1
|
Dong T, Zhang SJ, Wang NL. Recent Development of Ultrafast Optical Characterizations for Quantum Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2110068. [PMID: 35853841 DOI: 10.1002/adma.202110068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The advent of intense ultrashort optical pulses spanning a frequency range from terahertz to the visible has opened a new era in the experimental investigation and manipulation of quantum materials. The generation of strong optical field in an ultrashort time scale enables the steering of quantum materials nonadiabatically, inducing novel phenomenon or creating new phases which may not have an equilibrium counterpart. Ultrafast time-resolved optical techniques have provided rich information and played an important role in characterization of the nonequilibrium and nonlinear properties of solid systems. Here, some of the recent progress of ultrafast optical techniques and their applications to the detection and manipulation of physical properties in selected quantum materials are reviewed. Specifically, the new development in the detection of the Higgs mode and photoinduced nonequilibrium response in the study of superconductors by time-resolved terahertz spectroscopy are discussed.
Collapse
Affiliation(s)
- Tao Dong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Si-Jie Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Nan-Lin Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing, 100913, China
| |
Collapse
|
2
|
Miyamoto T, Matsui Y, Terashige T, Morimoto T, Sono N, Yada H, Ishihara S, Watanabe Y, Adachi S, Ito T, Oka K, Sawa A, Okamoto H. Probing ultrafast spin-relaxation and precession dynamics in a cuprate Mott insulator with seven-femtosecond optical pulses. Nat Commun 2018; 9:3948. [PMID: 30258055 PMCID: PMC6158258 DOI: 10.1038/s41467-018-06312-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022] Open
Abstract
A charge excitation in a two-dimensional Mott insulator is strongly coupled with the surrounding spins, which is observed as magnetic-polaron formations of doped carriers and a magnon sideband in the Mott-gap transition spectrum. However, the dynamics related to the spin sector are difficult to measure. Here, we show that pump-probe reflection spectroscopy with seven-femtosecond laser pulses can detect the optically induced spin dynamics in Nd2CuO4, a typical cuprate Mott insulator. The bleaching signal at the Mott-gap transition is enhanced at ~18 fs. This time constant is attributable to the spin-relaxation time during magnetic-polaron formation, which is characterized by the exchange interaction. More importantly, ultrafast coherent oscillations appear in the time evolution of the reflectivity changes, and their frequencies (1400-2700 cm-1) are equal to the probe energy measured from the Mott-gap transition peak. These oscillations can be interpreted as the interference between charge excitations with two magnons originating from charge-spin coupling.
Collapse
Affiliation(s)
- T Miyamoto
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - Y Matsui
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - T Terashige
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan
| | - T Morimoto
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - N Sono
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - H Yada
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - S Ishihara
- Department of Physics, Tohoku University, Sendai, 980-8578, Japan
| | - Y Watanabe
- Department of Chemistry, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - S Adachi
- Department of Chemistry, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - T Ito
- National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Ibaraki, Japan
| | - K Oka
- National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Ibaraki, Japan
| | - A Sawa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Ibaraki, Japan
| | - H Okamoto
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan.
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan.
