1
|
Yuan D, Liu B, Guo Y, Zhu Z, Liu M, Cheng C, Gu M, Zhou S, Xu Q, Chen L, Liu J, Ouyang X. Light output enhancement of scintillators by using mixed-scale microstructures. OPTICS EXPRESS 2021; 29:24792-24803. [PMID: 34614827 DOI: 10.1364/oe.432114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Scintillators play an important role in the field of nuclear radiation detection. However, the light output of the scintillators is often limited by total internal reflection due to the high refractive indices of the scintillators. Furthermore, the light emission from scintillators typically has an approximately Lambertian profile, which is detrimental to the collection of the light. In this paper, we demonstrate a promising method to achieve enhancement of the light output from scintillators through use of mixed-scale microstructures that are composed of a photonic crystal slab and a microlens array. Simulations and experimental results both show significant improvements in the scintillator light output. The X-ray imaging characteristics of scintillators are improved by the application of the mixed-scale microstructures. The results presented here suggest that the application of the proposed mixed-scale microstructures to scintillators will be beneficial in the nuclear radiation detection field.
Collapse
|
2
|
Yong J, Bian H, Yang Q, Hou X, Chen F. Mini-Review on Bioinspired Superwetting Microlens Array and Compound Eye. Front Chem 2020; 8:575786. [PMID: 33134276 PMCID: PMC7552737 DOI: 10.3389/fchem.2020.575786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
Microlens arrays (MLAs) and MLA-based artificial compound eyes (ACEs) are the important miniaturized optical components in modern micro-optical systems. However, their optical performance will seriously decline once they are wetted by water droplets (such as fog, dew, and rain droplets) or are polluted by contaminations in a humid environment. In this mini-review, we summarize the research works related to the fabrication of superwetting MLAs and ACEs and show how to integrate superhydrophobic and superoleophobic microstructures with an MLA. The fabrication strategy can be split into two categories. One is the hybrid pattern composed of the MLA domain and the superwetting domain. Another is the direct formation of superwetting nanostructures on the surface of the microlenses. The superhydrophobicity or superoleophobicity endows the MLAs and ACEs with liquid repellence and self-cleaning function besides excellent optical performance. We believe that the superwetting MLAs and ACEs will have significant applications in various optical systems that are often used in the humid or liquid environment.
Collapse
Affiliation(s)
- Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Hao Bian
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Qing Yang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Li M, Yang Q, Yong J, Liang J, Fang Y, Bian H, Hou X, Chen F. Underwater superoleophobic and anti-oil microlens array prepared by combing femtosecond laser wet etching and direct writing techniques. OPTICS EXPRESS 2019; 27:35903-35913. [PMID: 31878755 DOI: 10.1364/oe.27.035903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
As an important micro-optical device, microlens array (MLA) also has broad applications in aqueous environment apart from atmosphere, such as bioscience research, ocean exploration, and microfluidic systems. However, the surface of the normal MLA is easily polluted by oil contaminations when the MLA is practically applied in a water medium, leading to the loss of its optical imaging ability. Herein, we fabricated a functional MLA with underwater anti-oil and self-cleaning abilities by combining the femtosecond laser wet etching (FLWE) and the femtosecond laser direct writing (FLDW) techniques. The as-prepared close-packed MLA is composed of 10000 single microlenses with the aperture diameter of 50 µm. The surface of each microlens is further textured with micro/nanoparticles. Clear and uniform images could be captured by using the resultant MLA in water, demonstrating great underwater imaging ability. The modulation transfer function value is larger than 0.6 at 55 lp/mm. In addition, the micro/nanostructures endow the as-fabricated MLA surface with underwater superoleophobicity and oil-repellent performance. Various oils can be repelled by the resultant MLA in water. Underwater 1,2-dichloroethane oil droplet on the textured MLA has a contact angle of 158.0 ± 0.5° and a sliding angle of 2.0 ± 0.2°. The underwater superoleophobic MLA also has good mechanical durability. The anti-oil and self-cleaning functions will broaden the applications of the MLA in ocean exploration, bioscience research, microfluidic system, and many underwater MLA-based systems.
