1
|
Liu Z, Zhang K, Zhang ZQ. Phototactic behavior and oviposition of seven species of Phytoseiidae (Acari: Mesostigmata). PEST MANAGEMENT SCIENCE 2024. [PMID: 39632773 DOI: 10.1002/ps.8575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Phototactic behavior and oviposition site selection in phytoseiid predators are crucial for understanding their ecological interactions and optimizing their use in agricultural pest management. This study investigated the phototactic responses and oviposition preferences of seven phytoseiid species of proven or potential importance in biocontrol: Amblydromalus limonicus (Garman & McGregor), Amblyseius herbicolus (Chant), Amblyseius lentiginosus Denmark and Schicha, Neoseiulus barkeri Hughes, Neoseiulus cucumeris (Oudemans), Neoseiulus womersleyi (Schicha), and Phytoseiulus persimilis Athias-Henriot. We hypothesized that these phytoseiid predators use light as a cue, with their phototactic behavior aligning with their respective lifestyles. RESULTS By presenting adults of these species with two choices (i.e. light and dark) in acrylic arenas, we found that P. persimilis exhibited a significant preference for light. In contrast, other species showed no phototactic preference. The phototactic preferences were similar between genders of all six sexually reproducing species tested in this study. Furthermore, the oviposition site preferences varied significantly among species. Gravid females of As. herbicolus, N. cucumeris, N. womersleyi, and P. persimilis preferred dark sites for egg laying, whereas Ad. limonicus and As. lentiginosus showed no light preference, and N. barkeri preferred light for oviposition. CONCLUSION This study highlights the importance of light as an ecological factor influencing phytoseiid behavior and suggests that phototactic and oviposition preferences are adaptations to specific environmental niches. These findings have practical implications for enhancing the effectiveness of phytoseiids in pest management. Further research should investigate the mechanisms driving phototactic responses and light perception in these phytoseiid predators. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenguo Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Department of Animal Science, Shandong Agricultural University, Taian, People's Republic of China
| | - Keshi Zhang
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Zhi-Qiang Zhang
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Goldshtein A, Chen X, Amichai E, Boonman A, Harten L, Yinon O, Orchan Y, Nathan R, Toledo S, Couzin ID, Yovel Y. Acoustic cognitive map-based navigation in echolocating bats. Science 2024; 386:561-567. [PMID: 39480949 DOI: 10.1126/science.adn6269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Bats are known for their ability to use echolocation for obstacle avoidance and orientation. However, the extent to which bats utilize their highly local and directional echolocation for kilometer-scale navigation is unknown. In this study, we translocated wild Kuhl's pipistrelle bats and tracked their homing abilities while manipulating their visual, magnetic, and olfactory sensing and accurately tracked them using a new reverse GPS system. We show that bats can identify their location after translocation and conduct several-kilometer map-based navigation using solely echolocation. This proposition was further supported by a large-scale echolocation model disclosing how bats use environmental acoustic information to perform acoustic cognitive map-based navigation. We also demonstrate that navigation is improved when using both echolocation and vision.
Collapse
Affiliation(s)
- Aya Goldshtein
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, 78464 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Xing Chen
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Amichai
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Ecology, Evolution, Environment and Society Graduate Program, Dartmouth College, Hanover, NH 03766, USA
| | - Arjan Boonman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lee Harten
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Omer Yinon
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yotam Orchan
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ran Nathan
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Iain D Couzin
- Centre for the Advanced Study of Collective Behavior, University of Konstanz, 78464 Konstanz, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Wan Z, Zhao K, Cheng H, Fu P. Measurement Modeling and Performance Analysis of a Bionic Polarimetric Imaging Navigation Sensor Using Rayleigh Scattering to Generate Scattered Sunlight. SENSORS (BASEL, SWITZERLAND) 2024; 24:498. [PMID: 38257591 PMCID: PMC11154241 DOI: 10.3390/s24020498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
The bionic polarimetric imaging navigation sensor (BPINS) is a navigation sensor that provides absolute heading, and it is of practical engineering significance to model the measurement error of BPINS. The existing BPINSs are still modeled using photodiode-based measurements rather than imaging measurements and are not modeled systematically enough. This paper proposes a measurement performance analysis method of BPINS that takes into account the geometric and polarization errors of the optical system. Firstly, the key error factors affecting the overall measurement performance of BPINS are investigated, and the Stokes vector-based measurement error model of BPINS is introduced. Secondly, based on its measurement error model, the effect of the error source on the measurement performance of BPINS is quantitatively analyzed using Rayleigh scattering to generate scattered sunlight as a known incident light source. The numerical results show that in angle of E-vector (AoE) measurement, the coordinate deviation of the principal point has a greater impact, followed by grayscale response inconsistency of CMOS and integration angle error of micro-polarization array, and finally lens attenuation; in degree of linear polarization (DoLP) measurement, the grayscale response inconsistency of CMOS has a more significant impact. This finding can accurately guide the subsequent calibration of BPINS, and the quantitative results provide an important theoretical reference for its optimal design.
