, and 60.0%, respectively. The calculated sBRCAm/tBRCAm ratio was 23.6% (13/55), and the prevalence of gBRCA variant of uncertain significance was 3.9%. These results suggest gBRCA testing alone cannot clearly identify the best course of treatment, highlighting the importance of sBRCA testing in Japan. The present results also suggest that testing for tBRCA and HRD should be encouraged in advanced ovarian cancer patients to drive precision medicine.
Collapse
Affiliation(s)
- Katsutoshi Oda
- Division of Integrative Genomics, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Daisuke Aoki
- Department of Obstetrics and GynecologyKeio University School of MedicineTokyoJapan
| | - Hitoshi Tsuda
- Department of Basic PathologyNational Defense Medical CollegeSaitamaJapan
| | | | | | | | - Muneaki Shimada
- Department of Obstetrics and GynecologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Takayuki Enomoto
- Department of Obstetrics and GynecologyNiigata University Medical SchoolNiigataJapan
| |
Collapse
|
37
|
Sakamoto I, Hirotsu Y, Amemiya K, Nozaki T, Mochizuki H, Omata M. Elucidation of genomic origin of synchronous endometrial and ovarian cancer (SEO) by genomic and microsatellite analysis. J Gynecol Oncol 2022; 34:e6. [PMID: 36245225 PMCID: PMC9807354 DOI: 10.3802/jgo.2023.34.e6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Elucidation of clonal origin of synchronous endometrial and ovarian cancers (SEOs). METHODS We reviewed 852 patients who diagnosed endometrial and/or ovarian cancer. Forty-five (5.3%) patients were diagnosed as SEOs. We evaluated blood and tissue samples from 17 patients. We analyzed the clonal origins of 41 samples from 17 patients by gene sequencing, mismatch microsatellite instability (MSI) polymerase chain reaction assay and immunohistochemical (IHC) staining of 4 repair genes. RESULTS Sixteen of 17 patients had at least 2 or more trunk mutations shared between endometrial and ovarian cancer suggesting the identical clonal origins. The shared trunk mutation are frequently found in endometrial cancer of the uterus, suggesting the uterine primary. Four out of 17 (24%) SEOs had mismatch repair (MMR) protein deficiency and MSI-high (MSI-H) states. One case was an endometrial carcinoma with local loss of MSH6 protein expression by IHC staining, and the result of MSI analysis using the whole formalin-fixed, paraffin-embedded specimen was microsatellite stable. In contrast, ovarian tissue was deficient MMR and MSI-H in the whole specimen. This indicated that MMR protein deficiency could occur during the progression of disease. CONCLUSION Most SEOs are likely to be a single tumor with metastasis instead of double primaries, and their origin could be endometrium. In addition, SEOs have a high frequency of MMR gene abnormalities. These findings not only can support the notion of uterine primary, but also can help to expect the benefit for patients with SEOs by immuno-oncology treatment.
Collapse
Affiliation(s)
- Ikuko Sakamoto
- Department of Obstetrics and Gynecology, Yamanashi Central Hospital, Kofu, Japan.,Genome Analysis Center, Yamanashi Central Hospital, Kofu, Japan.
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Kofu, Japan
| | - Kenji Amemiya
- Genome Analysis Center, Yamanashi Central Hospital, Kofu, Japan.,Department of Pathology, Yamanashi Central Hospital, Kofu, Japan
| | - Takahiro Nozaki
- Department of Obstetrics and Gynecology, Yamanashi Central Hospital, Kofu, Japan
| | | | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Kofu, Japan.,Department of Gastroenterology, University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Miller RE, Elyashiv O, El-Shakankery KH, Ledermann JA. Ovarian Cancer Therapy: Homologous Recombination Deficiency as a Predictive Biomarker of Response to PARP Inhibitors. Onco Targets Ther 2022; 15:1105-1117. [PMID: 36217436 PMCID: PMC9547601 DOI: 10.2147/ott.s272199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022] Open
Abstract
Poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors have revolutionised the management of patients with high-grade serous and endometrioid ovarian cancer demonstrating significant improvements in progression-free survival. Whilst the greatest benefit is seen with BRCA1/2 mutant cancers, it is clear that the benefit extends beyond this group. This sensitivity is thought to be due to homologous recombination deficiency (HRD), which is present in up to 50% of the high-grade serous cancers. Several different HRD assays exist, which fall into one of three main categories: homologous recombination repair (HRR)-related gene analysis, genomic "scars" and/or mutational signatures, and real-time HRD functional assessment. We review the emerging data on HRD as a predictive biomarker for PARP inhibitors and discuss the merits and disadvantages of different HRD assays.