Collapse
|
4
|
Sumner-Rooney L, Rahman IA, Sigwart JD, Ullrich-Lüter E. Whole-body photoreceptor networks are independent of 'lenses' in brittle stars. Proc Biol Sci 2018; 285:rspb.2017.2590. [PMID: 29367398 DOI: 10.1098/rspb.2017.2590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/03/2018] [Indexed: 11/12/2022] Open
Abstract
Photoreception and vision are fundamental aspects of animal sensory biology and ecology, but important gaps remain in our understanding of these processes in many species. The colour-changing brittle star Ophiocoma wendtii is iconic in vision research, speculatively possessing a unique whole-body visual system that incorporates information from nerve bundles underlying thousands of crystalline 'microlenses'. The hypothesis that these might form a sophisticated compound eye-like system regulated by chromatophores has been extensively reiterated, with investigations into biomimetic optics and similar supposedly 'visual' structures in living and fossil taxa. However, no photoreceptors or visual behaviours have ever been identified. We present the first evidence of photoreceptor networks in three Ophiocoma species, both with and without microlenses and colour-changing behaviour. High-resolution microscopy, immunohistochemistry and synchrotron tomography demonstrate that putative photoreceptors cover the animals' oral, lateral and aboral surfaces, but are absent at the hypothesized focal points of the microlenses. The structural optics of these crystal 'lenses' are an exaptation and do not fulfil any apparent visual role. This contradicts previous studies, yet the photoreceptor network in Ophiocoma appears even more widespread than previously anticipated, both taxonomically and anatomically.
Collapse
Affiliation(s)
- Lauren Sumner-Rooney
- Oxford University Museum of Natural History, Oxford, UK .,Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | | | - Julia D Sigwart
- Queen's University Marine Laboratory, Queen's University Belfast, Portaferry, Northern Ireland.,Museum of Paleontology, University of California, Berkeley, CA, USA
| | - Esther Ullrich-Lüter
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
5
|
Hou H, Gan Y, Yin J, Jiang X. Polymerization-Induced Growth of Microprotuberance on the Photocuring Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2027-2032. [PMID: 28186778 DOI: 10.1021/acs.langmuir.7b00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface pattern on the nano- and microscale is of great interest due to its special optical effect, which might find potential application in optical devices such as LCD display, packaging of LED chip, and thin-film solar cell. We here developed a facile bottom-up approach to fabricate microprotuberance (MP) on surface by using curable resin via sequential photocuring at room temperature and thermal polymerization at high temperature. The curable resin is composed of random fluorinated polystyrene (PSF) as blinder and trimethylolpropane trimethacrylate (TMPTA) as cross-linker. The polymerization of TMPTA during the annealing process at high temperature induces phase separation between the PSF and TMPTA cross-linked network, resulting in the extrusion of PSF and the formation of protuberance on the surface. The formation mechanism of MP was studied in detail by investigating the effect of annealing time, temperature, thickness of film, and PSF on the size and morphology. MPs with size from one to tens of micrometers were fabricated through this one-pot strategy. Moreover, encapsulation of integrated GaN/InGaN-based LED chip by the cross-linked coating with MP can enhance the light extraction efficiency and light diffusion obviously.
Collapse
Affiliation(s)
- Honghao Hou
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Yanchang Gan
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University , Shanghai 200240, People's Republic of China
| |
Collapse
|
6
|
Gorzelak P, Rahman IA, Zamora S, Gąsiński A, Trzciński J, Brachaniec T, Salamon MA. Towards a Better Understanding of the Origins of Microlens Arrays in Mesozoic Ophiuroids and Asteroids. Evol Biol 2017. [DOI: 10.1007/s11692-017-9411-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Petie R, Garm A, Hall MR. Crown-of-thorns starfish have true image forming vision. Front Zool 2016; 13:41. [PMID: 27605999 PMCID: PMC5013567 DOI: 10.1186/s12983-016-0174-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/31/2016] [Indexed: 11/28/2022] Open
Abstract