Collapse
Affiliation(s)
- Zhenhua Wan
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China;
| | - Kaichun Zhao
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
| | - Haoyuan Cheng
- College of Engineering, Ocean University of China, Qingdao 266100, China;
| | - Peng Fu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
4
|
Pophof B, Henschenmacher B, Kattnig DR, Kuhne J, Vian A, Ziegelberger G. Biological Effects of Electric, Magnetic, and Electromagnetic Fields from 0 to 100 MHz on Fauna and Flora: Workshop Report. HEALTH PHYSICS 2023; 124:39-52. [PMID: 36480584 PMCID: PMC9722389 DOI: 10.1097/hp.0000000000001624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
ABSTRACT This report summarizes effects of anthropogenic electric, magnetic, and electromagnetic fields in the frequency range from 0 to 100 MHz on flora and fauna, as presented at an international workshop held on 5-7 November in 2019 in Munich, Germany. Such fields may originate from overhead powerlines, earth or sea cables, and from wireless charging systems. Animals and plants react differentially to anthropogenic fields; the mechanisms underlying these responses are still researched actively. Radical pairs and magnetite are discussed mechanisms of magnetoreception in insects, birds, and mammals. Moreover, several insects as well as marine species possess specialized electroreceptors, and behavioral reactions to anthropogenic fields have been reported. Plants react to experimental modifications of their magnetic environment by growth changes. Strong adverse effects of anthropogenic fields have not been described, but knowledge gaps were identified; further studies, aiming at the identification of the interaction mechanisms and the ecological consequences, are recommended.
Collapse
Affiliation(s)
- Blanka Pophof
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Bernd Henschenmacher
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Daniel R. Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Jens Kuhne
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| | - Alain Vian
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Gunde Ziegelberger
- Competence Centre for Electromagnetic Fields, Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, 85764 Oberschleißheim, Germany
| |
Collapse
|
5
|
An artificial neural network explains how bats might use vision for navigation. Commun Biol 2022; 5:1325. [PMID: 36463311 PMCID: PMC9719490 DOI: 10.1038/s42003-022-04260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Animals navigate using various sensory information to guide their movement. Miniature tracking devices now allow documenting animals' routes with high accuracy. Despite this detailed description of animal movement, how animals translate sensory information to movement is poorly understood. Recent machine learning advances now allow addressing this question with unprecedented statistical learning tools. We harnessed this power to address visual-based navigation in fruit bats. We used machine learning and trained a convolutional neural network to navigate along a bat's route using visual information that would have been available to the real bat, which we collected using a drone. We show that a simple feed-forward network can learn to guide the agent towards a goal based on sensory input, and can generalize its learning both in time and in space. Our analysis suggests how animals could potentially use visual input for navigation and which features might be useful for this purpose.
Collapse
|
6
|
A 3D Attitude Estimation Method Based on Attitude Angular Partial Feedback for Polarization-Based Integrated Navigation System. SENSORS 2022; 22:s22030710. [PMID: 35161457 PMCID: PMC8840561 DOI: 10.3390/s22030710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023]
Abstract
Polarization (POL) navigation is inspired by insects’ behavior of precepting celestial polarization patterns to orient themselves. It has the advantages of being autonomous and having no accumulative error, which allows it to be used to correct the errors of the inertial navigation system (INS). The integrated navigation system of the POL-based solar vector with INS is capable of 3D attitude determination. However, the commonly used POL-based integrated navigation system generally implements the attitude update procedure without considering the performance difference with different magnitudes of the angles between the solar-vector and body-axes of the platform (S-B angles). When one of the S-B angles is small enough, the estimated accuracy of the attitude angle by the INS/POL is worse than that of the strapdown inertial navigation system. To minimize the negative impact of POL in this situation, an attitude angular adaptive partial feedback method is proposed. The S-B angles are used to construct a partial feedback factor matrix to adaptively adjust the degree of error correction for INS. The results of simulation and real-world experiments demonstrate that the proposed method can improve the accuracy of 3D attitude estimation compared with the conventional all-feedback method for small S-B angles especially for yaw angle estimation.
Collapse
|
7
|
Wan Z, Zhao K, Li Y, Chu J. Measurement error model of the bio-inspired polarization imaging orientation sensor. OPTICS EXPRESS 2022; 30:22-41. [PMID: 35201192 DOI: 10.1364/oe.442244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
This article studies the measurement error model and calibration method of the bio-inspired polarization imaging orientation sensor (BPIOS), which has important engineering significance for promoting bio-inspired polarization navigation. Firstly, we systematically analyzed the measurement errors in the imaging process of polarized skylight and accurately established an error model of BPIOS based on Stokes vector. Secondly, using the simulated Rayleigh skylight as the incident surface light source, the influence of multi-source factors on the measurement accuracy of BPIOS is quantitatively given for the first time. These simulation results can guide the later calibration of BPIOS. We then proposed a calibration method of BPIOS based on geometric parameters and the Mueller matrix of the optical system and conducted an indoor calibration experiment. Experimental results show that the measurement accuracy of the calibrated BPIOS can reach 0.136°. Finally, the outdoor performance of BPIOS is studied. Outdoor dynamic performance test and field compensation were performed. Outdoor results show that the heading accuracy of BPIOS is 0.667°.
Collapse
|
8
|
Page RA, ter Hofstede HM. Sensory and Cognitive Ecology of Bats. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012921-052635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We see stunning morphological diversity across the animal world. Less conspicuous but equally fascinating are the sensory and cognitive adaptations that determine animals’ interactions with their environments and each other. We discuss the development of the fields of sensory and cognitive ecology and the importance of integrating these fields to understand the evolution of adaptive behaviors. Bats, with their extraordinarily high ecological diversity, are ideal animals for this purpose. An explosion in recent research allows for better understanding of the molecular, genetic, neural, and behavioral bases for sensory ecology and cognition in bats. We give examples of studies that illuminate connections between sensory and cognitive features of information filtering, evolutionary trade-offs in sensory and cognitive processing, and multimodal sensing and integration. By investigating the selective pressures underlying information acquisition, processing, and use in bats, we aim to illuminate patterns and processes driving sensory and cognitive evolution.