Collapse
Affiliation(s)
- Rowan E Miller
- Department of Medical Oncology, University College London Hospital, London, UK
- Department of Medical Oncology, St Bartholomew’s Hospital, London, UK
| | - Osnat Elyashiv
- Department of Medical Oncology, University College London Hospital, London, UK
| | | | - Jonathan A Ledermann
- Department of Medical Oncology, University College London Hospital, London, UK
- UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
39
|
Wang X, Xu Y, Zhang Y, Wang S, Zhang X, Yi X, Zhang S, Wang J. HRD-MILN: Accurately estimate tumor homologous recombination deficiency status from targeted panel sequencing data. Front Genet 2022; 13:990244. [PMID: 36246633 PMCID: PMC9554509 DOI: 10.3389/fgene.2022.990244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Homologous recombination deficiency (HRD) is a critical feature guiding drug and treatment selection, mainly for ovarian and breast cancers. As it cannot be directly observed, HRD status is estimated on a small set of genomic instability features from sequencing data. The existing methods often perform poorly when handling targeted panel sequencing data; however, the targeted panel is the most popular sequencing strategy in clinical practices. Thus, we proposed HRD-MILN to overcome the computational challenges from targeted panel sequencing. HRD-MILN incorporated a multi-instance learning framework to discover as many loss of heterozygosity (LOH) associated with HRD status to cluster as possible. Then the HRD score is obtained based on the association between the LOHs and the cluster in the sample to be estimated, and finally, the HRD status is estimated based on the score. In comparison experiments on targeted panel sequencing data, the Precision of HRD-MILN could achieve 87%, significantly improved from 63% reported by the existing methods, where the highest margin of improvement reached 14%. It also presented advantages on whole exome sequencing data. Based on our best knowledge, HRD-MILN is the first practical tool for estimating HRD status from targeted panel sequencing data and could benefit clinical applications.
Collapse
Affiliation(s)
- Xuwen Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Ying Xu
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shenjie Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Xuanping Zhang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
| | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Jiayin Wang, ; Shuqun Zhang,
| | - Jiayin Wang
- School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Engineering Research Center of Medical and Health Big Data, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Jiayin Wang, ; Shuqun Zhang,
| |
Collapse
|
40
|
Identification of Novel Hypoxia Subtypes for Prognosis Based on Machine Learning Algorithms. JOURNAL OF ONCOLOGY 2022; 2022:1508113. [PMID: 36131789 PMCID: PMC9484903 DOI: 10.1155/2022/1508113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/09/2022]
Abstract
Objective A reduced level or tension or the deprivation of oxygen is termed hypoxia. It is common for tumours to outgrow their natural source of nutrients, which causes hypoxia in some tumour regions. Hypoxia affects ovarian cancer (OC) in several ways. Methods In this study, the expression patterns of prognostic hypoxia-related genes were curated, and consensus clustering analyses were performed to determine hypoxia subtypes in OC included in The Cancer Genome Atlas cohort. Two hypoxia-related subtypes were observed and considered for further investigation. The analyses of differentially expressed genes (DEGs), gene ontology, mutation, and immune cell infraction were performed to explore the underlying molecular mechanisms. Results In total, 377 patients with OC were classified into two subgroups based on the subtype of hypoxia. The clinical outcome was considerably poor for patients with hypoxia subtype 2. DEG and protein-protein interaction analyses revealed that the expression levels of CLIP2 and SH3PXD2A were low in OC tissues. Immune cell infarction analysis revealed that the subtypes were associated with the tumour microenvironment (TME). Conclusion Our findings established the existence of two distinctive, complex, and varied hypoxia subtypes in OC. Findings from the quantitative analysis of hypoxia subtypes in patients improved our understanding of the characteristics of the TME and may facilitate the development of more efficient treatment regimens.