Background Photoreceptors have evolved numerous times giving organisms the ability to detect light and respond to specific visual stimuli. Studies into the visual abilities of the Asteroidea (Echinodermata) have recently shown that species within this class have a more developed visual sense than previously thought and it has been demonstrated that starfish use visual information for orientation within their habitat. Whereas image forming eyes have been suggested for starfish, direct experimental proof of true spatial vision has not yet been obtained. Results The behavioural response of the coral reef inhabiting crown-of-thorns starfish (Acanthaster planci) was tested in controlled aquarium experiments using an array of stimuli to examine their visual performance. We presented starfish with various black-and-white shapes against a mid-intensity grey background, designed such that the animals would need to possess true spatial vision to detect these shapes. Starfish responded to black-and-white rectangles, but no directional response was found to black-and-white circles, despite equal areas of black and white. Additionally, we confirmed that starfish were attracted to black circles on a white background when the visual angle is larger than 14°. When changing the grey tone of the largest circle from black to white, we found responses to contrasts of 0.5 and up. The starfish were attracted to the dark area’s of the visual stimuli and were found to be both attracted and repelled by the visual targets. Conclusions For crown-of-thorns starfish, visual cues are essential for close range orientation towards objects, such as coral boulders, in the wild. These visually guided behaviours can be replicated in aquarium conditions. Our observation that crown-of-thorns starfish respond to black-and-white shapes on a mid-intensity grey background is the first direct proof of true spatial vision in starfish and in the phylum Echinodermata. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0174-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ronald Petie
- Department of Biology, Marine Biological Section, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø, Denmark
| | - Anders Garm
- Department of Biology, Marine Biological Section, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø, Denmark
| | - Michael R Hall
- Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, 4810 QLD Australia
| |
Collapse
|
8
|
Brom KR, Brachaniec T, Salamon MA. Troglomorphism in the middle Triassic crinoids from Poland. Naturwissenschaften 2015; 102:60. [PMID: 26373558 DOI: 10.1007/s00114-015-1310-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022]
Abstract
In this paper, we document the Middle Triassic marine fauna recovered from the fissure/cave system of Stare Gliny (southern Poland) developed in the Devonian host dolomite. The fossils are mostly represented by in situ preserved and small-sized holdfasts of crinoids (Crinoidea) that are attached to the cave walls. Other fossils found in the cave infills include articulated brittle stars and brachiopods. Our findings constitute the oldest Mesozoic evidence for troglophile crinoids. We suggest that troglomorphism in these echinoderms was likely related to protection against predation, which underscores the magnitude of anti-predatory adaptations to increased predation pressure that occurred during the Early Mesozoic Marine Revolution.
Collapse
Affiliation(s)
- Krzysztof R Brom
- Faculty of Earth Sciences, University of Silesia, Będzińska Str. 60, 41-200, Sosnowiec, Poland
| | - Tomasz Brachaniec
- Faculty of Earth Sciences, University of Silesia, Będzińska Str. 60, 41-200, Sosnowiec, Poland
| | - Mariusz A Salamon
- Faculty of Earth Sciences, University of Silesia, Będzińska Str. 60, 41-200, Sosnowiec, Poland.
| |
Collapse
|
9
|
Calcitic microlens arrays in Archaster typicus: microstructural evidence for an advanced photoreception system in modern starfish. ZOOMORPHOLOGY 2015. [DOI: 10.1007/s00435-015-0276-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Reassessing the improbability of a muscular crinoid stem. Sci Rep 2014; 4:6049. [PMID: 25116414 PMCID: PMC4131222 DOI: 10.1038/srep06049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/24/2014] [Indexed: 11/08/2022] Open
Abstract
Muscular articulations in modern stalked crinoids are only present in the arms. Although it has been suggested that certain coiled-stemmed fossil taxa may have been functionally adapted to utilize muscles, evidence supporting this interpretation is lacking. Here, we use cathodoluminescence and SEM to reveal the skeletal microstructure of the enigmatic coiled-stemmed taxon Ammonicrinus (Flexibilia). Based on the well-established link between skeletal microstructure and the nature of infilling soft tissues in modern echinoderms, we reconstructed the palaeoanatomy of the Middle Devonian ammonicrinids. We show that their median columnals with elongated lateral columnal enclosure extensions (LCEE) have stereom microstructure unexpectedly resembling that in the crinoid muscular arm plates. In particular, large ligamentary facets, that are present on each side of a transverse ridge, are mainly comprised of fine galleried stereom that is indicative of the mutable collagenous tissues. In contrast, fine labyrinthic stereom, commonly associated with muscles, is situated in the periphery on each side of the surface of elongated LCEE. Our findings thus strongly suggest that the muscles may have also been present in the stem of ammonicrinids. These results reassess the previous hypotheses about evolution of muscles in crinoids and provide new insights into the mode of life of Ammonicrinus.
Collapse
|
11
|
Ancient starfish spotted predators. Nature 2014. [DOI: 10.1038/508010c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|