Collapse
Affiliation(s)
- Rachel A. Page
- Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, República de Panamá
| | - Hannah M. ter Hofstede
- Smithsonian Tropical Research Institute, Apartado 0843–03092, Balboa, Ancón, República de Panamá
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
9
|
Kryuchkov M, Savitsky V, Wilts BD, Gray E, Katanaev VL. Light Polarization by Biological Nanocoatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23481-23488. [PMID: 33974394 DOI: 10.1021/acsami.1c05049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Light plays paramount functions for living beings in nature. In addition to color, the polarization of light is used by many animals for navigation and communication. In this study, we describe the light polarizing role of special nanostructures coating cuticular surfaces of diverse arthropods. These structures are built as parallel nanoscale ridges covering the eyes of the sunlight-navigating spider Drassodes lapidosus and of the water pond-swarming black fly Simulium vittatum, as well as the light-emitting abdominal lantern of the firefly Aquatica lateralis. Exact topography and dimensions of the parallel nanoridges provide different light polarizing efficiencies and wavelength sensitivity. Optical modeling confirms that the nanoscale ridges are responsible for the spectral polarization dependency. Co-opting from our recent work on the self-assembly of Drosophila corneal nanostructures, we engineer arthropod-like parallel nanoridges on artificial surfaces, which recapitulate the light polarization effects. Our work highlights the fundamental importance of nanocoatings in arthropods for the light polarization management and provides a new biomimetic approach to produce ordered nanostructures under mild conditions.
Collapse
Affiliation(s)
- Mikhail Kryuchkov
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CMU, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Vladimir Savitsky
- Zoological Museum of the Lomonosov Moscow State University, Bol'shaya Nikitskaya str. 2, Moscow 125009, Russian Federation
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Elmer Gray
- Department of Entomology, University of Georgia, Biological Sciences Building 413, Georgia 30602 Athens, United States
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CMU, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- School of Biomedicine, Far Eastern Federal University, Sukhanova Street 8, Vladivostok 690922, Russian Federation
| |
Collapse
|
10
|
Fan Z, Wang X, Jin H, Wang C, Pan N, Hua D. Neutral point detection using the AOP of polarized skylight patterns. OPTICS EXPRESS 2021; 29:5665-5676. [PMID: 33726101 DOI: 10.1364/oe.414718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The neutral points are one of the most significant characteristics of the polarized skylight pattern in the whole sky. At present, detection of the neutral points mostly utilizes ellipse fitting of the degree of polarization. However, because the degree of polarization distribution characteristics of a polarized skylight pattern is easily affected by the environment, the robustness of the detection is unstable. Aiming at the problem, we analyzed the angle of polarization distribution characteristics of polarized skylight patterns in the region around the neutral point by measurement experiments. Based on this, we proposed an automatic detection method of neutral points using the angle of polarization of the polarized skylight pattern. The experimental results of different times in a continuous period of time show that compared with ellipse fitting of the degree of polarization, the detection accuracy of the proposed method is almost the same, but the robustness is better. It provides a novel method for the position detecting of the neutral point, which is in favor of the measurement applications of polarization technology.
Collapse
|
11
|
Toledo S, Shohami D, Schiffner I, Lourie E, Orchan Y, Bartan Y, Nathan R. Cognitive map-based navigation in wild bats revealed by a new high-throughput tracking system. Science 2020; 369:188-193. [PMID: 32647000 DOI: 10.1126/science.aax6904] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/29/2020] [Indexed: 11/02/2022]
Abstract
Seven decades of research on the "cognitive map," the allocentric representation of space, have yielded key neurobiological insights, yet field evidence from free-ranging wild animals is still lacking. Using a system capable of tracking dozens of animals simultaneously at high accuracy and resolution, we assembled a large dataset of 172 foraging Egyptian fruit bats comprising >18 million localizations collected over 3449 bat-nights across 4 years. Detailed track analysis, combined with translocation experiments and exhaustive mapping of fruit trees, revealed that wild bats seldom exhibit random search but instead repeatedly forage in goal-directed, long, and straight flights that include frequent shortcuts. Alternative, non-map-based strategies were ruled out by simulations, time-lag embedding, and other trajectory analyses. Our results are consistent with expectations from cognitive map-like navigation and support previous neurobiological evidence from captive bats.
Collapse
Affiliation(s)
- Sivan Toledo
- Blavatnik School of Computer Science, Tel-Aviv University, Israel.
| | - David Shohami
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Israel.
| | - Ingo Schiffner
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Israel
| | - Emmanuel Lourie
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Israel
| | - Yotam Orchan
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Israel
| | - Yoav Bartan
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Israel
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
12
|
Harten L, Katz A, Goldshtein A, Handel M, Yovel Y. The ontogeny of a mammalian cognitive map in the real world. Science 2020; 369:194-197. [PMID: 32647001 DOI: 10.1126/science.aay3354] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 05/29/2020] [Indexed: 11/02/2022]
Abstract
How animals navigate over large-scale environments remains a riddle. Specifically, it is debated whether animals have cognitive maps. The hallmark of map-based navigation is the ability to perform shortcuts, i.e., to move in direct but novel routes. When tracking an animal in the wild, it is extremely difficult to determine whether a movement is truly novel because the animal's past movement is unknown. We overcame this difficulty by continuously tracking wild fruit bat pups from their very first flight outdoors and over the first months of their lives. Bats performed truly original shortcuts, supporting the hypothesis that they can perform large-scale map-based navigation. We documented how young pups developed their visual-based map, exemplifying the importance of exploration and demonstrating interindividual differences.