Collapse
|
41
|
Corrected Allele Frequency of BRCA1/2 Mutations Is an Independent Prognostic Factor for Treatment Response to PARP-Inhibitors in Ovarian Cancer Patients. J Pers Med 2022; 12:jpm12091467. [PMID: 36143252 PMCID: PMC9504000 DOI: 10.3390/jpm12091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
PARP inhibitors (PARPi) have increased treatment options in ovarian cancer, particularly in patients with BRCA1/2 mutations, although there are still marked differences in the duration of patients’ response to this targeted therapy. BRCA testing is routinely performed in tumor tissue of ovarian cancer patients. The resulting molecular pathological findings include the genetic nomenclature of the mutation, the frequency of the mutated allele (variant allele frequency, VAF), and the tumor cell content. VAF measures the percentage of mutated alleles from the total alleles in the cells of the examined tissue. The aim of this study was to investigate the significance of VAF on the therapeutic response to PARPis in ovarian cancer patients. Epithelial ovarian cancer patients harboring BRCA1/2 tumor mutations, who underwent germline testing and received PARPi therapy at the Medical University of Vienna (n = 41) were included in the study. Corrected VAF (cVAF) was calculated based on VAF, tumor cell content, and germline mutation. Patients were divided into two groups based on their cVAF. Median PFS under PARPi in patients with low cVAF was 13.0 months (IQR [10.3-not reached]) and was not reached in the high cVAF group. High cVAF was significantly associated with longer PFS in the multivariate analysis (HR = 0.07; 95% CI [0.01–0.63]; p = 0.017). In conclusion, high cVAF was associated with a significantly better response to PARPi in this study population.
Collapse
|
42
|
Sun T, Zhang Z, Tian L, Zheng Y, Wu L, Guo Y, Li X, Li Y, Shen H, Lai Y, Liu J, Cui H, He S, Ren Y, Yang G. Dualistic classification of high grade serous ovarian carcinoma has its root in spatial heterogeneity. J Adv Res 2022:S2090-1232(22)00195-3. [PMID: 36038111 DOI: 10.1016/j.jare.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 04/09/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Widespread intra-peritoneal metastases is a main feature of high grade serous ovarian carcinoma (HGSOC). Recently, the extent of tumour heterogeneity was used to evaluate the cancer genomes among multi-regions in HGSOC. However, there is no consensus on the effect of tumour heterogeneity on the evolution of the tumour metastasis process in HGSOC. OBJECTIVES We performed whole-exome sequencing in multiple regions of matched primary and metastatic HGSOC specimens to reveal the genetic mechanisms of ovarian tumourigenesis and malignant progression. METHODS 63 tissues (including ovarian carcinoma, omentum metastasis, and normal tissues) were used. We analyzed the genomic heterogeneity, traced the subclone dissemination and establishment history and compared the different genetic characters of cancer evolutionary models in HGSOC. RESULTS We found that HGSOC had substantial intra-tumour heterogeneity (median 54.2, range 0∼106.7), high inter-patient heterogeneity (P<0.001), but relatively limited intra-patient heterogeneity (P=0.949). Two COSMIC mutational signatures were identified in HGSOCs: signature 3 was related to homologous recombination, and signature 1 is associated with aging. Two scenarios were identified by phylogenetic reconstruction in our study: 3 cases (33.3%) showed star topology, and the other 6 cases (66.7%) displayed tree topology. Compared with star topology group, more driver events were identified in tree topology group (P<0.001), and occurred more frequently in early stage than in late stage of clonal evolution (P<0.001). Moreover, compared with the star topology group, the tree topology group showed higher rate of intra-tumour heterogeneity (P=0.045). CONCLUSION A dualistic classification model was proposed for the classification of HGSOC based on spatial heterogeneity, which may contribute to better managing patients and providing individual treatment for HGSOC patients.
Collapse
Affiliation(s)
- Tingting Sun
- Department of Gynecology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Zuwei Zhang
- Department of Gynecology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Liming Tian
- Department of Gynecology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Yu Zheng
- Department of Gynecology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Linxiang Wu
- Department of Gynecology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Yunyun Guo
- Department of Gynecology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Xiaohui Li
- Department of Gynecology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Yuanyuan Li
- Department of Gynecology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Hongwei Shen
- Department of Gynecology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Yingrong Lai
- Department of Pathology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Junfeng Liu
- Department of Pathology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Huanhuan Cui
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, 518005, Shenzhen, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518005, Shenzhen, China
| | - Shasha He
- Department of Radiation Oncology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Yufeng Ren
- Department of Radiation Oncology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China
| | - Guofen Yang
- Department of Gynecology, Sun Yat-sen University First Affiliated Hospital, No.58, Zhong Shan Ⅱ Road, 510080, Guangzhou, China.
