1
|
Desai N, Liao W, Lauga E. Natural convection in the cytoplasm: Theoretical predictions of buoyancy-driven flows inside a cell. PLoS One 2024; 19:e0307765. [PMID: 39052656 PMCID: PMC11271965 DOI: 10.1371/journal.pone.0307765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
The existence of temperature gradients within eukaryotic cells has been postulated as a source of natural convection in the cytoplasm, i.e. bulk fluid motion as a result of temperature-difference-induced density gradients. Recent computations have predicted that a temperature differential of ΔT ≈ 1 K between the cell nucleus and the cell membrane could be strong enough to drive significant intracellular material transport. We use numerical computations and theoretical calculations to revisit this problem in order to further understand the impact of temperature gradients on flow generation and advective transport within cells. Surprisingly, our computations yield flows that are an order of magnitude weaker than those obtained previously for the same relative size and position of the nucleus with respect to the cell membrane. To understand this discrepancy, we develop a semi-analytical solution of the convective flow inside a model cell using a bi-spherical coordinate framework, for the case of an axisymmetric cell geometry (i.e. when the displacement of the nucleus from the cell centre is aligned with gravity). We also calculate exact solutions for the flow when the nucleus is located concentrically inside the cell. The results from both theoretical analyses agree with our numerical results, thus providing a robust estimate of the strength of cytoplasmic natural convection and demonstrating that these are much weaker than previously predicted. Finally, we investigate the ability of the aforementioned flows to redistribute solute within a cell. Our calculations reveal that, in all but unrealistic cases, cytoplasmic convection has a negligible contribution toward enhancing the diffusion-dominated mass transfer of cellular material.
Collapse
Affiliation(s)
- Nikhil Desai
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Weida Liao
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Kang W, Luan T, Zhou W, Yin Y, Liu L, Wang S, Li Z, Yang J, Ho HP, Shou Q, Xing X. Coupled photothermal vortices for capture, sorting, and transportation of particles. OPTICS LETTERS 2024; 49:3974-3977. [PMID: 39008754 DOI: 10.1364/ol.530077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Optofluidic techniques have evolved as a prospering strategy for microparticle manipulation via fluid. Unfortunately, there is still a lack of manipulation with simple preparation, easy operation, and multifunctional integration. In this Letter, we present an optofluidic device based on a graphite oxide (GO)-coated dual-fiber structure for multifunctional particle manipulation. By changing the optical power and the relative distance of the fibers, the system can excite thermal fluidic vortices with three inter-coupled states, namely uncoupled, partially coupled and completely coupled states, and therefore can realize capture, sorting, and transportation of the target particles. We conduct a numerical analysis of the whole system, and the results are consistent with the experimental phenomena. This versatile device can be utilized to manipulate target particles in complex microscopic material populations with the advantages of flexible operation, user-friendly control, and low cost.
Collapse
|
3
|
Hong C, Hong I, Jiang Y, Ndukaife JC. Plasmonic dielectric antennas for hybrid optical nanotweezing and optothermoelectric manipulation of single nanosized extracellular vesicles. ADVANCED OPTICAL MATERIALS 2024; 12:2302603. [PMID: 38899010 PMCID: PMC11185818 DOI: 10.1002/adom.202302603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 06/21/2024]
Abstract
This paper showcases an experimental demonstration of near-field optical trapping and dynamic manipulation of an individual extracellular vesicle. This is accomplished through the utilization of a plasmonic dielectric nanoantenna designed to support an optical anapole state-a non-radiating optical state resulting from the destructive interference between electric and toroidal dipoles in the far-field, leading to robust near-field enhancement. To further enhance the field intensity associated with the optical anapole state, a plasmonic mirror is incorporated, thereby boosting trapping capabilities. In addition to demonstrating near-field optical trapping, the study achieves dynamic manipulation of extracellular vesicles by harnessing the thermoelectric effect. This effect is induced in the presence of an ionic surfactant, cetyltrimethylammonium chloride (CTAC), combined with plasmonic heating. Furthermore, the thermoelectric effect improves trapping stability by introducing a wide and deep trapping potential. In summary, our hybrid plasmonic-dielectric trapping platform offers a versatile approach for actively transporting, stably trapping, and dynamically manipulating individual extracellular vesicles.
Collapse
Affiliation(s)
- Chuchuan Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ikjun Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yuxi Jiang
- Department of Electrical and Computer Engineering, University of Maryland College Park, MD, USA
- Institute for Research in Electronics and Applied Physics (IREAP), University of Maryland College Park, MD, USA
| | - Justus C. Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Harder P, İyisan N, Wang C, Kohler F, Neb I, Lahm H, Dreßen M, Krane M, Dietz H, Özkale B. A Laser-Driven Microrobot for Thermal Stimulation of Single Cells. Adv Healthc Mater 2023; 12:e2300904. [PMID: 37229536 PMCID: PMC11468149 DOI: 10.1002/adhm.202300904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Here, the study presents a thermally activated cell-signal imaging (TACSI) microrobot, capable of photothermal actuation, sensing, and light-driven locomotion. The plasmonic soft microrobot is specifically designed for thermal stimulation of mammalian cells to investigate cell behavior under heat active conditions. Due to the integrated thermosensitive fluorescence probe, Rhodamine B, the system allows dynamic measurement of induced temperature changes. TACSI microrobots show excellent biocompatibility over 72 h in vitro, and they are capable of thermally activating single cells to cell clusters. Locomotion in a 3D workspace is achieved by relying on thermophoretic convection, and the microrobot speed is controlled within a range of 5-65 µm s-1 . In addition, light-driven actuation enables spatiotemporal control of the microrobot temperature up to a maximum of 60 °C. Using TACSI microrobots, this study targets single cells within a large population, and demonstrates thermal cell stimulation using calcium signaling as a biological output. Initial studies with human embryonic kidney 293 cells indicate a dose dependent change in intracellular calcium content within the photothermally controlled temperature range of 37-57 °C.
Collapse
Affiliation(s)
- Philipp Harder
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Nergishan İyisan
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Chen Wang
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| | - Fabian Kohler
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Laboratory for Biomolecular Nanotechnology, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Irina Neb
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Harald Lahm
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Martina Dreßen
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center, Technical University of Munich, 80636, Munich, Germany
| | - Markus Krane
- Division of Cardiac Surgery, Yale School of Medicine, New Haven, CT, 06510, USA
- DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, 80802, Munich, Germany
| | - Hendrik Dietz
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
- Laboratory for Biomolecular Nanotechnology, School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, 85748, Garching, Germany
| | - Berna Özkale
- Microrobotic Bioengineering Lab (MRBL), School of Computation Information and Technology, Technical University of Munich, Hans-Piloty-Straße 1, 85748, Garching, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, Georg-Brauchle-Ring 60, 80992, Munich, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstraße 11, 85748, Garching, Germany
| |
Collapse
|
5
|
Hong C, Ndukaife JC. Scalable trapping of single nanosized extracellular vesicles using plasmonics. Nat Commun 2023; 14:4801. [PMID: 37558710 PMCID: PMC10412615 DOI: 10.1038/s41467-023-40549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Heterogeneous nanoscale extracellular vesicles (EVs) are of significant interest for disease detection, monitoring, and therapeutics. However, trapping these nano-sized EVs using optical tweezers has been challenging due to their small size. Plasmon-enhanced optical trapping offers a solution. Nevertheless, existing plasmonic tweezers have limited throughput and can take tens of minutes for trapping for low particle concentrations. Here, we present an innovative approach called geometry-induced electrohydrodynamic tweezers (GET) that overcomes these limitations. GET generates multiple electrohydrodynamic potentials, allowing parallel transport and trapping of single EVs within seconds. By integrating nanoscale plasmonic cavities at the center of each GET trap, single EVs can be placed near plasmonic cavities, enabling instant plasmon-enhanced optical trapping upon laser illumination without detrimental heating effects. These non-invasive scalable hybrid nanotweezers open new horizons for high-throughput tether-free plasmon-enhanced single EV trapping and spectroscopy. Other potential areas of impact include nanoplastics characterization, and scalable hybrid integration for quantum photonics.