Collapse
Affiliation(s)
- Lee Harten
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Amitay Katz
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Aya Goldshtein
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Michal Handel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
13
|
Benediktová K, Adámková J, Svoboda J, Painter MS, Bartoš L, Nováková P, Vynikalová L, Hart V, Phillips J, Burda H. Magnetic alignment enhances homing efficiency of hunting dogs. eLife 2020; 9:55080. [PMID: 32539933 PMCID: PMC7297537 DOI: 10.7554/elife.55080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023] Open
Abstract
Despite anecdotal reports of the astonishing homing abilities in dogs, their homing strategies are not fully understood. We equipped 27 hunting dogs with GPS collars and action cams, let them freely roam in forested areas, and analyzed components of homing in over 600 trials. When returning to the owner (homewards), dogs either followed their outbound track (‘tracking’) or used a novel route (‘scouting’). The inbound track during scouting started mostly with a short (about 20 m) run along the north-south geomagnetic axis, irrespective of the actual direction homewards. Performing such a ‘compass run’ significantly increased homing efficiency. We propose that this run is instrumental for bringing the mental map into register with the magnetic compass and to establish the heading of the animal.
Collapse
Affiliation(s)
- Kateřina Benediktová
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | - Jana Adámková
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | - Jan Svoboda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | - Michael Scott Painter
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic.,Biology Department, Barry University, Miami, United States
| | - Luděk Bartoš
- Department of Ethology, Institute of Animal Science, Praha, Czech Republic.,Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Praha, Czech Republic
| | - Petra Nováková
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | - Lucie Vynikalová
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Praha, Czech Republic
| | - Vlastimil Hart
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | - John Phillips
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| |
Collapse
|
14
|
Voigt CC, Kravchenko K, Liechti F, Bumrungsri S. Skyrocketing Flights as a Previously Unrecognized Behaviour of Open-Space Foraging Bats. ACTA CHIROPTEROLOGICA 2020. [DOI: 10.3161/15081109acc2019.21.2.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian C. Voigt
- Department Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | - Kseniia Kravchenko
- Department Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | - Felix Liechti
- Swiss Ornithological Institute, Seerose 1, CH-6204 Sempach, Switzerland
| | - Sara Bumrungsri
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
15
|
Hoffmann S, Bley A, Matthes M, Firzlaff U, Luksch H. The Neural Basis of Dim-Light Vision in Echolocating Bats. BRAIN, BEHAVIOR AND EVOLUTION 2019; 94:61-70. [PMID: 31747669 DOI: 10.1159/000504124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 11/19/2022]
Abstract
Echolocating bats evolved a sophisticated biosonar imaging system that allows for a life in dim-light habitats. However, especially for far-range operations such as homing, bats can support biosonar by vision. Large eyes and a retina that mainly consists of rods are assumed to be the optical adjustments that enable bats to use visual information at low light levels. In addition to optical mechanisms, many nocturnal animals evolved neural adaptations such as elongated integration times or enlarged spatial sampling areas to further increase the sensitivity of their visual system by temporal or spatial summation of visual information. The neural mechanisms that underlie the visual capabilities of echolocating bats have, however, so far not been investigated. To shed light on spatial and temporal response characteristics of visual neurons in an echolocating bat, Phyllostomus discolor, we recorded extracellular multiunit activity in the retino-recipient superficial layers of the superior colliculus (SC). We discovered that response latencies of these neurons were generally in the mammalian range, whereas neural spatial sampling areas were unusually large compared to those measured in the SC of other mammals. From this we suggest that echolocating bats likely use spatial but not temporal summation of visual input to improve visual performance under dim-light conditions. Furthermore, we hypothesize that bats compensate for the loss of visual spatial precision, which is a byproduct of spatial summation, by integration of spatial information provided by both the visual and the biosonar systems. Given that knowledge about neural adaptations to dim-light vision is mainly based on studies done in non-mammalian species, our novel data provide a valuable contribution to the field and demonstrate the suitability of echolocating bats as a nocturnal animal model to study the neurophysiological aspects of dim-light vision.
Collapse
Affiliation(s)
- Susanne Hoffmann
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany, .,Max Planck Institute for Ornithology, Department of Behavioural Neurobiology, Seewiesen, Germany,
| | - Alexandra Bley
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Mariana Matthes
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Uwe Firzlaff
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Harald Luksch
- Chair of Zoology, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
16
|
Lindecke O, Elksne A, Holland RA, Pētersons G, Voigt CC. Experienced Migratory Bats Integrate the Sun's Position at Dusk for Navigation at Night. Curr Biol 2019; 29:1369-1373.e3. [PMID: 30955934 DOI: 10.1016/j.cub.2019.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/30/2019] [Accepted: 03/01/2019] [Indexed: 11/19/2022]
Abstract
From bats to whales, millions of mammals migrate every year. However, their navigation capacity for accomplishing long-distance movements remains remarkably understudied and lags behind by five decades compared to other animals [1, 2]-partly because, unlike for other taxa, such as birds and sea turtles, no small-scale orientation assay has so far been developed. Yet recently, bats became a model to investigate which cues mammals use for long-range navigation, and, surprisingly for nocturnal animals, sunset cues, and particularly polarized-light cues, appear to be crucial for calibration of the magnetic-compass system in non-migratory bats [3-5]. This does not appear to hold for a species of migratory bat, however [6], and thus the nature of the information used by migratory bats for navigation remains unclear. Here, we asked whether the position of the solar disk per se is relevant for compass orientation in a migratory bat, Pipistrellus pygmaeus. Using a new experimental assay that measures takeoff orientation, we tested the orientation of bats exposed to a shifted sunset azimuth using a mirror at dusk. Bats exposed to a 180°-rotated azimuth of the setting sun and released after translocation during the same night shifted their heading direction by ∼180° compared to control bats. However, first-year migrants had no clear orientation either as controls or after the same treatment. This suggests that learning the migratory direction is a key component in the navigational system of naive bats in this species. Our study provides rare evidence for the specific cues and mechanisms that migratory mammals use for navigation.