| |
Collapse
|
43
|
Schwartz A, Manning DK, Koeller DR, Chittenden A, Isidro RA, Hayes CP, Abraamyan F, Manam MD, Dwan M, Barletta JA, Sholl LM, Yurgelun MB, Rana HQ, Garber JE, Ghazani AA. An integrated somatic and germline approach to aid interpretation of germline variants of uncertain significance in cancer susceptibility genes. Front Oncol 2022; 12:942741. [PMID: 36091175 PMCID: PMC9453486 DOI: 10.3389/fonc.2022.942741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic profiles of tumors are often unique and represent characteristic mutational signatures defined by DNA damage or DNA repair response processes. The tumor-derived somatic information has been widely used in therapeutic applications, but it is grossly underutilized in the assessment of germline genetic variants. Here, we present a comprehensive approach for evaluating the pathogenicity of germline variants in cancer using an integrated interpretation of somatic and germline genomic data. We have previously demonstrated the utility of this integrated approach in the reassessment of pathogenic germline variants in selected cancer patients with unexpected or non-syndromic phenotypes. The application of this approach is presented in the assessment of rare variants of uncertain significance (VUS) in Lynch-related colon cancer, hereditary paraganglioma-pheochromocytoma syndrome, and Li-Fraumeni syndrome. Using this integrated method, germline VUS in PMS2, MSH6, SDHC, SHDA, and TP53 were assessed in 16 cancer patients after genetic evaluation. Comprehensive clinical criteria, somatic signature profiles, and tumor immunohistochemistry were used to re-classify VUS by upgrading or downgrading the variants to likely or unlikely actionable categories, respectively. Going forward, collation of such germline variants and creation of cross-institutional knowledgebase datasets that include integrated somatic and germline data will be crucial for the assessment of these variants in a larger cancer cohort.
Collapse
Affiliation(s)
- Alison Schwartz
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Danielle K. Manning
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Diane R. Koeller
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Anu Chittenden
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Raymond A. Isidro
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Connor P. Hayes
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Feruza Abraamyan
- Harvard Medical School, Boston, MA, United States
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Monica Devi Manam
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Meaghan Dwan
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Justine A. Barletta
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Matthew B. Yurgelun
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Huma Q. Rana
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Judy E. Garber
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Arezou A. Ghazani
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- *Correspondence: Arezou A. Ghazani,
| |
Collapse
|
44
|
Ceyhan-Birsoy O. Germline Testing for the Evaluation of Hereditary Cancer Predisposition. Clin Lab Med 2022; 42:497-506. [DOI: 10.1016/j.cll.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Ko YK, Gim JA. New Drug Development and Clinical Trial Design by Applying Genomic Information Management. Pharmaceutics 2022; 14:1539. [PMID: 35893795 PMCID: PMC9330622 DOI: 10.3390/pharmaceutics14081539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Depending on the patients' genotype, the same drug may have different efficacies or side effects. With the cost of genomic analysis decreasing and reliability of analysis methods improving, vast amount of genomic information has been made available. Several studies in pharmacology have been based on genomic information to select the optimal drug, determine the dose, predict efficacy, and prevent side effects. This paper reviews the tissue specificity and genomic information of cancer. If the tissue specificity of cancer is low, cancer is induced in various organs based on a single gene mutation. Basket trials can be performed for carcinomas with low tissue specificity, confirming the efficacy of one drug for a single gene mutation in various carcinomas. Conversely, if the tissue specificity of cancer is high, cancer is induced in only one organ based on a single gene mutation. An umbrella trial can be performed for carcinomas with a high tissue specificity. Some drugs are effective for patients with a specific genotype. A companion diagnostic strategy that prescribes a specific drug for patients selected with a specific genotype is also reviewed. Genomic information is used in pharmacometrics to identify the relationship among pharmacokinetics, pharmacodynamics, and biomarkers of disease treatment effects. Utilizing genomic information, sophisticated clinical trials can be designed that will be better suited to the patients of specific genotypes. Genomic information also provides prospects for innovative drug development. Through proper genomic information management, factors relating to drug response and effects can be determined by selecting the appropriate data for analysis and by understanding the structure of the data. Selecting pre-processing and appropriate machine-learning libraries for use as machine-learning input features is also necessary. Professional curation of the output result is also required. Personalized medicine can be realized using a genome-based customized clinical trial design.