Collapse
Affiliation(s)
- Chuchuan Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Justus C Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Yang S, Ndukaife JC. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface. LIGHT, SCIENCE & APPLICATIONS 2023; 12:188. [PMID: 37507389 PMCID: PMC10382587 DOI: 10.1038/s41377-023-01212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023]
Abstract
Manipulating fluids by light at the micro/nanoscale has been a long-sought-after goal for lab-on-a-chip applications. Plasmonic heating has been demonstrated to control microfluidic dynamics due to the enhanced and confined light absorption from the intrinsic losses of metals. Dielectrics, the counterpart of metals, has been used to avoid undesired thermal effects due to its negligible light absorption. Here, we report an innovative optofluidic system that leverages a quasi-BIC-driven all-dielectric metasurface to achieve subwavelength scale control of temperature and fluid motion. Our experiments show that suspended particles down to 200 nanometers can be rapidly aggregated to the center of the illuminated metasurface with a velocity of tens of micrometers per second, and up to millimeter-scale particle transport is demonstrated. The strong electromagnetic field enhancement of the quasi-BIC resonance increases the flow velocity up to three times compared with the off-resonant situation by tuning the wavelength within several nanometers range. We also experimentally investigate the dynamics of particle aggregation with respect to laser wavelength and power. A physical model is presented and simulated to elucidate the phenomena and surfactants are added to the nanoparticle colloid to validate the model. Our study demonstrates the application of the recently emerged all-dielectric thermonanophotonics in dealing with functional liquids and opens new frontiers in harnessing non-plasmonic nanophotonics to manipulate microfluidic dynamics. Moreover, the synergistic effects of optofluidics and high-Q all-dielectric nanostructures hold enormous potential in high-sensitivity biosensing applications.
Collapse
Affiliation(s)
- Sen Yang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, USA
| | - Justus C Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, USA.
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
González-Gómez CD, Rica RA, Ruiz-Reina E. Electrothermoplasmonic flow in gold nanoparticles suspensions: Nonlinear dependence of flow velocity on aggregate concentration. J Colloid Interface Sci 2023; 648:397-405. [PMID: 37302223 DOI: 10.1016/j.jcis.2023.05.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Efficient mixing and pumping of liquids at the microscale is a technology that is still to be optimized. The combination of an AC electric field with a small temperature gradient leads to a strong electrothermal flow that can be used for multiple purposes. Combining simulations and experiments, an analysis of the performance of electrothermal flow is provided when the temperature gradient is generated by illuminating plasmonic nanoparticles in suspension with a near-resonance laser. Fluid flow is measured by tracking the velocity of fluorescent tracer microparticles in suspension as a function of the electric field, laser power, and concentration of plasmonic particles. Among other results, a non-linear relationship is found between the velocity of the fluid and particle concentration, which is justified in terms of multiple scattering-absorption events, involving aggregates of nanoparticles, that lead to enhanced absorption when the concentration is raised. Simulations provide a description of the phenomenon that is compatible with experiments and constitute a way to understand and estimate the absorption and scattering cross-sections of both dispersed particles and/or aggregates. A comparison of experiments and simulations suggests that there is some aggregation of the gold nanoparticles by forming clusters of about 2-7 particles, but no information about their structure can be obtained without further theoretical and experimental developments. This nonlinear behavior could be useful to get very high ETP velocities by inducing some controlled aggregation of the particles.
Collapse
Affiliation(s)
- Carlos David González-Gómez
- Universidad de Granada, Department of Applied Physics, Nanoparticles Trapping Laboratory, 18071, Granada, Spain; Universidad de Málaga, Department of Applied Physics II, 29071, Málaga, Spain
| | - Raúl A Rica
- Universidad de Granada, Department of Applied Physics, Nanoparticles Trapping Laboratory, 18071, Granada, Spain; Universidad de Granada, Research Unit "Modeling Nature" (MNat), 18071, Granada, Spain
| | - Emilio Ruiz-Reina
- Universidad de Málaga, Department of Applied Physics II, 29071, Málaga, Spain; Universidad de Málaga, Department of Applied Physics II, Institute Carlos I for Theoretical and Computational Physics (iC1), 29071, Málaga, Spain.
| |
Collapse
|
8
|
Bouloumis TD, Kotsifaki DG, Nic Chormaic S. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers. NANO LETTERS 2023. [PMID: 37256850 DOI: 10.1021/acs.nanolett.2c04492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The pursuit for efficient nanoparticle trapping with low powers has led to optical tweezers technology moving from the conventional free-space configuration to advanced plasmonic systems. However, trapping nanoparticles smaller than 10 nm still remains a challenge even for plasmonic tweezers. Proper nanocavity design and excitation has given rise to the self-induced back-action (SIBA) effect offering enhanced trap stiffness with decreased laser power. In this work, we investigate the SIBA effect in metamaterial tweezers and its synergy with the exhibited Fano resonance. We demonstrate stable trapping of 20 nm gold particles with trap stiffnesses as high as 4.18 ± 0.2 (fN/nm)/(mW/μm2) and very low excitation intensity. Simulations reveal the existence of two different groups of hotspots on the plasmonic array. The two hotspots exhibit tunable trap stiffnesses, a unique feature that can allow for sorting of particles and biological molecules based on their characteristics.
Collapse
Affiliation(s)
- Theodoros D Bouloumis
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Domna G Kotsifaki
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
- Natural and Applied Sciences, Duke Kunshan University, No. 8 Duke Avenue, Kunshan, Jiangsu Province 215316, China
| | - Síle Nic Chormaic
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
9
|
Kollipara PS, Chen Z, Zheng Y. Optical Manipulation Heats up: Present and Future of Optothermal Manipulation. ACS NANO 2023; 17:7051-7063. [PMID: 37022087 PMCID: PMC10197158 DOI: 10.1021/acsnano.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Optothermal manipulation is a versatile technique that combines optical and thermal forces to control synthetic micro-/nanoparticles and biological entities. This emerging technique overcomes the limitations of traditional optical tweezers, including high laser power, photon and thermal damage to fragile objects, and the requirement of refractive-index contrast between target objects and the surrounding solvents. In this perspective, we discuss how the rich opto-thermo-fluidic multiphysics leads to a variety of working mechanisms and modes of optothermal manipulation in both liquid and solid media, underpinning a broad range of applications in biology, nanotechnology, and robotics. Moreover, we highlight current experimental and modeling challenges in the pursuit of optothermal manipulation and propose future directions and solutions to the challenges.
Collapse
Affiliation(s)
- Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Zhihan Chen
- Materials Science and Engineering program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science and Engineering program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Yang S, Allen JA, Hong C, Arnold KP, Weiss SM, Ndukaife JC. Multiplexed Long-Range Electrohydrodynamic Transport and Nano-Optical Trapping with Cascaded Bowtie Photonic Crystal Nanobeams. PHYSICAL REVIEW LETTERS 2023; 130:083802. [PMID: 36898095 DOI: 10.1103/physrevlett.130.083802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Photonic crystal cavities with bowtie defects that combine ultrahigh Q and ultralow mode volume are theoretically studied for low-power nanoscale optical trapping. By harnessing the localized heating of the water layer near the bowtie region, combined with an applied alternating current electric field, this system provides long-range electrohydrodynamic transport of particles with average radial velocities of 30 μm/s towards the bowtie region on demand by switching the input wavelength. Once transported to a given bowtie region, synergistic interaction of optical gradient and attractive negative thermophoretic forces stably trap a 10 nm quantum dot in a potential well with a depth of 10 k_{B}T using a mW input power.
Collapse
Affiliation(s)
- Sen Yang
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Joshua A Allen
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Chuchuan Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Kellen P Arnold
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Sharon M Weiss
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Justus C Ndukaife
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
11
|
Ding H, Chen Z, Ponce C, Zheng Y. Optothermal rotation of micro-/nano-objects. Chem Commun (Camb) 2023; 59:2208-2221. [PMID: 36723196 PMCID: PMC10189788 DOI: 10.1039/d2cc06955e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Due to its contactless and fuel-free operation, optical rotation of micro-/nano-objects provides tremendous opportunities for cellular biology, three-dimensional (3D) imaging, and micro/nanorobotics. However, complex optics, extremely high operational power, and the applicability to limited objects restrict the broader use of optical rotation techniques. This Feature Article focuses on a rapidly emerging class of optical rotation techniques, termed optothermal rotation. Based on light-mediated thermal phenomena, optothermal rotation techniques overcome the bottlenecks of conventional optical rotation by enabling versatile rotary control of arbitrary objects with simpler optics using lower powers. We start with the fundamental thermal phenomena and concepts: thermophoresis, thermoelectricity, thermo-electrokinetics, thermo-osmosis, thermal convection, thermo-capillarity, and photophoresis. Then, we highlight various optothermal rotation techniques, categorizing them based on their rotation modes (i.e., in-plane and out-of-plane rotation) and the thermal phenomena involved. Next, we explore the potential applications of these optothermal manipulation techniques in areas such as single-cell mechanics, 3D bio-imaging, and micro/nanomotors. We conclude the Feature Article with our insights on the operating guidelines, existing challenges, and future directions of optothermal rotation.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Carolina Ponce
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
12
|
Zaman MA, Hesselink L. Dynamically controllable plasmonic tweezers using C-shaped nano-engravings. APPLIED PHYSICS LETTERS 2022; 121:181108. [PMID: 36340998 PMCID: PMC9635921 DOI: 10.1063/5.0123268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
A near-field optical trapping scheme using plasmonic C-shaped nano-engraving is presented. Utilizing the polarization sensitivity of the C-structure, a mechanism is proposed for dynamically controlling the electric field, the associated trapping force, and the plasmonic heating. Electromagnetic analysis and particle dynamics simulations are performed to verify the viability of the approach. The designed structure is fabricated and experimentally tested. Polarization control of the excitation light is achieved through the use of a half-wave plate. Experimental results are presented that show the functioning implementation of the dynamically adjustable plasmonic tweezers. The dynamic controllability can allow trapping to be maintained with lower field strengths, which reduces photo-thermal effects. Thus, the probability of thermal damage can be reduced when handling sensitive specimens.