| |
Collapse
|
3
|
Cilento F, Manzoni G, Sterzi A, Peli S, Ronchi A, Crepaldi A, Boschini F, Cacho C, Chapman R, Springate E, Eisaki H, Greven M, Berciu M, Kemper AF, Damascelli A, Capone M, Giannetti C, Parmigiani F. Dynamics of correlation-frozen antinodal quasiparticles in superconducting cuprates. SCIENCE ADVANCES 2018; 4:eaar1998. [PMID: 29507885 PMCID: PMC5834002 DOI: 10.1126/sciadv.aar1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/22/2018] [Indexed: 05/27/2023]
Abstract
Many puzzling properties of high-critical temperature (Tc) superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wave vector parallel to the Cu-O bonds. These electronic states are most affected by the onset of antiferromagnetic correlations and charge instabilities, and they host the maximum of the anisotropic superconducting gap and pseudogap. We use time-resolved extreme-ultraviolet photoemission with proper photon energy (18 eV) and time resolution (50 fs) to disclose the ultrafast dynamics of the antinodal states in a prototypical HTSC cuprate. After photoinducing a nonthermal charge redistribution within the Cu and O orbitals, we reveal a dramatic momentum-space differentiation of the transient electron dynamics. Whereas the nodal quasiparticle distribution is heated up as in a conventional metal, new quasiparticle states transiently emerge at the antinodes, similarly to what is expected for a photoexcited Mott insulator, where the frozen charges can be released by an impulsive excitation. This transient antinodal metallicity is mapped into the dynamics of the O-2p bands, thus directly demonstrating the intertwining between the low- and high-energy scales that is typical of correlated materials. Our results suggest that the correlation-driven freezing of the electrons moving along the Cu-O bonds, analogous to the Mott localization mechanism, constitutes the starting point for any model of high-Tc superconductivity and other exotic phases of HTSC cuprates.
Collapse
Affiliation(s)
| | - Giulia Manzoni
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Italy
- Dipartimento di Fisica, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Andrea Sterzi
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Italy
- Dipartimento di Fisica, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Simone Peli
- Interdisciplinary Laboratories for Advanced Materials Physics, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - Andrea Ronchi
- Interdisciplinary Laboratories for Advanced Materials Physics, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
- Department of Physics and Astronomy, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Alberto Crepaldi
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Fabio Boschini
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Cephise Cacho
- CLF-Artemis@Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Richard Chapman
- CLF-Artemis@Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Emma Springate
- CLF-Artemis@Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
| | - Hiroshi Eisaki
- Nanoelectronics Research Institute, National Institute of Advanced Industrial Science Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Martin Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mona Berciu
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Alexander F. Kemper
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Andrea Damascelli
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Massimo Capone
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and Consiglio Nazionale delle Ricerche–Istituto Officina dei Materiali (CNR-IOM) Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy
| | - Claudio Giannetti
- Interdisciplinary Laboratories for Advanced Materials Physics, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - Fulvio Parmigiani
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Italy
- Dipartimento di Fisica, Università degli Studi di Trieste, 34127 Trieste, Italy
- International Faculty, University of Cologne, Albertus-Magnus-Platz, 50923 Cologne, Germany
| |
Collapse
|
4
|
Peli S, Dal Conte S, Comin R, Nembrini N, Ronchi A, Abrami P, Banfi F, Ferrini G, Brida D, Lupi S, Fabrizio M, Damascelli A, Capone M, Cerullo G, Giannetti C. Mottness at finite doping and charge-instabilities in cuprates. NATURE PHYSICS 2017; 13:806-811. [PMID: 28781605 PMCID: PMC5540185 DOI: 10.1038/nphys4112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/27/2017] [Indexed: 05/31/2023]
Abstract
The influence of the Mott physics on the doping-temperature phase diagram of copper oxides represents a major issue that is subject of intense theoretical and experimental effort. Here, we investigate the ultrafast electron dynamics in prototypical single-layer Bi-based cuprates at the energy scale of the O-2p→Cu-3d charge-transfer (CT) process. We demonstrate a clear evolution of the CT excitations from incoherent and localized, as in a Mott insulator, to coherent and delocalized, as in a conventional metal. This reorganization of the high-energy degrees of freedom occurs at the critical doping pcr ≈0.16 irrespective of the temperature, and it can be well described by dynamical mean field theory calculations. We argue that the onset of the low-temperature charge instabilities is the low-energy manifestation of the underlying Mottness that characterizes the p < pcr region of the phase diagram. This discovery sets a new framework for theories of charge order and low-temperature phases in underdoped copper oxides.