Collapse
Affiliation(s)
- Oliver Lindecke
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany; AG Verhaltensbiologie, Institute of Biology, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
| | - Alise Elksne
- Institute of Biology, University of Latvia, Miera Street 3, 2169 Salaspils, Latvia
| | - Richard A Holland
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Gunārs Pētersons
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, K. Helmana Street 8, 3004 Jelgava, Latvia
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany; AG Verhaltensbiologie, Institute of Biology, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| |
Collapse
|
17
|
Lindecke O, Elksne A, Holland RA, Pētersons G, Voigt CC. Orientation and flight behaviour identify the Soprano pipistrelle as a migratory bat species at the Baltic Sea coast. J Zool (1987) 2019. [DOI: 10.1111/jzo.12654] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- O. Lindecke
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- Institute of Biology Freie Universität Berlin Berlin Germany
| | - A. Elksne
- Institute of Biology University of Latvia Salaspils Latvia
| | - R. A. Holland
- School of Biological Sciences Bangor University Bangor UK
| | - G. Pētersons
- Faculty of Veterinary Medicine Latvia University of Life Sciences and Technologies Jelgava Latvia
| | - C. C. Voigt
- Department of Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Berlin Germany
- Institute of Biology Freie Universität Berlin Berlin Germany
| |
Collapse
|
18
|
Voigt CC, Frick WF, Holderied MW, Holland R, Kerth G, Mello MAR, Plowright RK, Swartz S, Yovel Y. PRINCIPLES AND PATTERNS OF BAT MOVEMENTS: FROM AERODYNAMICS TO ECOLOGY. QUARTERLY REVIEW OF BIOLOGY 2019; 92:267-287. [PMID: 29861509 DOI: 10.1086/693847] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Movement ecology as an integrative discipline has advanced associated fields because it presents not only a conceptual framework for understanding movement principles but also helps formulate predictions about the consequences of movements for animals and their environments. Here, we synthesize recent studies on principles and patterns of bat movements in context of the movement ecology paradigm. The motion capacity of bats is defined by their highly articulated, flexible wings. Power production during flight follows a U-shaped curve in relation to speed in bats yet, in contrast to birds, bats use mostly exogenous nutrients for sustained flight. The navigation capacity of most bats is dominated by the echolocation system, yet other sensory modalities, including an iron-based magnetic sense, may contribute to navigation depending on a bat's familiarity with the terrain. Patterns derived from these capacities relate to antagonistic and mutualistic interactions with food items. The navigation capacity of bats may influence their sociality, in particular, the extent of group foraging based on eavesdropping on conspecifics' echolocation calls. We infer that understanding the movement ecology of bats within the framework of the movement ecology paradigm provides new insights into ecological processes mediated by bats, from ecosystem services to diseases.
Collapse
Affiliation(s)
- Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research 10315 Berlin, Germany, Institute of Biology, Freie Universität Berlin 14195 Berlin, Germany
| | - Winifred F Frick
- Bat Conservation International Austin, Texas 78716 USA, Ecology and Evolutionary Biology, University of California Santa Cruz, California 95064 USA
| | - Marc W Holderied
- School of Biological Sciences, Bristol University Bristol BS8 1TQ United Kingdom
| | - Richard Holland
- School of Biological Sciences, Bangor University Bangor, Gwynedd LL57 2UW United Kingdom
| | - Gerald Kerth
- Applied Zoology and Conservation, University of Greifswald D-17489 Greifswald, Germany
| | - Marco A R Mello
- Department of General Biology, Federal University of Minas Gerais 31270-901 Belo Horizonte, MG, Brazil
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University Bozeman, Montana 59717 USA
| | - Sharon Swartz
- Department of Ecology and Evolutionary Biology and School of Engineering, Brown University Providence, Rhode Island 02912 USA
| | - Yossi Yovel
- Department of Zoology, Faculty of Life Sciences, and the "Sagol" School of Neuroscience, Tel-Aviv University Tel-Aviv, Israel
| |
Collapse
|
19
|
Liu J, Zhao D, Wang C, Yang J, Guo X, Tang J, Shen C. Attitude calculation method based on full-sky atmospheric polarization mode. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:015009. [PMID: 30709207 DOI: 10.1063/1.5056195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
In the natural world, insects such as bees and sand ants can navigate with the aid of polarized skylight. Inspired by this, bio-inspired navigation systems based on polarized skylight have attracted considerable attention recently. As an important navigation parameter, attitude information is critical for control and navigation of a vehicle. In this paper, the structural characteristics of full-sky atmospheric polarization mode are studied to calculate the attitude of a vehicle relative to the observation point. The heading angle is obtained by subtraction between two angles. One is the angle between the solar meridian and the geographic north. The other is the angle between the solar meridian and the body coordinate system, which can be obtained from the polarization data detected by the sensor. And the solar position can also gain from the polarization data. Then based on the solar position and the coordinates of solar projection point, the zenith point can be determined. With the coordinates of the zenith point in the body and the reference coordinate system, the pitch angle and roll angle are solved. Simulation and practical experiments are conducted to validate the performance of the attitude calculation method. Experiment results with high accuracy show its feasibility and effectiveness.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Instrumentation and Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Donghua Zhao
- Key Laboratory of Instrumentation and Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Chenguang Wang
- Key Laboratory of Instrumentation and Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Jiangtao Yang
- Key Laboratory of Instrumentation and Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiaoting Guo
- Key Laboratory of Instrumentation and Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Jun Tang
- Key Laboratory of Instrumentation and Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| | - Chong Shen
- Key Laboratory of Instrumentation and Science and Dynamic Measurement, Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
20
|
Voigt CC, Rehnig K, Lindecke O, Pētersons G. Migratory bats are attracted by red light but not by warm-white light: Implications for the protection of nocturnal migrants. Ecol Evol 2018; 8:9353-9361. [PMID: 30377506 PMCID: PMC6194273 DOI: 10.1002/ece3.4400] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/28/2018] [Accepted: 06/17/2018] [Indexed: 11/14/2022] Open
Abstract
The replacement of conventional lighting with energy-saving light emitting diodes (LED) is a worldwide trend, yet its consequences for animals and ecosystems are poorly understood. Strictly nocturnal animals such as bats are particularly sensitive to artificial light at night (ALAN). Past studies have shown that bats, in general, respond to ALAN according to the emitted light color and that migratory bats, in particular, exhibit phototaxis in response to green light. As red and white light is frequently used in outdoor lighting, we asked how migratory bats respond to these wavelength spectra. At a major migration corridor, we recorded the presence of migrating bats based on ultrasonic recorders during 10-min light-on/light-off intervals to red or warm-white LED, interspersed with dark controls. When the red LED was switched on, we observed an increase in flight activity for Pipistrellus pygmaeus and a trend for a higher activity for Pipistrellus nathusii. As the higher flight activity of bats was not associated with increased feeding, we rule out the possibility that bats foraged at the red LED light. Instead, bats may have flown toward the red LED light source. When exposed to warm-white LED, general flight activity at the light source did not increase, yet we observed an increased foraging activity directly at the light source compared to the dark control. Our findings highlight a response of migratory bats toward LED light that was dependent on light color. The most parsimonious explanation for the response to red LED is phototaxis and for the response to warm-white LED foraging. Our findings call for caution in the application of red aviation lighting, particularly at wind turbines, as this light color might attract bats, leading eventually to an increased collision risk of migratory bats at wind turbines.