Collapse
Affiliation(s)
- Mohammad Asif Zaman
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Lambertus Hesselink
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
13
|
Zhao B. Integrity of Newton's cooling law based on thermal convection theory of heat transfer and entropy transfer. Sci Rep 2022; 12:16292. [PMID: 36175435 PMCID: PMC9522732 DOI: 10.1038/s41598-022-18961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Although thermal convection is omnipresent in nature and technology and serves important purposes in various energy transport systems, whether convection can be viewed as an independent heat transfer means has long been argued The constant coefficient in the original version or convective heat transfer coefficient defined in the modern version of Newton’s cooling law quantifies the ratio of the surface heat flux to the temperature difference between a body surface and an adjacent fluid. However, none of the consistent analytical expressions for these two coefficients are present in Newton’s cooling law. The inherently complex relationship between these pending coefficients and convective heat flux vectors makes revealing the convective mechanism extremely difficult. Theoretical determination of these coefficients would bring new insights to thermal convection and direct applications to thermal management. Here we theoretically show consistent analytical expressions for the constant and convective heat transfer coefficients for various flows to make Newton’s cooling law a complete scientific law. For this purpose, a three-dimensional (3D) energy transfer theory of thermal convection is developed, and the convective heat flux vector, entropy flux vector and entropy generation rate inside the system are derived for both single-phase and phase-change flows. By recasting a control volume system into an equivalent control mass system and employing the first and second laws of thermodynamics, the fundamental advective heat transfer mode characterized by temperature differences and entropy changes is demonstrated. The physical implications underlying the 3D convective formulae are elucidated. Comparisons of the analytical results with laminar experiments and turbulent flow measurement benchmark data validate our theoretical findings. Our 3D heat and entropy transfer theory will broaden the research area of thermal convection processes and open up a new arena for the design and thermal management of convective heat transfer in single-phase and phase-change flows.
Collapse
Affiliation(s)
- Bo Zhao
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China. .,State Key Laboratory of Mining Equipment and Intelligent Manufacturing, Taiyuan Heavy Machinery Group Co, Ltd, Taiyuan, 030024, China.
| |
Collapse
|
14
|
Molinaro C, Bénéfice M, Gorlas A, Da Cunha V, Robert HML, Catchpole R, Gallais L, Forterre P, Baffou G. Life at high temperature observed in vitro upon laser heating of gold nanoparticles. Nat Commun 2022; 13:5342. [PMID: 36097020 PMCID: PMC9468142 DOI: 10.1038/s41467-022-33074-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Thermophiles are microorganisms that thrive at high temperature. Studying them can provide valuable information on how life has adapted to extreme conditions. However, high temperature conditions are difficult to achieve on conventional optical microscopes. Some home-made solutions have been proposed, all based on local resistive electric heating, but no simple commercial solution exists. In this article, we introduce the concept of microscale laser heating over the field of view of a microscope to achieve high temperature for the study of thermophiles, while maintaining the user environment in soft conditions. Microscale heating with moderate laser intensities is achieved using a substrate covered with gold nanoparticles, as biocompatible, efficient light absorbers. The influences of possible microscale fluid convection, cell confinement and centrifugal thermophoretic motion are discussed. The method is demonstrated with two species: (i) Geobacillus stearothermophilus, a motile thermophilic bacterium thriving around 65 °C, which we observed to germinate, grow and swim upon microscale heating and (ii) Sulfolobus shibatae, a hyperthermophilic archaeon living at the optimal temperature of 80 °C. This work opens the path toward simple and safe observation of thermophilic microorganisms using current and accessible microscopy tools. Studying microorganisms at high temperatures is challenging on conventional optical microscopes. Here, the authors introduce the concept of microscale laser heating over the full field of view by using gold nanoparticles as light absorbers, and study thermophile species up to 80 °C.
Collapse
|
15
|
Setoura K, Ito S. Optical manipulation in conjunction with photochemical/photothermal responses of materials. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
16
|
Morozov KI, Köhler W. Can the Thermophoretic Mobility of Uncharged Colloids Be Predicted? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2478-2485. [PMID: 35172099 DOI: 10.1021/acs.langmuir.1c02934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The thermophoretic motion of nonionic colloids in an inhomogeneous temperature field is due to the solvent-colloid dispersion interactions. The latter form an attractive near-particle "gravity" field that leads to sinking of the colder solvent layers toward a colloid. The spatial extension of this microconvective motion is comparable to the size of the colloids, which prove to be small enough to observe their own regular thermophoretic drift to the cold. The Boussinesq equations of convection are augmented by the boundary conditions at the characteristic molecular distance dividing the immovable and motile solvent layers. For organic liquids, this distance proves to be a property of pure solvent. The thermophoretic mobilities are found for colloids with and without surfacted layers. They are determined by the bulk properties of substances and the Hamaker constant of the solvent-solute interactions. The mobilities weakly (logarithmically) depend on the size of colloids and tend to a universal value in the limiting case of strongly asymmetrical mixtures. This is the first report that shows a prediction of the thermophoretic velocities of uncharged colloids. The relation between the thermophoretic mobility of colloids and the Hamaker constant of the solute-solvent interactions enables an experimental determination of the latter quantity from thermophoresis data.
Collapse
Affiliation(s)
- Konstantin I Morozov
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Werner Köhler
- Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
17
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Fränzl M, Cichos F. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nat Commun 2022; 13:656. [PMID: 35115502 PMCID: PMC8813924 DOI: 10.1038/s41467-022-28212-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Manipulation of nano-objects at the microscale is of great technological importance for constructing new functional materials, manipulating tiny amounts of fluids, reconfiguring sensor systems, or detecting tiny concentrations of analytes in medical screening. Here, we show that hydrodynamic boundary flows enable the trapping and manipulation of nano-objects near surfaces. We trigger thermo-osmotic flows by modulating the van der Waals and double layer interactions at a gold-liquid interface with optically generated local temperature fields. The hydrodynamic flows, attractive van der Waals and repulsive double layer forces acting on the suspended nanoparticles enable precise nanoparticle positioning and guidance. A rapid multiplexing of flow fields permits the parallel manipulation of many nano-objects and the generation of complex flow fields. Our findings have direct implications for the field of plasmonic nanotweezers and other thermo-plasmonic trapping systems, paving the way for nanoscopic manipulation with boundary flows.
Collapse
Affiliation(s)
- Martin Fränzl
- Peter Debye Institute for Soft Matter Physics, Molecular Nanophotonics Group, Universität Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
| | - Frank Cichos
- Peter Debye Institute for Soft Matter Physics, Molecular Nanophotonics Group, Universität Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.
| |
Collapse
|
19
|
Ma C, Yu P, Wang W, Zhu Y, Lin F, Wang J, Jing Z, Kong XT, Li P, Govorov AO, Liu D, Xu H, Wang Z. Chiral Optofluidics with a Plasmonic Metasurface Using the Photothermal Effect. ACS NANO 2021; 15:16357-16367. [PMID: 34546029 DOI: 10.1021/acsnano.1c05658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasmonic metasurfaces with the photothermal effect have been increasingly investigated for optofluidics. Meanwhile, along with the expanding application of circularly polarized light, a growing number of investigations on chiral plasmonic metasurfaces have been conducted. However, few studies have explored the chirality and the thermal-induced convection of such systems simultaneously. This paper aims to theoretically investigate the dynamics of the thermally induced fluid convection of a chiral plasmonic metasurface. The proposed metasurface exhibits giant circular dichroism in absorption and thus leads to a strong photothermal effect. On the basis of the multiphysical analysis, including optics, thermodynamics, and hydrodynamics, we propose a concept of chiral spectroscopy termed optofluidic circular dichroism. Our results show that different fluid velocities of thermally induced convection appear around a chiral plasmonic metasurface under different circularly polarized excitation. The chiral fluid convection is induced by an asymmetric heat distribution generated by absorbed photons in the plasmonic heater. This concept can be potentially used to induce chiral fluid convection utilizing the chiral photothermal effect. Our proposed structure can potentially be used in various optofluidics applications related to biochemistry, clinical biology, and so on.