Collapse
Affiliation(s)
- S Peli
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia I-25121, Italy
- Department of Physics, Università degli Studi di Milano, 20133 Milano, Italy
| | - S Dal Conte
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - R Comin
- Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - N Nembrini
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia I-25121, Italy
- Department of Physics, Università degli Studi di Milano, 20133 Milano, Italy
| | - A Ronchi
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia I-25121, Italy
- I-LAMP (Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25121, Italy
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Leuven, Belgium
| | - P Abrami
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia I-25121, Italy
- I-LAMP (Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25121, Italy
| | - F Banfi
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia I-25121, Italy
- I-LAMP (Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25121, Italy
| | - G Ferrini
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia I-25121, Italy
- I-LAMP (Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25121, Italy
| | - D Brida
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
- Department of Physics and Center for Applied Photonics, University of Konstanz, 78457 Konstanz, Germany
| | - S Lupi
- CNR-IOM Dipartimento di Fisica, Università di Roma La Sapienza P.le Aldo Moro 2, 00185 Rome, Italy
| | - M Fabrizio
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy)
| | - A Damascelli
- Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - M Capone
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) and CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste (Italy)
| | - G Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy
| | - C Giannetti
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia I-25121, Italy
- I-LAMP (Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25121, Italy
| |
Collapse
|
5
|
Boulaoued A, Bantignies JL, Le Parc R, Goze-Bac C, Mésini P, Nguyen TTT, Al Ouahabi A, Lutz P, Guenet JM. Hybrid Fibrillar Xerogels with Unusual Magnetic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13193-13199. [PMID: 27951692 DOI: 10.1021/acs.langmuir.6b03572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on the preparation of a hybrid nanomaterial made up of 1D filaments of an antiferromagnetic self-assembling bicopper complex encapsulated in polymer nanofibrils. The encapsulation process is achieved through the heterogeneous nucleation of the growth of polymer fibrils obtained by thermoreversible gelation as shown by calorimetry experiments. Neutron scattering experiments confirm that the filaments of a bicopper complex retain their 1D character after encapsulation in the fibrils. Superconducting quantum interference device experiments show that the bicopper complex, originally in the gapped spin state in the 3D bulk mesophase, displays a gapless behavior once encapsulated. Extended absorption fine structure and infrared results further highlight the difference in the molecular arrangement of the bicopper complex between the bulk mesophase and the encapsulated state, which may account for the magnetic behavior. This material, which is largely disordered, differs totally from the usual magnetic systems where this effect is observed only on highly crystalline systems with long-range order. Also, this hybrid material is very easy to prepare from its basic constituents and can be further processed in many ways.
Collapse
Affiliation(s)
- Athmane Boulaoued
- Institut Charles Sadron, CNRS UPR22-Université de Strasbourg , 23 rue du Loess, F-67034 Strasbourg Cedex 02, France
| | - Jean-Louis Bantignies
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier , 34095 Montpellier, France
| | - Rozenn Le Parc
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier , 34095 Montpellier, France
| | - Christophe Goze-Bac
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier , 34095 Montpellier, France
| | - Philippe Mésini
- Institut Charles Sadron, CNRS UPR22-Université de Strasbourg , 23 rue du Loess, F-67034 Strasbourg Cedex 02, France
| | - Thi-Thanh-Tam Nguyen
- Institut Charles Sadron, CNRS UPR22-Université de Strasbourg , 23 rue du Loess, F-67034 Strasbourg Cedex 02, France
| | - Abdelaziz Al Ouahabi
- Institut Charles Sadron, CNRS UPR22-Université de Strasbourg , 23 rue du Loess, F-67034 Strasbourg Cedex 02, France
| | - Pierre Lutz
- Institut Charles Sadron, CNRS UPR22-Université de Strasbourg , 23 rue du Loess, F-67034 Strasbourg Cedex 02, France
| | - Jean-Michel Guenet
- Institut Charles Sadron, CNRS UPR22-Université de Strasbourg , 23 rue du Loess, F-67034 Strasbourg Cedex 02, France
| |
Collapse
|
6
|
Baldini E, Mann A, Borroni S, Arrell C, van Mourik F, Carbone F. A versatile setup for ultrafast broadband optical spectroscopy of coherent collective modes in strongly correlated quantum systems. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:064301. [PMID: 27990455 PMCID: PMC5135716 DOI: 10.1063/1.4971182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10-4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements.