Collapse
Affiliation(s)
- Christian C. Voigt
- Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of BiologyFreie Universität BerlinBerlinGermany
| | - Katharina Rehnig
- Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Faculty of Life ScienceUniversity of ViennaViennaAustria
| | - Oliver Lindecke
- Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Institute of BiologyFreie Universität BerlinBerlinGermany
| | - Gunārs Pētersons
- Faculty of Veterinary MedicineLatvia University of Life Sciences and TechnologiesJelgavaLatvia
| |
Collapse
|
21
|
Santana MAD, Medeiros HHA, Leite MD, Barros MAS, de Góis Morais PLA, Soares JG, Ladd FVL, Cavalcante JS, Cavalcante JC, Costa MSMO, Nascimento Jr. ES. Retinofugal Projections Into Visual Brain Structures in the Bat Artibeus planirostris: A CTb Study. Front Neuroanat 2018; 12:66. [PMID: 30135648 PMCID: PMC6092499 DOI: 10.3389/fnana.2018.00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023] Open
Abstract
A well-developed visual system can provide significant sensory information to guide motor behavior, especially in fruit-eating bats, which usually use echolocation to navigate at high speed through cluttered environments during foraging. Relatively few studies have been performed to elucidate the organization of the visual system in bats. The present work provides an extensive morphological description of the retinal projections in the subcortical visual nuclei in the flat-faced fruit-eating bat (Artibeus planirostris) using anterograde transport of the eye-injected cholera toxin B subunit (CTb), followed by morphometrical and stereological analyses. Regarding the cytoarchitecture, the dorsal lateral geniculate nucleus (dLGN) was homogeneous, with no evident lamination. However, the retinal projection contained two layers that had significantly different marking intensities and a massive contralateral input. The superior colliculus (SC) was identified as a laminar structure composed of seven layers, and the retinal input was only observed on the contralateral side, targeting two most superficial layers. The medial pretectal nucleus (MPT), olivary pretectal nucleus (OPT), anterior pretectal nucleus (APT), posterior pretectal nucleus (PPT) and nucleus of the optic tract (NOT) were comprised the pretectal nuclear complex (PNT). Only the APT lacked a retinal input, which was predominantly contralateral in all other nuclei. Our results showed the morphometrical and stereological features of a bat species for the first time.
Collapse
Affiliation(s)
- Melquisedec A. D. Santana
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Helder H. A. Medeiros
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Mariana D. Leite
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Joacil Germano Soares
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fernando V. L. Ladd
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Judney C. Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
22
|
Liu J, Yang J, Wang Y, Tang J, Shen C. Global positioning method based on polarized light compass system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:054503. [PMID: 29864808 DOI: 10.1063/1.5026870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper presents a global positioning method based on a polarized light compass system. A main limitation of polarization positioning is the environment such as weak and locally destroyed polarization environments, and the solution to the positioning problem is given in this paper which is polarization image de-noising and segmentation. Therefore, the pulse coupled neural network is employed for enhancing positioning performance. The prominent advantages of the present positioning technique are as follows: (i) compared to the existing position method based on polarized light, better sun tracking accuracy can be achieved and (ii) the robustness and accuracy of positioning under weak and locally destroyed polarization environments, such as cloudy or building shielding, are improved significantly. Finally, some field experiments are given to demonstrate the effectiveness and applicability of the proposed global positioning technique. The experiments have shown that our proposed method outperforms the conventional polarization positioning method, the real time longitude and latitude with accuracy up to 0.0461° and 0.0911°, respectively.