Collapse
Affiliation(s)
- Cuiping Ma
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Peng Yu
- College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu 610225, China
| | - Wenhao Wang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yisong Zhu
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Feng Lin
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jiaying Wang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhimin Jing
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | - Peihang Li
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Alexander O Govorov
- Department of Physics & Astronomy, Ohio University, Athens, Ohio 45701, United States
| | - Dong Liu
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204-4006, United States
| | - Hongxing Xu
- School of Physics and Technology, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
20
|
Peng X, Kotnala A, Rajeeva BB, Wang M, Yao K, Bhatt N, Penley D, Zheng Y. Plasmonic Nanotweezers and Nanosensors for Point-of-Care Applications. ADVANCED OPTICAL MATERIALS 2021; 9:2100050. [PMID: 34434691 PMCID: PMC8382230 DOI: 10.1002/adom.202100050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 05/12/2023]
Abstract
The capabilities of manipulating and analyzing biological cells, bacteria, viruses, DNAs, and proteins at high resolution are significant in understanding biology and enabling early disease diagnosis. We discuss progress in developments and applications of plasmonic nanotweezers and nanosensors where the plasmon-enhanced light-matter interactions at the nanoscale improve the optical manipulation and analysis of biological objects. Selected examples are presented to illustrate their design and working principles. In the context of plasmofluidics, which merges plasmonics and fluidics, the integration of plasmonic nanotweezers and nanosensors with microfluidic systems for point-of-care (POC) applications is envisioned. We provide our perspectives on the challenges and opportunities in further developing and applying the plasmofluidic POC devices.
Collapse
Affiliation(s)
- Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abhay Kotnala
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bharath Bangalore Rajeeva
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mingsong Wang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kan Yao
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Neel Bhatt
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Penley
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
21
|
Kim JA, Yeatman EM, Thompson AJ. Plasmonic optical fiber for bacteria manipulation-characterization and visualization of accumulation behavior under plasmo-thermal trapping. BIOMEDICAL OPTICS EXPRESS 2021; 12:3917-3933. [PMID: 34457389 PMCID: PMC8367256 DOI: 10.1364/boe.425405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
In this article, we demonstrate a plasmo-thermal bacterial accumulation effect using a miniature plasmonic optical fiber. The combined action of far-field convection and a near-field trapping force (referred to as thermophoresis)-induced by highly localized plasmonic heating-enabled the large-area accumulation of Escherichia coli. The estimated thermophoretic trapping force agreed with previous reports, and we applied speckle imaging analysis to map the in-plane bacterial velocities over large areas. This is the first time that spatial mapping of bacterial velocities has been achieved in this setting. Thus, this analysis technique provides opportunities to better understand this phenomenon and to drive it towards in vivo applications.
Collapse
Affiliation(s)
- Jang Ah Kim
- The Hamlyn Centre, Institute of Global Health Innovation (IGHI), Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Eric M Yeatman
- Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
| | - Alex J Thompson
- The Hamlyn Centre, Institute of Global Health Innovation (IGHI), Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Surgical Innovation Centre (Paterson Building), Department of Surgery & Cancer, St Mary's Hospital, Imperial College London, South Wharf Road, London W2 1NY, UK
| |
Collapse
|
22
|
Ren Y, Chen Q, He M, Zhang X, Qi H, Yan Y. Plasmonic Optical Tweezers for Particle Manipulation: Principles, Methods, and Applications. ACS NANO 2021; 15:6105-6128. [PMID: 33834771 DOI: 10.1021/acsnano.1c00466] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Inspired by the idea of combining conventional optical tweezers with plasmonic nanostructures, a technique named plasmonic optical tweezers (POT) has been widely explored from fundamental principles to applications. With the ability to break the diffraction barrier and enhance the localized electromagnetic field, POT techniques are especially effective for high spatial-resolution manipulation of nanoscale or even subnanoscale objects, from small bioparticles to atoms. In addition, POT can be easily integrated with other techniques such as lab-on-chip devices, which results in a very promising alternative technique for high-throughput single-bioparticle sensing or imaging. Despite its label-free, high-precision, and high-spatial-resolution nature, it also suffers from some limitations. One of the main obstacles is that the plasmonic nanostructures are located over the surfaces of a substrate, which makes the manipulation of bioparticles turn from a three-dimensional problem to a nearly two-dimensional problem. Meanwhile, the operation zone is limited to a predefined area. Therefore, the target objects must be delivered to the operation zone near the plasmonic structures. This review summarizes the state-of-the-art target delivery methods for the POT-based particle manipulating technique, along with its applications in single-bioparticle analysis/imaging, high-throughput bioparticle purifying, and single-atom manipulation. Future developmental perspectives of POT techniques are also discussed.
Collapse
Affiliation(s)
- Yatao Ren
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Qin Chen
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Mingjian He
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Xiangzhi Zhang
- Research Centre for Fluids and Thermal Engineering, University of Nottingham, Ningbo 315100, P.R. China
| | - Hong Qi
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Yuying Yan
- Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Research Centre for Fluids and Thermal Engineering, University of Nottingham, Ningbo 315100, P.R. China
| |
Collapse
|
23
|
Abstract
Using light to manipulate fluids has been a long-sought-after goal for lab-on-a-chip applications to address the size mismatch between bulky external fluid controllers and microfluidic devices. Yet, this goal has remained elusive due to the complexity of thermally driven fluid dynamic phenomena, and the lack of approaches that allow comprehensive multiscale and multiparameter studies. Here, we report an innovative optofluidic platform that fulfills this need by combining digital holographic microscopy with state-of-the-art thermoplasmonics, allowing us to identify the different contributions from thermophoresis, thermo-osmosis, convection, and radiation pressure. In our experiments, we demonstrate that a local thermal perturbation at the microscale can lead to mm-scale changes in both the particle and fluid dynamics, thus achieving long-range transport. Furthermore, thanks to a comprehensive parameter study involving sample geometry, temperature increase, light fluence, and size of the heat source, we showcase an integrated and reconfigurable all-optical control strategy for microfluidic devices, thereby opening new frontiers in fluid actuation technology.
Collapse
|
24
|
Zhang Y, Min C, Dou X, Wang X, Urbach HP, Somekh MG, Yuan X. Plasmonic tweezers: for nanoscale optical trapping and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:59. [PMID: 33731693 PMCID: PMC7969631 DOI: 10.1038/s41377-021-00474-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision. The successful manipulation of small particles has fostered numerous and expanding applications. In this paper, we review the principles of and developments in plasmonic tweezers techniques, including both nanostructure-assisted platforms and structureless systems. Construction methods and evaluation criteria of the techniques are presented, aiming to provide a guide for the design and optimization of the systems. The most common novel applications of plasmonic tweezers, namely, sorting and transport, sensing and imaging, and especially those in a biological context, are critically discussed. Finally, we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.
Collapse
Affiliation(s)
- Yuquan Zhang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Changjun Min
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| | - Xiujie Dou
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Xianyou Wang
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hendrik Paul Urbach
- Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628CJ, Delft, The Netherlands
| | - Michael G Somekh
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiaocong Yuan
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
25
|
Wang H, Tarriela J, Shiveshwarkar P, Pyayt A. Simulations and experimental demonstration of three different regimes of optofluidic manipulation. APPLIED OPTICS 2021; 60:593-599. [PMID: 33690432 DOI: 10.1364/ao.408577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
It has been demonstrated that optically controlled microcurrents can be used to capture and move around a variety of microscopic objects ranging from cells and nanowires to whole live worms. Here, we present our findings on several new regimes of optofluidic manipulation that can be engineered using careful design of microcurrents. We theoretically optimize these regimes using COMSOL Multiphysics and present three sets of simulations and corresponding optofluidic experiments. In the first regime, we use local fluid heating to create a microcurrent with a symmetric toroid shape capturing particles in the center. In the second regime, the microcurrent shifts and tilts because external fluid flow is introduced into the microfluidic channel. In the third regime, the whole microfluidic channel is tilted, and the resulting microcurrent projects particles in a fan-like fashion. All three configurations provide interesting opportunities to manipulate small particles in fluid droplets and microfluidic channels.
Collapse
|
26
|
Bouloumis TD, Kotsifaki DG, Han X, Chormaic SN, Truong VG. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures. NANOTECHNOLOGY 2021; 32:025507. [PMID: 32992307 DOI: 10.1088/1361-6528/abbca9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The manipulation of microparticles using optical forces has led to many applications in the life and physical sciences. To extend optical trapping towards the nano-regime, in this work we demonstrate trapping of single nanoparticles in arrays of plasmonic coaxial nano-apertures with various inner disk sizes and theoretically estimate the associated forces. A high normalized experimental trap stiffness of 3.50 fN nm-1 mW-1 μm-2 for 20 nm polystyrene particles is observed for an optimum design of 149 nm for the nanodisk diameter at a trapping wavelength of 980 nm. Theoretical simulations are used to interpret the enhancement of the observed trap stiffness. A quick particle trapping time of less than 8 s is obtained at a concentration of 14 × 1011 particles ml-1 with low incident laser intensity of 0.59 mW μm-2. This good trapping performance with fast delivery of nanoparticles to multiple trapping sites emerges from a combination of the enhanced electromagnetic near-field and spatial temperature increase. This work has applications in nanoparticle delivery and trapping with high accuracy, and bridges the gap between optical manipulation and nanofluidics.
