Real-space imaging with pattern recognition of a ligand-protected Ag
374 nanocluster at sub-molecular resolution.
Nat Commun 2018;
9:2948. [PMID:
30054489 PMCID:
PMC6063937 DOI:
10.1038/s41467-018-05372-5]
[Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/03/2018] [Indexed: 11/28/2022] Open
Abstract
High-resolution real-space imaging of nanoparticle surfaces is desirable for better understanding of surface composition and morphology, molecular interactions at the surface, and nanoparticle chemical functionality in its environment. However, achieving molecular or sub-molecular resolution has proven to be very challenging, due to highly curved nanoparticle surfaces and often insufficient knowledge of the monolayer composition. Here, we demonstrate sub-molecular resolution in scanning tunneling microscopy imaging of thiol monolayer of a 5 nm nanoparticle Ag374 protected by tert-butyl benzene thiol. The experimental data is confirmed by comparisons through a pattern recognition algorithm to simulated topography images from density functional theory using the known total structure of the Ag374 nanocluster. Our work demonstrates a working methodology for investigations of structure and composition of organic monolayers on curved nanoparticle surfaces, which helps designing functionalities for nanoparticle-based applications.
Translating high-resolution imaging methods to the curved organic surface of a nanoparticle has been challenging. Here, the authors are able to spatially resolve the sub-molecular surface details of a silver nanocluster by comparing scanning tunneling microscopy images and simulated topography data through a pattern recognition algorithm.
Collapse