Collapse
Affiliation(s)
- Jun Liu
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, Shanxi 030051, China
| | - Jiangtao Yang
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, Shanxi 030051, China
| | - Yubo Wang
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, Shanxi 030051, China
| | - Jun Tang
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, Shanxi 030051, China
| | - Chong Shen
- Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, Shanxi 030051, China
| |
Collapse
|
23
|
Borges RM. Dark Matters: Challenges of Nocturnal Communication Between Plants and Animals in Delivery of Pollination Services. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2018; 91:33-42. [PMID: 29599655 PMCID: PMC5872639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The night is a special niche characterized by dim light, lower temperatures, and higher humidity compared to the day. Several animals have made the transition from the day into the night and have acquired unique adaptations to cope with the challenges of performing nocturnal activities. Several plant species have opted to bloom at night, possibly as a response to aridity to prevent excessive water loss through evapotranspiration since flowering is often a water-demanding process, or to protect pollen from heat stress. Nocturnal pollinators have visual adaptations to function under dim light conditions but may also trade off vision against olfaction when they are dependent on nectar-rewarding and scented flowers. Nocturnal pollinators may use CO2 and humidity cues emanating from freshly-opened flowers as indicators of nectar-rich resources. Some endothermic nocturnal insect pollinators are attracted to thermogenic flowers within which they remain to obtain heat as a reward to increase their energy budget. This review focuses on mechanisms that pollinators use to find flowers at night, and the signals that nocturnally blooming flowers may employ to attract pollinators under dim light conditions. It also indicates gaps in our knowledge. While millions of years of evolutionary time have given pollinators and plants solutions to the delivery of pollination services and to the offering of appropriate rewards, this history of successful evolution is being threatened by artificial light at night. Excessive and inappropriate illumination associated with anthropogenic activities has resulted in significant light pollution which serves to undermine life processes governed by dim light.
Collapse
Affiliation(s)
- Renee M. Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
24
|
Review for chiral-at-metal complexes and metal-organic framework enantiomorphs. Sci Bull (Beijing) 2017; 62:1344-1354. [PMID: 36659297 DOI: 10.1016/j.scib.2017.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/13/2017] [Accepted: 09/08/2017] [Indexed: 01/21/2023]
Abstract
This review discusses chiral-at-metal complexes and introduces enantiomorphs from assembly structure. Owing to the diverse coordination number and activity of metal ions as chiral centers, abundant structures for chiral selectivity, catalysis, and polarized light-response are the notable advantages of the chiral-at-metal complexes. The rational design and preparation of linear multi-dentate ligands is a good choice to improve the stability of chiral complexes, such as multi-bonding structure for high stability as a self-limiting system. The bio-significance and potential application of chiral-at-metal complexes are discussed, such as the synergistic effect of catalysis and chiral selectivity of the metal center in enzymes. Enzyme could be remolded to replace the original central metal ions with highly active rare earth or precious metal ions to form artificial metalloenzyme or to remove the "redundant" part around the metal center to improve the accessibility of substrate. The polarized light-response mechanism of chiral opsin is introduced in relation to its role in animal migration. Metal-organic frameworks (MOFs) are crystalline and porous materials built from metal nodes or clusters and organic linkers and provide the possibility to prepare artificial enantiomorphs. The preparations, applications, and characterization methods of MOF enatiomorphs are therefore introduced. We hope this review inspires researchers at all levels of their career to consider the title topic in their own research in terms of its application and potential value.
Collapse
|
25
|
Tadepalli S, Slocik JM, Gupta MK, Naik RR, Singamaneni S. Bio-Optics and Bio-Inspired Optical Materials. Chem Rev 2017; 117:12705-12763. [PMID: 28937748 DOI: 10.1021/acs.chemrev.7b00153] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
26
|
Hoffmann S, Vega-Zuniga T, Greiter W, Krabichler Q, Bley A, Matthes M, Zimmer C, Firzlaff U, Luksch H. Congruent representation of visual and acoustic space in the superior colliculus of the echolocating bat Phyllostomus discolor. Eur J Neurosci 2016; 44:2685-2697. [PMID: 27600873 DOI: 10.1111/ejn.13394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 11/29/2022]
Abstract
The midbrain superior colliculus (SC) commonly features a retinotopic representation of visual space in its superficial layers, which is congruent with maps formed by multisensory neurons and motor neurons in its deep layers. Information flow between layers is suggested to enable the SC to mediate goal-directed orienting movements. While most mammals strongly rely on vision for orienting, some species such as echolocating bats have developed alternative strategies, which raises the question how sensory maps are organized in these animals. We probed the visual system of the echolocating bat Phyllostomus discolor and found that binocular high acuity vision is frontally oriented and thus aligned with the biosonar system, whereas monocular visual fields cover a large area of peripheral space. For the first time in echolocating bats, we could show that in contrast with other mammals, visual processing is restricted to the superficial layers of the SC. The topographic representation of visual space, however, followed the general mammalian pattern. In addition, we found a clear topographic representation of sound azimuth in the deeper collicular layers, which was congruent with the superficial visual space map and with a previously documented map of orienting movements. Especially for bats navigating at high speed in densely structured environments, it is vitally important to transfer and coordinate spatial information between sensors and motor systems. Here, we demonstrate first evidence for the existence of congruent maps of sensory space in the bat SC that might serve to generate a unified representation of the environment to guide motor actions.
Collapse
Affiliation(s)
- Susanne Hoffmann
- Technische Universität München, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany.
| | - Tomas Vega-Zuniga
- Technische Universität München, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
| | - Wolfgang Greiter
- Technische Universität München, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
| | - Quirin Krabichler
- Technische Universität München, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
| | - Alexandra Bley
- Technische Universität München, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
| | - Mariana Matthes
- Technische Universität München, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
| | - Christiane Zimmer
- Technische Universität München, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
| | - Uwe Firzlaff
- Technische Universität München, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
| | - Harald Luksch
- Technische Universität München, Liesel-Beckmann-Str. 4, 85354, Freising-Weihenstephan, Germany
| |
Collapse
|
27
|
Tang J, Zhang N, Li D, Wang F, Zhang B, Wang C, Shen C, Ren J, Xue C, Liu J. Novel robust skylight compass method based on full-sky polarization imaging under harsh conditions. OPTICS EXPRESS 2016; 24:15834-15844. [PMID: 27410853 DOI: 10.1364/oe.24.015834] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel method based on Pulse Coupled Neural Network(PCNN) algorithm for the highly accurate and robust compass information calculation from the polarized skylight imaging is proposed,which showed good accuracy and reliability especially under cloudy weather,surrounding shielding and moon light. The degree of polarization (DOP) combined with the angle of polarization (AOP), calculated from the full sky polarization image, were used for the compass information caculation. Due to the high sensitivity to the environments, DOP was used to judge the destruction of polarized information using the PCNN algorithm. Only areas with high accuracy of AOP were kept after the DOP PCNN filtering, thereby greatly increasing the compass accuracy and robustness. From the experimental results, it was shown that the compass accuracy was 0.1805° under clear weather. This method was also proven to be applicable under conditions of shielding by clouds, trees and buildings, with a compass accuracy better than 1°. With weak polarization information sources, such as moonlight, this method was shown experimentally to have an accuracy of 0.878°.