Collapse
Affiliation(s)
- Theodoros D Bouloumis
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
| | - Domna G Kotsifaki
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
| | - Xue Han
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Síle Nic Chormaic
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
| | - Viet Giang Truong
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
| |
Collapse
|
27
|
Jiang Q, Rogez B, Claude JB, Baffou G, Wenger J. Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-optical Trapping. NANO LETTERS 2020; 20:8811-8817. [PMID: 33237789 DOI: 10.1021/acs.nanolett.0c03638] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plasmonic nanotweezers use intense electric field gradients to generate optical forces able to trap nano-objects in liquids. However, part of the incident light is absorbed into the metal, and a supplementary thermophoretic force acting on the nano-object arises from the resulting temperature gradient. Plasmonic nanotweezers thus face the challenge of disentangling the intricate contributions of the optical and thermophoretic forces. Here, we show that commonly added surfactants can unexpectedly impact the trap performance by acting on the thermophilic or thermophobic response of the nano-object. Using different surfactants in double nanohole plasmonic trapping experiments, we measure and compare the contributions of the thermophoretic and the optical forces, evidencing a trap stiffness 20× higher using sodium dodecyl sulfate (SDS) as compared to Triton X-100. This work uncovers an important mechanism in plasmonic nanotweezers and provides guidelines to control and optimize the trap performance for different plasmonic designs.
Collapse
Affiliation(s)
- Quanbo Jiang
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Benoît Rogez
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Jean-Benoît Claude
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Guillaume Baffou
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Jérôme Wenger
- Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| |
Collapse
|
28
|
Rodrigo JA, Angulo M, Alieva T. Tailored optical propulsion forces for controlled transport of resonant gold nanoparticles and associated thermal convective fluid flows. LIGHT, SCIENCE & APPLICATIONS 2020; 9:181. [PMID: 33133521 PMCID: PMC7589520 DOI: 10.1038/s41377-020-00417-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 05/27/2023]
Abstract
Noble metal nanoparticles illuminated at their plasmonic resonance wavelength turn into heat nanosources. This phenomenon has prompted the development of numerous applications in science and technology. Simultaneous optical manipulation of such resonant nanoparticles could certainly extend the functionality and potential applications of optothermal tools. In this article, we experimentally demonstrate optical transport of single and multiple resonant nanoparticles (colloidal gold spheres of radius 200 nm) directed by tailored transverse phase-gradient forces propelling them around a 2D optical trap. We show how the phase-gradient force can be designed to efficiently change the speed of the nanoparticles. We have found that multiple hot nanoparticles assemble in the form of a quasi-stable group whose motion around the laser trap is also controlled by such optical propulsion forces. This assembly experiences a significant increase in the local temperature, which creates an optothermal convective fluid flow dragging tracer particles into the assembly. Thus, the created assembly is a moving heat source controlled by the propulsion force, enabling indirect control of fluid flows as a micro-optofluidic tool. The existence of these flows, probably caused by the temperature-induced Marangoni effect at the liquid water/superheated water interface, is confirmed by tracking free tracer particles migrating towards the assembly. We propose a straightforward method to control the assembly size, and therefore its temperature, by using a nonuniform optical propelling force that induces the splitting or merging of the group of nanoparticles. We envision further development of microscale optofluidic tools based on these achievements.
Collapse
Affiliation(s)
- José A. Rodrigo
- Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mercedes Angulo
- Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Tatiana Alieva
- Facultad de Ciencias Físicas, Ciudad Universitaria s/n, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
29
|
Ghosh S, Ghosh A. Next-Generation Optical Nanotweezers for Dynamic Manipulation: From Surface to Bulk. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5691-5708. [PMID: 32383606 DOI: 10.1021/acs.langmuir.0c00728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Optical traps based on strongly confined electromagnetic fields at metal-dielectric interfaces are far more efficient than conventional optical tweezers. Specifically, these near-field nanotweezers allow the trapping of smaller particles at lower optical intensities, which can impact diverse research fields ranging from soft condensed matter physics to materials science and biology. A major thrust in the past decade has been focused on extending the capabilities of plasmonically enhanced nanotweezers beyond diffusion-limited trapping on surfaces such as to achieve dynamic control in the bulk of fluidic environments. Here, we review the recent efforts in optical nanotweezers, especially those involving hybrid forcing schemes, covering both surface and bulk-based techniques. We summarize the important capabilities demonstrated with this promising approach, with niche applications in reconfigurable nanopatterning and on-chip assembly as well as in sorting and separating colloidal nanoparticles.
Collapse
|
30
|
Richard-Lacroix M, Deckert V. Direct molecular-level near-field plasmon and temperature assessment in a single plasmonic hotspot. LIGHT, SCIENCE & APPLICATIONS 2020; 9:35. [PMID: 32194949 PMCID: PMC7061098 DOI: 10.1038/s41377-020-0260-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 05/06/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is currently widely recognized as an essential but still emergent technique for exploring the nanoscale. However, our lack of comprehension of crucial parameters still limits its potential as a user-friendly analytical tool. The tip's surface plasmon resonance, heating due to near-field temperature rise, and spatial resolution are undoubtedly three challenging experimental parameters to unravel. However, they are also the most fundamentally relevant parameters to explore, because they ultimately influence the state of the investigated molecule and consequently the probed signal. Here we propose a straightforward and purely experimental method to access quantitative information of the plasmon resonance and near-field temperature experienced exclusively by the molecules directly contributing to the TERS signal. The detailed near-field optical response, both at the molecular level and as a function of time, is evaluated using standard TERS experimental equipment by simultaneously probing the Stokes and anti-Stokes spectral intensities. Self-assembled 16-mercaptohexadodecanoic acid monolayers covalently bond to an ultra-flat gold surface were used as a demonstrator. Observation of blinking lines in the spectra also provides crucial information on the lateral resolution and indication of atomic-scale thermally induced morphological changes of the tip during the experiment. This study provides access to unprecedented molecular-level information on physical parameters that crucially affect experiments under TERS conditions. The study thereby improves the usability of TERS in day-to-day operation. The obtained information is of central importance for any experimental plasmonic investigation and for the application of TERS in the field of nanoscale thermometry.
Collapse
Affiliation(s)
- Marie Richard-Lacroix
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, D-07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, D-07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
| |
Collapse
|
31
|
From Far-Field to Near-Field Micro- and Nanoparticle Optical Trapping. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optical tweezers are a very well-established technique that have developed into a standard tool for trapping and manipulating micron and submicron particles with great success in the last decades. Although the nature of light enforces restrictions on the minimum particle size that can be efficiently trapped due to Abbe’s diffraction limit, scientists have managed to overcome this problem by engineering new devices that exploit near-field effects. Nowadays, metallic nanostructures can be fabricated which, under laser illumination, produce a secondary plasmonic field that does not suffer from the diffraction limit. This advance offers a great improvement in nanoparticle trapping, as it relaxes the trapping requirements compared to conventional optical tweezers although problems may arise due to thermal heating of the metallic nanostructures. This could hinder efficient trapping and damage the trapped object. In this work, we review the fundamentals of conventional optical tweezers, the so-called plasmonic tweezers, and related phenomena. Starting from the conception of the idea by Arthur Ashkin until recent improvements and applications, we present the principles of these techniques along with their limitations. Emphasis in this review is on the successive improvements of the techniques and the innovative aspects that have been devised to overcome some of the main challenges.
Collapse
|
32
|
Kotnala A, Kollipara PS, Li J, Zheng Y. Overcoming Diffusion-Limited Trapping in Nanoaperture Tweezers Using Opto-Thermal-Induced Flow. NANO LETTERS 2020; 20:768-779. [PMID: 31834809 PMCID: PMC6952578 DOI: 10.1021/acs.nanolett.9b04876] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanoaperture-based plasmonic tweezers have shown tremendous potential in trapping, sensing, and spectroscopic analysis of nano-objects with single-molecule sensitivity. However, the trapping process is often diffusion-limited and therefore suffers from low-throughput. Here, we present bubble- and convection-assisted trapping techniques, which use opto-thermally generated Marangoni and Rayleigh-Bénard convection flow to rapidly deliver particles from large distances to the nanoaperture instead of relying on normal diffusion, enabling a reduction of 1-2 orders of magnitude in particle-trapping time (i.e., time before a particle is trapped). At a concentration of 2 × 107 particles/mL, average particle-trapping times in bubble- and convection-assisted trapping were 7 and 18 s, respectively, compared with more than 300 s in the diffusion-limited trapping. Trapping of a single particle at an ultralow concentration of 2 × 106 particles/mL was achieved within 2-3 min, which would otherwise take several hours in the diffusion-limited trapping. With their quick delivery and local concentrating of analytes at the functional surfaces, our convection- and bubble-assisted trapping could lead to enhanced sensitivity and throughput of nanoaperture-based plasmonic sensors.