Collapse
Affiliation(s)
- Young Kyung Ko
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul 08308, Korea;
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
46
|
Abe A, Imoto I, Tange S, Nishimura M, Iwasa T. Prevalence of Pathogenic Germline BRCA1/2 Variants and Their Association with Clinical Characteristics in Patients with Epithelial Ovarian Cancer in a Rural Area of Japan. Genes (Basel) 2022; 13:genes13061085. [PMID: 35741847 PMCID: PMC9223158 DOI: 10.3390/genes13061085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
The prevalence of germline BRCA1 or BRCA2 pathogenic variants (gBRCA1/2-PV) in patients with primary epithelial ovarian cancer (OC) in a rural area of Japan and their association with clinical characteristics, including treatment response and survival outcome, were investigated. A total of 123 unbiased patients with OC were tested for gBRCA1 and gBRCA2 using next-generation sequencing-based targeted amplicon sequencing. Clinical characteristics of OC patients with and without gBRCA1/2 status were compared. The overall prevalence of gBRCA1/2-PV was 15.4% (19 cases), with gBRCA2-PV (10.5%, 13 cases) being more common than gBRCA1-PV (4.9%, 6 cases). Among the observed gBRCA1/2-PV, several novel variants were included, suggesting that gBRCA1/2-PV unique to the local area exist. gBRCA1/2-PV was significantly more prevalent in OC patients at an older age, with high-grade serous carcinoma, with advanced-stage tumors, and with a family history of breast cancer or hereditary breast and ovarian cancer syndrome (HBOC)-associated cancers. Patients with advanced-stage OC with gBRCA1/2-PV showed a significantly lower recurrence rate and tended to have better progression-free and overall survival than those with wild-type gBRCA1/2. Genetic testing for gBRCA1/2 status in all OC patients is useful not only for diagnosing HBOC in patients and their relatives to assess the risk of HBOC-associated cancers, but also to estimate therapy response and outcomes in patients.
Collapse
Affiliation(s)
- Akiko Abe
- Department of Gynecology, Cancer Institute Hospital of JCFR, Tokyo 135-8550, Japan
- Department of Obstetrics and Gynecology, Tokushima University, Tokushima 770-8503, Japan; (M.N.); (T.I.)
- Correspondence: ; Tel.: +81-3-3520-0111
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan;
| | - Shoichiro Tange
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo 060-8556, Japan;
| | - Masato Nishimura
- Department of Obstetrics and Gynecology, Tokushima University, Tokushima 770-8503, Japan; (M.N.); (T.I.)
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Tokushima University, Tokushima 770-8503, Japan; (M.N.); (T.I.)
| |
Collapse
|
47
|
Mekonnen N, Yang H, Shin YK. Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Front Oncol 2022; 12:880643. [PMID: 35785170 PMCID: PMC9247200 DOI: 10.3389/fonc.2022.880643] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination (HR) is a highly conserved DNA repair mechanism that protects cells from exogenous and endogenous DNA damage. Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) play an important role in the HR repair pathway by interacting with other DNA repair proteins such as Fanconi anemia (FA) proteins, ATM, RAD51, PALB2, MRE11A, RAD50, and NBN. These pathways are frequently aberrant in cancer, leading to the accumulation of DNA damage and genomic instability known as homologous recombination deficiency (HRD). HRD can be caused by chromosomal and subchromosomal aberrations, as well as by epigenetic inactivation of tumor suppressor gene promoters. Deficiency in one or more HR genes increases the risk of many malignancies. Another conserved mechanism involved in the repair of DNA single-strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase (PARP) enzymes play an important role. PARP inhibitors (PARPIs) convert SSBs to more cytotoxic double-strand breaks, which are repaired in HR-proficient cells, but remain unrepaired in HRD. The blockade of both HR and base excision repair pathways is the basis of PARPI therapy. The use of PARPIs can be expanded to sporadic cancers displaying the “BRCAness” phenotype. Although PARPIs are effective in many cancers, their efficacy is limited by the development of resistance. In this review, we summarize the prevalence of HRD due to mutation, loss of heterozygosity, and promoter hypermethylation of 35 DNA repair genes in ovarian, breast, colorectal, pancreatic, non-small cell lung cancer, and prostate cancer. The underlying mechanisms and strategies to overcome PARPI resistance are also discussed.