Collapse
|
28
|
Lindecke O, Voigt CC, Pētersons G, Holland RA. Polarized skylight does not calibrate the compass system of a migratory bat. Biol Lett 2016; 11:20150525. [PMID: 26382077 DOI: 10.1098/rsbl.2015.0525] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In a recent study, Greif et al. (Greif et al. Nat Commun 5, 4488. (doi:10.1038/ncomms5488)) demonstrated a functional role of polarized light for a bat species confronted with a homing task. These non-migratory bats appeared to calibrate their magnetic compass by using polarized skylight at dusk, yet it is unknown if migratory bats also use these cues for calibration. During autumn migration, we equipped Nathusius' bats, Pipistrellus nathusii, with radio transmitters and tested if experimental animals exposed during dusk to a 90° rotated band of polarized light would head in a different direction compared with control animals. After release, bats of both groups continued their journey in the same direction. This observation argues against the use of a polarization-calibrated magnetic compass by this migratory bat and questions that the ability of using polarized light for navigation is a consistent feature in bats. This finding matches with observations in some passerine birds that used polarized light for calibration of their magnetic compass before but not during migration.
Collapse
Affiliation(s)
- Oliver Lindecke
- Leibniz Institute for Zoo and Wildlife Research, Evolutionary Ecology Research Group, Alfred-Kowalke-Str. 17, Berlin 10315, Germany Department Animal Behaviour, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Christian C Voigt
- Leibniz Institute for Zoo and Wildlife Research, Evolutionary Ecology Research Group, Alfred-Kowalke-Str. 17, Berlin 10315, Germany Department Animal Behaviour, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Gunārs Pētersons
- Faculty of Veterinary Medicine, Latvia University of Agriculture, K. Helmaņa 8, Jelgava 3004, Latvia
| | - Richard A Holland
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
29
|
Gorresen PM, Cryan PM, Dalton DC, Wolf S, Johnson JA, Todd CM, Bonaccorso FJ. Dim ultraviolet light as a means of deterring activity by the Hawaiian hoary bat Lasiurus cinereus semotus. ENDANGER SPECIES RES 2015. [DOI: 10.3354/esr00694] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Marcos Gorresen P, Cryan PM, Dalton DC, wolf S, Bonaccorso FJ. Ultraviolet Vision May be Widespread in Bats. ACTA CHIROPTEROLOGICA 2015. [DOI: 10.3161/15081109acc2015.17.1.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Mathews F, Roche N, Aughney T, Jones N, Day J, Baker J, Langton S. Barriers and benefits: implications of artificial night-lighting for the distribution of common bats in Britain and Ireland. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140124. [PMID: 25780236 PMCID: PMC4375364 DOI: 10.1098/rstb.2014.0124] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Artificial lighting is a particular problem for animals active at night. Approximately 69% of mammal species are nocturnal, and one-third of these are bats. Due to their extensive movements-both on a nightly basis to exploit ephemeral food supplies, and during migration between roosts-bats have an unusually high probability of encountering artificial light in the landscape. This paper reviews the impacts of lighting on bats and their prey, exploring the direct and indirect consequences of lighting intensity and spectral composition. In addition, new data from large-scale surveys involving more than 265 000 bat calls at more than 600 locations in two countries are presented, showing that prevalent street-lighting types are not generally linked with increased activity of common and widespread bat species. Such bats, which are important to ecosystem function, are generally considered 'light-attracted' and likely to benefit from the insect congregations that form at lights. Leisler's bat (Nyctalus leisleri) may be an exception, being more frequent in lit than dark transects. For common pipistrelle bats (Pipistrellus pipistrellus), lighting is negatively associated with their distribution on a landscape scale, but there may be local increases in habitats with good tree cover. Research is now needed on the impacts of sky glow and glare for bat navigation, and to explore the implications of lighting for habitat matrix permeability.
Collapse
Affiliation(s)
- Fiona Mathews
- Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | - Niamh Roche
- Bat Conservation Ireland, Ulex House, Drumheel, Lisduff, Virginia, Country Cavan, Ireland
| | - Tina Aughney
- Bat Conservation Ireland, Ulex House, Drumheel, Lisduff, Virginia, Country Cavan, Ireland
| | - Nicholas Jones
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Julie Day
- Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | - James Baker
- Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK
| | | |
Collapse
|
32
|
Tian LX, Pan YX, Metzner W, Zhang JS, Zhang BF. Bats respond to very weak magnetic fields. PLoS One 2015; 10:e0123205. [PMID: 25922944 PMCID: PMC4414586 DOI: 10.1371/journal.pone.0123205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 03/01/2015] [Indexed: 11/18/2022] Open
Abstract
How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.
Collapse
Affiliation(s)
- Lan-Xiang Tian
- Biogeomagnetism Group, PGL, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China
| | - Yong-Xin Pan
- Biogeomagnetism Group, PGL, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| | - Walter Metzner
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Jin-Shuo Zhang
- National Zoological Museum, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bing-Fang Zhang
- Biogeomagnetism Group, PGL, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|