Collapse
Affiliation(s)
- Abhay Kotnala
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The university of Texas at Austin, Texas 78712, USA
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The university of Texas at Austin, Texas 78712, USA
| | - Jingang Li
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The university of Texas at Austin, Texas 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The university of Texas at Austin, Texas 78712, USA
| |
Collapse
|
33
|
Solvent Effects in Highly Efficient Light-Induced Molecular Aggregation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been reported that when irradiated with laser light non-resonant with the main absorption peaks, porphyrin molecules (4-[10,15,20-tris(4-sulfophenyl)-21,24-dihydroporphyrin-5-yl]benzenesulfonic acid, TPPS) in an aqueous solution become 10,000 to 100,000 times more efficient in light-induced molecular aggregation than expected from the ratio of gradient force potential to the thermal energy of molecules at room temperature. To determine the mechanism of this phenomenon, experiments on the light-induced aggregation of TPPS in alcohol solutions (methanol, ethanol, and butanol) were performed. In these alcohol solutions, the absorbance change was orders of magnitude smaller than in the aqueous solution. Furthermore, it was found that the absorbance change in the aqueous solution tended to be saturated with the increase of the irradiation intensity, but in the ethanol solution, the absorbance change increased linearly. These results can be qualitatively explained by the model in which intermolecular light-induced interactions between molecules within a close distance among randomly distributed molecules in the laser irradiation volume are highly relevant to the signal intensity. However, conventional dipole–dipole interactions, such as the Keesom interaction, are not quantitatively consistent with the results.
Collapse
|
34
|
Zhu X, Cicek A, Li Y, Yanik AA. Plasmofluidic Microlenses for Label-Free Optical Sorting of Exosomes. Sci Rep 2019; 9:8593. [PMID: 31197196 PMCID: PMC6565621 DOI: 10.1038/s41598-019-44801-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
Optical chromatography is a powerful optofluidic technique enabling label-free fractionation of microscopic bioparticles from heterogenous mixtures. However, sophisticated instrumentation requirements for precise alignment of optical scattering and fluidic drag forces is a fundamental shortcoming of this technique. Here, we introduce a subwavelength thick (<200 nm) Optofluidic PlasmonIC (OPtIC) microlens that effortlessly achieves objective-free focusing and self-alignment of opposing optical scattering and fluidic drag forces for selective separation of exosome size bioparticles. Our optofluidic microlens provides a self-collimating mechanism for particle trajectories with a spatial dispersion that is inherently minimized by the optical gradient and radial fluidic drag forces working together to align the particles along the optical axis. We demonstrate that this facile platform facilitates complete separation of small size bioparticles (i.e., exosomes) from a heterogenous mixture through negative depletion and provides a robust selective separation capability for same size nanoparticles based on their differences in chemical composition. Unlike existing optical chromatography techniques that require complicated instrumentation (lasers, objectives and precise alignment stages), our OPtIC microlenses with a foot-print of 4 μm × 4 μm open up the possibility of multiplexed and high-throughput sorting of nanoparticles on a chip using low-cost broadband light sources.
Collapse
Affiliation(s)
- Xiangchao Zhu
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Ahmet Cicek
- Department of Nanoscience and Nanotechnology, Burdur Mehmet Akif Ersoy University, Burdur, 15030, Turkey
| | - Yixiang Li
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Ahmet Ali Yanik
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA, 95064, USA. .,California Institute for Quantitative Biosciences (QB3), University of California, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
35
|
Jauffred L, Samadi A, Klingberg H, Bendix PM, Oddershede LB. Plasmonic Heating of Nanostructures. Chem Rev 2019; 119:8087-8130. [PMID: 31125213 DOI: 10.1021/acs.chemrev.8b00738] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The absorption of light by plasmonic nanostructures and their associated temperature increase are exquisitely sensitive to the shape and composition of the structure and to the wavelength of light. Therefore, much effort is put into synthesizing novel nanostructures for optimized interaction with the incident light. The successful synthesis and characterization of high quality and biocompatible plasmonic colloidal nanoparticles has fostered numerous and expanding applications, especially in biomedical contexts, where such particles are highly promising for general drug delivery and for tomorrow's cancer treatment. We review the thermoplasmonic properties of the most commonly used plasmonic nanoparticles, including solid or composite metallic nanoparticles of various dimensions and geometries. Common methods for synthesizing plasmonic particles are presented with the overall goal of providing the reader with a guide for designing or choosing nanostructures with optimal thermoplasmonic properties for a given application. Finally, the biocompatibility and biological tolerance of structures are critically discussed along with novel applications of plasmonic nanoparticles in the life sciences.
Collapse
Affiliation(s)
| | - Akbar Samadi
- Niels Bohr Institute , University of Copenhagen , Copenhagen , Denmark
| | - Henrik Klingberg
- Niels Bohr Institute , University of Copenhagen , Copenhagen , Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
36
|
Li P, Pan D, Yang L, Wei H, He S, Xu H, Li Z. Silver nano-needles: focused optical field induced solution synthesis and application in remote-excitation nanofocusing SERS. NANOSCALE 2019; 11:2153-2161. [PMID: 30402639 DOI: 10.1039/c8nr07141a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tapered metallic nanostructures that harbor surface plasmons are highly interesting for nanophotonic applications because of their waveguiding and field-focusing properties. Here, we developed a focused optical field induced solution synthesis for unique crystallized silver nano-needles. Under the focused laser spot, inhomogeneous Ag monomer concentration is created, which triggers the uniaxial growth of silver nanostructures along the radial direction with decreasing rate, forming nano-needle structures. These nano-needles are several micrometers long, with diameter attenuating from hundreds to tens of nanometers, and terminated by a sharp apex only a few nanometers in diameter. Moreover, nano-needles with atomically smooth surfaces show excellent performance for plasmonic waveguiding and unique near-field compression abilities. This nano-needle structure can be used for effective remote-excitation detection/sensing. We also demonstrate the assembling and picking up of nano-needles, which indicate potential applications in intracellular endoscopy, high resolution scanning tips, on-chip nanophotonic devices, etc.
Collapse
Affiliation(s)
- Pan Li
- The Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Center for Condensed Matter Physics, Department of Physics, Capital Normal University, Beijing 100048, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Li Z, Yang J, Liu S, Jiang X, Wang H, Hu X, Xue S, He S, Xing X. High throughput trapping and arrangement of biological cells using self-assembled optical tweezer. OPTICS EXPRESS 2018; 26:34665-34674. [PMID: 30650887 DOI: 10.1364/oe.26.034665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lately, a fiber-based optical tweezer that traps and arranges the micro/nano-particles is crucial in practical applications, because such a device can trap the biological samples and drive them to the designated position in a microfluidic system or vessel without harming them. Here, we report a new type of fiber optical tweezer, which can trap and arrange erythrocytes. It is prepared by coating graphene on the cross section of a microfiber. Our results demonstrate that thermal-gradient-induced natural convection flow and thermophoresis can trap the erythrocytes under low incident power, and the optical scattering force can arrange them precisely under higher incident power. The proposed optical tweezer has high flexibility, easy fabrication, and high integration with lab-on-a-chip, and shows considerable potential for application in various fields, such as biophysics, biochemistry, and life sciences.
Collapse
|
38
|
Lee SY, Kim HM, Park J, Kim SK, Youn JR, Song YS. Enhanced Plasmonic Particle Trapping Using a Hybrid Structure of Nanoparticles and Nanorods. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41655-41663. [PMID: 30404444 DOI: 10.1021/acsami.8b14787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plasmon-enhanced particle trapping was demonstrated using a hybrid structure of nanoparticles and nanorods. In order to intensify localized surface plasmon resonance (LSPR), gold nanoparticles (AuNPs) were deposited on zinc oxide nanorods (ZnONRs). The synergistic effect caused by the hybrid structure was identified experimentally. Numerical analysis revealed that the LSPR-induced photophysical processes such as plasmonic heating and near-field enhancement were improved by the existence of ZnONRs. The role of the ZnONR in enhancing the particle-trapping velocity was explored by examining the scattered electric field, Poynting vector, and temperature gradient over the nanostructures calculated from the simulation. It was found that polystyrene microparticles and Escherichia coli cells were successfully trapped by using the ZnONR/AuNP plasmonic structure. A relatively high dielectric constant and nanorod geometry of ZnO enabled the hybrid substrate to enhance trapping performance, compared with a control case fabricated using only gold nanoislands.