Collapse
Affiliation(s)
| | - Andreas Mann
- Laboratory for Ultrafast Microscopy and Electron Scattering and the Lausanne Centre for Ultrafast Science , IPHYS, Station 6, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Simone Borroni
- Laboratory for Ultrafast Microscopy and Electron Scattering and the Lausanne Centre for Ultrafast Science , IPHYS, Station 6, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Christopher Arrell
- Laboratory of Ultrafast Spectroscopy and the Lausanne Centre for Ultrafast Science , ISIC, Station 6, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Frank van Mourik
- Laboratory of Ultrafast Spectroscopy and the Lausanne Centre for Ultrafast Science , ISIC, Station 6, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Fabrizio Carbone
- Laboratory for Ultrafast Microscopy and Electron Scattering and the Lausanne Centre for Ultrafast Science , IPHYS, Station 6, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Peronaci F, Schiró M, Capone M. Transient Dynamics of d-Wave Superconductors after a Sudden Excitation. PHYSICAL REVIEW LETTERS 2015; 115:257001. [PMID: 26722940 DOI: 10.1103/physrevlett.115.257001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 06/05/2023]
Abstract
Motivated by recent ultrafast pump-probe experiments on high-temperature superconductors, we discuss the transient dynamics of a d-wave BCS model after a quantum quench of the interaction parameter. We find that the existence of gap nodes, with the associated nodal quasiparticles, introduces a decay channel which makes the dynamics much faster than in the conventional s-wave model. For every value of the quench parameter, the superconducting gap rapidly converges to a stationary value smaller than the one at equilibrium. Using a sudden approximation for the gap dynamics, we find an analytical expression for the reduction of spectral weight close to the nodes, which is in qualitative agreement with recent experiments.
Collapse
Affiliation(s)
- Francesco Peronaci
- International School for Advanced Studies (SISSA/ISAS) and CNR-IOM Democritos, Via Bonomea 265, 34136 Trieste, Italy
| | - Marco Schiró
- Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, F-91191 Gif-sur-Yvette, France
| | - Massimo Capone
- International School for Advanced Studies (SISSA/ISAS) and CNR-IOM Democritos, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
8
|
Madan I, Kurosawa T, Toda Y, Oda M, Mertelj T, Mihailovic D. Evidence for carrier localization in the pseudogap state of cuprate superconductors from coherent quench experiments. Nat Commun 2015; 6:6958. [PMID: 25891310 PMCID: PMC4411302 DOI: 10.1038/ncomms7958] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/19/2015] [Indexed: 11/09/2022] Open
Abstract
A 'pseudogap' was introduced by Mott to describe a state of matter that has a minimum in the density of states at the Fermi level, deep enough for states to become localized. It can arise either from Coulomb repulsion between electrons, and/or incipient charge or spin order. Here we employ ultrafast spectroscopy to study dynamical properties of the normal to pseudogap state transition in the prototype high-temperature superconductor Bi2Sr2CaCu2O8+δ. We perform a systematic temperature and doping dependence study of the pseudogap photodestruction and recovery in coherent quench experiments, revealing marked absence of critical behaviour of the elementary excitations, which implies an absence of collective electronic ordering beyond a few coherence lengths on short timescales. The data imply ultrafast carrier localization into a textured polaronic state arising from a competing Coulomb interaction and lattice strain, enhanced by a Fermi surface instability.
Collapse
Affiliation(s)
- I Madan
- Jozef Stefan Institute and International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - T Kurosawa
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
| | - Y Toda
- Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan
| | - M Oda
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
| | - T Mertelj
- Jozef Stefan Institute and International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - D Mihailovic
- Jozef Stefan Institute and International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia
| |
Collapse
|