Collapse
Affiliation(s)
- Negesse Mekonnen
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Department of Veterinary Science, School of Animal Science and Veterinary Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hobin Yang
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
| | - Young Kee Shin
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, South Korea
- LOGONE Bio Convergence Research Foundation, Center for Companion Diagnostics, Seoul, South Korea
- *Correspondence: Young Kee Shin,
| |
Collapse
|
48
|
Grech C, Aust S, Pils D, Grimm C, Reinthaller A, Reischer T, Bekos C. Die korrigierte BRCA1/2 Allelfrequenz ist ein prognostischer Faktor für das Ansprechen auf eine PARPi Therapie. Geburtshilfe Frauenheilkd 2022. [DOI: 10.1055/s-0042-1750231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- C Grech
- Klinische Abteilung für Allgemeine Gynäkologie und gynäkologische Onkologie, Universitätsklinik für Frauenheilkunde und Geburtshilfe, Medizinische Universität Wien
- Universitätsklinik für Allgemeinchirurgie, Medizinische Universität Wien
| | - S Aust
- Klinische Abteilung für Allgemeine Gynäkologie und gynäkologische Onkologie, Universitätsklinik für Frauenheilkunde und Geburtshilfe, Medizinische Universität Wien
| | - D Pils
- Universitätsklinik für Allgemeinchirurgie, Medizinische Universität Wien
| | - C Grimm
- Klinische Abteilung für Allgemeine Gynäkologie und gynäkologische Onkologie, Universitätsklinik für Frauenheilkunde und Geburtshilfe, Medizinische Universität Wien
| | - A Reinthaller
- Klinische Abteilung für Allgemeine Gynäkologie und gynäkologische Onkologie, Universitätsklinik für Frauenheilkunde und Geburtshilfe, Medizinische Universität Wien
| | - T Reischer
- Klinische Abteilung für Allgemeine Gynäkologie und gynäkologische Onkologie, Universitätsklinik für Frauenheilkunde und Geburtshilfe, Medizinische Universität Wien
| | - C Bekos
- Klinische Abteilung für Allgemeine Gynäkologie und gynäkologische Onkologie, Universitätsklinik für Frauenheilkunde und Geburtshilfe, Medizinische Universität Wien
| |
Collapse
|
49
|
Alenezi WM, Fierheller CT, Revil T, Serruya C, Mes-Masson AM, Foulkes WD, Provencher D, El Haffaf Z, Ragoussis J, Tonin PN. Case Review: Whole-Exome Sequencing Analyses Identify Carriers of a Known Likely Pathogenic Intronic BRCA1 Variant in Ovarian Cancer Cases Clinically Negative for Pathogenic BRCA1 and BRCA2 Variants. Genes (Basel) 2022; 13:genes13040697. [PMID: 35456503 PMCID: PMC9032308 DOI: 10.3390/genes13040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Detecting pathogenic intronic variants resulting in aberrant splicing remains a challenge in routine genetic testing. We describe germline whole-exome sequencing (WES) analyses and apply in silico predictive tools of familial ovarian cancer (OC) cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants. Methods: WES data from 27 familial OC cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants and 53 sporadic early-onset OC cases were analyzed for pathogenic variants in BRCA1 or BRCA2. WES data from carriers of pathogenic BRCA1 or BRCA2 variants were analyzed for pathogenic variants in 10 other OC predisposing genes. Loss of heterozygosity analysis was performed on tumor DNA from variant carriers. Results: BRCA1 c.5407-25T>A intronic variant, identified in two affected sisters and one sporadic OC case, is predicted to create a new splice effecting transcription of BRCA1. WES data from BRCA1 c.5407-25T>A carriers showed no evidence of pathogenic variants in other OC predisposing genes. Sequencing the tumor DNA from the variant carrier showed complete loss of the wild-type allele. Conclusions: The findings support BRCA1 c.5407-25T>A as a likely pathogenic variant and highlight the importance of investigating intronic sequences as causal variants in OC families where the involvement of BRCA1 is highly suggestive.
Collapse
Affiliation(s)
- Wejdan M. Alenezi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Department of Medical Laboratory Technology, Taibah University, Medina 42353, Saudi Arabia
| | - Caitlin T. Fierheller
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Corinne Serruya
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Anne-Marie Mes-Masson
- Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada; (D.P.); (Z.E.H.)
| | - William D. Foulkes
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC H3H 1P3, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 1G5, Canada
| | - Diane Provencher
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada; (D.P.); (Z.E.H.)
- Division of Gynecologic Oncology, Université de Montréal, Montreal, QC H4A 3J1, Canada
| | - Zaki El Haffaf
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada; (D.P.); (Z.E.H.)
- Service de Médecine Génique, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-(514)-934-1934 (ext. 44069)
| |
Collapse
|
50
|
Tao M, Sun F, Wang J, Wang Y, Zhu H, Chen M, Liu L, Liu L, Lin H, Wu X. Developing patient-derived organoids to predict PARP inhibitor response and explore resistance overcoming strategies in ovarian cancer. Pharmacol Res 2022; 179:106232. [DOI: 10.1016/j.phrs.2022.106232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022]
|