Collapse
Affiliation(s)
- So Yun Lee
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Hyung Min Kim
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Jinho Park
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Seong Keun Kim
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jae Ryoun Youn
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering , Seoul National University , Seoul 08826 , Korea
| | - Young Seok Song
- Department of Fiber System Engineering , Dankook University , Yongin , Gyeonggi-do 16890 , Korea
| |
Collapse
|
39
|
Peng X, Li J, Lin L, Liu Y, Zheng Y. Opto-Thermophoretic Manipulation and Construction of Colloidal Superstructures in Photocurable Hydrogels. ACS APPLIED NANO MATERIALS 2018; 1:3998-4004. [PMID: 31106296 PMCID: PMC6516762 DOI: 10.1021/acsanm.8b00766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Light-based manipulation of colloidal particles holds great promise in fabrication of functional devices. Construction of complex colloidal superstructures using traditional optical tweezers is limited by high operation power and strong heating effect. Herein, we demonstrate low-power opto-thermophoretic manipulation and construction of colloidal superstructures in photocurable hydrogels. By introducing cationic surfactants into a hydrogel solution under a light-directed temperature field, we create both thermoelectric fields and depletion attraction forces to control the suspended colloidal particles. The particles of various sizes and compositions are thus trapped and organized into various superstructures. Furthermore, the colloidal superstructures are immobilized and patterned onto solid-state substrates through UV-induced photopolymerization of the hydrogel. Our opto-thermophoretic technique will open up avenues for bottom-up assembly of colloidal materials and devices.
Collapse
Affiliation(s)
- Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Linhan Lin
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yaoran Liu
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Corresponding Author:
| |
Collapse
|
40
|
Engay E, Bunea AI, Chouliara M, Bañas A, Glückstad J. Natural convection induced by an optically fabricated and actuated microtool with a thermoplasmonic disk. OPTICS LETTERS 2018; 43:3870-3873. [PMID: 30106904 DOI: 10.1364/ol.43.003870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 05/22/2023]
Abstract
Two-photon polymerization was employed for fabricating microtools amenable to optical trapping and manipulation. A disk feature was included as part of the microtools and further functionalized by electron-beam deposition. The nanostructured gold layer on the disk facilitates off-resonant plasmonic heating upon illumination with a laser beam. As a consequence, natural convection characterized by the typical toroidal shape resembling that of Rayleigh-Bénard flow can be observed. A velocity of several μm·s-1 is measured for 2 μm microspheres dispersed in the surroundings of the microtool. To the best of our knowledge, this is the first time that thermoplasmonic-induced natural convection is experimentally demonstrated using a mobile heat source.
Collapse
|
41
|
Ndukaife JC, Xuan Y, Nnanna AGA, Kildishev AV, Shalaev VM, Wereley ST, Boltasseva A. High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface. ACS NANO 2018; 12:5376-5384. [PMID: 29847087 DOI: 10.1021/acsnano.8b00318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The intrinsic loss in a plasmonic metasurface is usually considered to be detrimental for device applications. Using plasmonic loss to our advantage, we introduce a thermoplasmonic metasurface that enables high-throughput large-ensemble nanoparticle assembly in a lab-on-a-chip platform. In our work, an array of subwavelength nanoholes in a metal film is used as a plasmonic metasurface that supports the excitation of localized surface plasmon and Bloch surface plasmon polariton waves upon optical illumination and provides a platform for molding both optical and thermal landscapes to achieve a tunable many-particle assembling process. The demonstrated many-particle trapping occurs against gravity in an inverted configuration where the light beam first passes through the nanoparticle suspension before illuminating the thermoplasmonic metasurface, a feat previously thought to be impossible. We also report an extraordinarily enhanced electrothermoplasmonic flow in the region of the thermoplasmonic nanohole metasurface, with comparatively larger transport velocities in comparison to the unpatterned region. This thermoplasmonic metasurface could enable possibilities for myriad applications in molecular analysis, quantum photonics, and self-assembly and creates a versatile platform for exploring nonequilibrium physics.
Collapse
Affiliation(s)
- Justus C Ndukaife
- Department of Electrical Engineering and Computer Science, and Vanderbilt Institute of Nanoscale Science and Engineering , Vanderbilt University , Nashville , Tennessee 37232 , United States
- School of Electrical and Computer Engineering and Birck Nanotechnology Center , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yi Xuan
- School of Electrical and Computer Engineering and Birck Nanotechnology Center , Purdue University , West Lafayette , Indiana 47907 , United States
| | | | - Alexander V Kildishev
- School of Electrical and Computer Engineering and Birck Nanotechnology Center , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Vladimir M Shalaev
- School of Electrical and Computer Engineering and Birck Nanotechnology Center , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Steven T Wereley
- School of Mechanical Engineering and Birck Nanotechnology Center , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Alexandra Boltasseva
- School of Electrical and Computer Engineering and Birck Nanotechnology Center , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
42
|
Rubin S, Fainman Y. Nonlocal and Nonlinear Surface Plasmon Polaritons and Optical Spatial Solitons Induced by the Thermocapillary Effect. PHYSICAL REVIEW LETTERS 2018; 120:243904. [PMID: 29956965 DOI: 10.1103/physrevlett.120.243904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 06/08/2023]
Abstract
We study the propagation of surface plasmon polaritons (SPPs) on a metal surface which hosts a thin film of a liquid dielectric. The Ohmic losses that are inherently present due to the coupling of SPPs to conductors' electron plasma, induce temperature gradients and fluid deformation driven by the thermocapillary effect, which lead to a nonlinear and nonlocal change of the effective dielectric constant. The latter extends beyond the regions of highest optical intensity and constitutes a novel thermally self-induced mechanism that affects the propagation of the SPPs. We derive the nonlinear and nonlocal Schrödinger equation that describes propagation of low intensity SPP beams, and show analytically and numerically that it supports a novel optical spatial soliton excitation.
Collapse
Affiliation(s)
- Shimon Rubin
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92023, USA
| | - Yeshaiahu Fainman
- Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92023, USA
| |
Collapse
|
43
|
Ghosh S, Ghosh A. Mobile nanotweezers for active colloidal manipulation. Sci Robot 2018; 3:3/14/eaaq0076. [DOI: 10.1126/scirobotics.aaq0076] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022]
|
44
|
Zhao Y, Saleh AAE, van de Haar MA, Baum B, Briggs JA, Lay A, Reyes-Becerra OA, Dionne JA. Nanoscopic control and quantification of enantioselective optical forces. NATURE NANOTECHNOLOGY 2017; 12:1055-1059. [PMID: 28945237 PMCID: PMC5679370 DOI: 10.1038/nnano.2017.180] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 07/19/2017] [Indexed: 05/04/2023]
Abstract
Circularly polarized light (CPL) exerts a force of different magnitude on left- and right-handed enantiomers, an effect that could be exploited for chiral resolution of chemical compounds as well as controlled assembly of chiral nanostructures. However, enantioselective optical forces are challenging to control and quantify because their magnitude is extremely small (sub-piconewton) and varies in space with sub-micrometre resolution. Here, we report a technique to both strengthen and visualize these forces, using a chiral atomic force microscope probe coupled to a plasmonic optical tweezer. Illumination of the plasmonic tweezer with CPL exerts a force on the microscope tip that depends on the handedness of the light and the tip. In particular, for a left-handed chiral tip, transverse forces are attractive with left-CPL and repulsive with right-CPL. Additionally, total force differences between opposite-handed specimens exceed 10 pN. The microscope tip can map chiral forces with 2 nm lateral resolution, revealing a distinct spatial distribution of forces for each handedness.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Materials Science and Engineering, Stanford
University, Stanford, CA 94305, USA
- Correspondence and requests for materials should
be addressed to Y. Z. and J. A. D.. ,
| | - Amr A. E. Saleh
- Department of Materials Science and Engineering, Stanford
University, Stanford, CA 94305, USA
- Department of Engineering Mathematics and Physics, Faculty of
Engineering, Cairo University, Giza, Egypt
| | | | - Brian Baum
- Department of Materials Science and Engineering, Stanford
University, Stanford, CA 94305, USA
| | - Justin A. Briggs
- Department of Applied Physics, Stanford University, Stanford, CA
94305, USA
| | - Alice Lay
- Department of Applied Physics, Stanford University, Stanford, CA
94305, USA
| | | | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford
University, Stanford, CA 94305, USA
- Correspondence and requests for materials should
be addressed to Y. Z. and J. A. D.. ,
| |
Collapse
|
45
|
Optical tweezing and binding at high irradiation powers on black-Si. Sci Rep 2017; 7:12298. [PMID: 28951618 PMCID: PMC5614913 DOI: 10.1038/s41598-017-12470-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/07/2017] [Indexed: 11/20/2022] Open
Abstract
Nowadays, optical tweezers have undergone explosive developments in accordance with a great progress of lasers. In the last decade, a breakthrough brought optical tweezers into the nano-world, overcoming the diffraction limit. This is called plasmonic optical tweezers (POT). POT are powerful tools used to manipulate nanomaterials. However, POT has several practical issues that need to be overcome. First, it is rather difficult to fabricate plasmonic nanogap structures regularly and rapidly at low cost. Second, in many cases, POT suffers from thermal effects (Marangoni convection and thermophoresis). Here, we propose an alternative approach using a nano-structured material that can enhance the optical force and be applied to optical tweezers. This material is metal-free black silicon (MFBS), the plasma etched nano-textured Si. We demonstrate that MFBS-based optical tweezers can efficiently manipulate small particles by trapping and binding. The advantages of MFBS-based optical tweezers are: (1) simple fabrication with high uniformity over wafer-sized areas, (2) free from thermal effects detrimental for trapping, (3) switchable trapping between one and two - dimensions, (4) tight trapping because of no detrimental thermal forces. This is the NON-PLASMONIC optical tweezers.
Collapse
|
46
|
Gargiulo J, Brick T, Violi IL, Herrera FC, Shibanuma T, Albella P, Requejo FG, Cortés E, Maier SA, Stefani FD. Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing. NANO LETTERS 2017; 17:5747-5755. [PMID: 28806511 DOI: 10.1021/acs.nanolett.7b02713] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Optical printing holds great potential to enable the use of the vast variety of colloidal nanoparticles (NPs) in nano- and microdevices and circuits. By means of optical forces, it enables the direct assembly of NPs, one by one, onto specific positions of solid surfaces with great flexibility of pattern design and no need of previous surface patterning. However, for unclear causes it was not possible to print identical NPs closer to each other than 300 nm. Here, we show that the repulsion restricting the optical printing of close by NPs arises from light absorption by the printed NPs and subsequent local heating. By optimizing heat dissipation, it is possible to reduce the minimum separation between NPs. Using a reduced graphene oxide layer on a sapphire substrate, we demonstrate for the first time the optical printing of Au-Au NP dimers. Modeling the experiments considering optical, thermophoretic, and thermo-osmotic forces we obtain a detailed understanding and a clear pathway for the optical printing fabrication of complex nano structures and circuits based on connected colloidal NPs.
Collapse
Affiliation(s)
- Julian Gargiulo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Thomas Brick
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Ianina L Violi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Facundo C Herrera
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Toshihiko Shibanuma
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Pablo Albella
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
- University Institute for Intelligent Systems and Numerical Applications in Engineering (SIANI), University of Las Palmas de Gran Canaria , 35017, Las Palmas de Gran Canaria, Spain
| | - Félix G Requejo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata , Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Emiliano Cortés
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Stefan A Maier
- The Blackett Laboratory, Department of Physics, Imperial College London , London SW7 2AZ, United Kingdom
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Güiraldes 2620, C1428EAH Ciudad de Buenos Aires, Argentina
| |
Collapse
|
47
|
Alabastri A, Malerba M, Calandrini E, Manjavacas A, De Angelis F, Toma A, Proietti Zaccaria R. Controlling the Heat Dissipation in Temperature-Matched Plasmonic Nanostructures. NANO LETTERS 2017; 17:5472-5480. [PMID: 28759244 DOI: 10.1021/acs.nanolett.7b02131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Heat dissipation in a plasmonic nanostructure is generally assumed to be ruled only by its own optical response even though also the temperature should be considered for determining the actual energy-to-heat conversion. Indeed, temperature influences the optical response of the nanostructure by affecting its absorption efficiency. Here, we show both theoretically and experimentally how, by properly nanopatterning a metallic surface, it is possible to increase or decrease the light-to-heat conversion rate depending on the temperature of the system. In particular, by borrowing the concept of matching condition from the classical antenna theory, we first analytically demonstrate how the temperature sets a maximum value for the absorption efficiency and how this quantity can be tuned, thus leading to a temperature-controlled optical heat dissipation. In fact, we show how the nonlinear dependence of the absorption on the electron-phonon damping can be maximized at a specific temperature, depending on the system geometry. In this regard, experimental results supported by numerical calculations are presented, showing how geometrically different nanostructures can lead to opposite dependence of the heat dissipation on the temperature, hence suggesting the fascinating possibility of employing plasmonic nanostructures to tailor the light-to-heat conversion rate of the system.
Collapse
Affiliation(s)
- Alessandro Alabastri
- Department of Physics and Astronomy and Department of Electrical and Computer Engineering, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Mario Malerba
- Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy
| | | | - Alejandro Manjavacas
- Department of Physics and Astronomy, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | | | - Andrea Toma
- Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy
| | - Remo Proietti Zaccaria
- Istituto Italiano di Tecnologia , via Morego 30, 16163 Genova, Italy
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201, China
| |
Collapse
|
48
|
Chang TW, Wang X, Mahigir A, Veronis G, Liu GL, Gartia MR. Marangoni Convection Assisted Single Molecule Detection with Nanojet Surface Enhanced Raman Spectroscopy. ACS Sens 2017; 2:1133-1138. [PMID: 28726383 DOI: 10.1021/acssensors.7b00427] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many single-molecule (SM) label-free techniques such as scanning probe microscopies (SPM) and magnetic force spectroscopies (MFS) provide high resolution surface topography information, but lack chemical information. Typical surface enhanced Raman spectroscopy (SERS) systems provide chemical information on the analytes, but lack spatial resolution. In addition, a challenge in SERS sensors is to bring analytes into the so-called "hot spots" (locations where the enhancement of electromagnetic field amplitude is larger than 103). Previously described methods of fluid transport around hot spots like thermophoresis, thermodiffusion/Soret effect, and electrothermoplasmonic flow are either too weak or detrimental in bringing new molecules to hot spots. Herein, we combined the resonant plasmonic enhancement and photonic nanojet enhancemnet of local electric field on nonplanar SERS structures, to construct a stable, high-resolution, and below diffraction limit platform for single molecule label-free detection. In addition, we utilize Marangoni convection (mass transfer due to surface tension gradient) to bring new analytes into the hotspot. An enhancement factor of ∼3.6 × 1010 was obtained in the proposed system. Rhodamine-6G (R6G) detection of up to a concentration of 10-12 M, an improvement of two orders of magnitude, was achieved using the nanojet effect. The proposed system could provide a simple, high throughput SERS system for single molecule analysis at high spatial resolution.
Collapse
Affiliation(s)
- Te-Wei Chang
- Intel Corporation, Ronler Acres
Campus, 2501 NW 229th Ave, Hillsboro, Oregon 97124, United States
| | - Xinhao Wang
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - Amirreza Mahigir
- School
of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Georgios Veronis
- School
of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Gang Logan Liu
- Department
of Electrical and Computer Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| | - Manas Ranjan Gartia
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
49
|
Shklyaev OE, Shum H, Yashin VV, Balazs AC. Convective Self-Sustained Motion in Mixtures of Chemically Active and Passive Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7873-7880. [PMID: 28742362 DOI: 10.1021/acs.langmuir.7b01840] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We develop a model to describe the behavior of a system of active and passive particles in solution that can undergo spontaneous self-organization and self-sustained motion. The active particles are uniformly coated with a catalyst that decomposes the reagent in the surrounding fluid. The resulting variations in the fluid density give rise to a convective flow around the active particles. The generated fluid flow, in turn, drives the self-organization of both the active and passive particles into clusters that undergo self-sustained propulsion along the bottom wall of a microchamber. This propulsion continues until the reagents in the solution are consumed. Depending on the number of active and passive particles and the structure of the self-organized cluster, these assemblies can translate, spin, or remain stationary. We also illustrate a scenario in which the geometry of the container is harnessed to direct the motion of a self-organized, self-propelled cluster. The findings provide guidelines for creating autonomously moving active particles, or chemical "motors" that can transport passive cargo in microfluidic devices.
Collapse
Affiliation(s)
- Oleg E Shklyaev
- Department of Chemical Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Henry Shum
- Department of Chemical Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Victor V Yashin
- Department of Chemical Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Anna C Balazs
- Department of Chemical Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
50
|
Dinh ND, Luo R, Christine MTA, Lin WN, Shih WC, Goh JCH, Chen CH. Effective Light Directed Assembly of Building Blocks with Microscale Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28481437 DOI: 10.1002/smll.201700684] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 05/14/2023]
Abstract
Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing.
Collapse
Affiliation(s)
- Ngoc-Duy Dinh
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
| | - Rongcong Luo
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
| | | | - Weikang Nicholas Lin
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
| | - Wei-Chuan Shih
- Departments of Electrical and Computer Engineering, Biomedical Engineering and Chemistry, University of Houston, 4800 Calhoun Rd, Houston, TX, 77004, USA
| | - James Cho-Hong Goh
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
| | - Chia-Hung Chen
- Department of Biomedical Engineering, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
- Biomedical Institute for Global Health Research & Technology (BIGHEART), National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077
| |
Collapse
|