1
|
Hirose R, Haraguchi T, Nagakubo A, Tachibana M, Murakami M, Ogi H. Coupled Nanomechanical Resonator with Protein-Interaction Vibration for an Ultrasensitive Label-Free Biosensor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23405-23413. [PMID: 40172991 DOI: 10.1021/acsami.5c03549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
A mechanical-resonator biosensor detects target molecules attached to the resonator surface through a change in resonant frequency caused by the mass-loading effect. Since mass-detection sensitivity can be improved by thinning resonator thickness, much effort has been devoted to the development of a thinner resonator. Here, we propose a much more effective strategy for an ultrasensitive mechanical-resonator biosensor. When the resonator frequency is close to the local vibration at a specific interaction between target and receptor molecules (∼30 GHz), a significantly large frequency change can occur because of energy coupling between the resonator vibration and target-receptor vibration (similar to avoided crossing). For realizing this strategy, we developed an ultrahigh-frequency nanomechanical resonator of multilayer graphene. The resonator-frequency change near the avoided-crossing frequency is about 10 times higher than that caused by the mass-loading effect, which allowed label-free detection of C-reactive protein with a detection limit of 10 pg/mL or less even in serum.
Collapse
Affiliation(s)
- Ryo Hirose
- Graduate School of Engineering, The University of Osaka, Suita, Osaka 560-0871, Japan
| | - Takuya Haraguchi
- Graduate School of Engineering, The University of Osaka, Suita, Osaka 560-0871, Japan
| | - Akira Nagakubo
- Department of Materials Processing, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Masamitsu Tachibana
- Material Solutions New Research Engine, Kaneka Co., Settsu, Osaka 566-0072, Japan
| | - Mutsuaki Murakami
- Material Solutions New Research Engine, Kaneka Co., Settsu, Osaka 566-0072, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, The University of Osaka, Suita, Osaka 560-0871, Japan
| |
Collapse
|
2
|
Wodedo MA, Tesfahannes TG, Darge TY, Bedore MT, Kumela AG, Adera GB. Generation of two mode mechanical squeezing induced by nondegenerate parametric amplification. Sci Rep 2024; 14:27234. [PMID: 39516516 PMCID: PMC11549490 DOI: 10.1038/s41598-024-78168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Squeezing light in an optomechanical system involves reducing quantum noise in one of the light's quadratures through the interaction between optical and mechanical modes. However, achieving successful implementation requires careful control of experimental parameters, which can be challenging. Here, we investigate a two-mode squeezed light transfer from optical to mechanical modes induced by a non-degenerate optical parametric amplifier (OPA). The optomechanical system is driven by frequencies nearly resonant with the anti-stokes fields that can realize cooling mechanical oscillators and quantum state transfer within a resolved sideband (good cavity) limit. Our results show that when a non-degenerate OPA is placed inside the optical cavity, the degree of squeezing in both optical and mechanical modes is significantly enhanced. This leads to the two-mode squeezed light being transferred into two-mode mechanical squeezing in the presence of the non-degenerate OPA under weak optomechanical coupling strength. Interestingly, we found that with negligible thermal bath noise, the two-mode squeezed light completely transferred to yield 50% mirror-mirror squeezing. In contrast, at higher thermal noise, the transfer of squeezed light is weak, causing the system to lose its quantum properties and behave more classically. Furthermore, we have shown that the degree of squeezing in the weak coupling regime drastically decreases with increasing mechanical dissipation rates. We believe that our scheme can achieve strong mechanical squeezing in hybrid optomechanical systems and facilitate homodyne detection to measure the quadratures of the squeezed light.
Collapse
Affiliation(s)
- Muhdin Abdo Wodedo
- Department of Applied Physics, Adama Science and Technology University, 1888, Adama, Ethiopia
| | | | | | | | | | | |
Collapse
|
3
|
Zhang K, Xiao K, Luntz-Martin D, Sun P, Sharma S, Bhattacharya M, Vamivakas AN. Coherent control of an optical tweezer phonon laser. OPTICS EXPRESS 2024; 32:14735-14745. [PMID: 38859410 DOI: 10.1364/oe.511600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 06/12/2024]
Abstract
The creation and manipulation of coherence continues to capture the attention of scientists and engineers. The optical laser is a canonical example of a system that, in principle, exhibits complete coherence. Recent research has focused on the creation of coherent, laser-like states in other physical systems. The phonon laser is one example where it is possible to amplify self-sustained mechanical oscillations. A single mode phonon laser in a levitated optical tweezer has been demonstrated through appropriate balance of active feedback gain and damping. In this work, coherent control of the dynamics of an optical tweezer phonon laser is used to share coherence between its different modes of oscillation, creating a multimode phonon laser. The coupling of the modes is achieved by periodically rotating the asymmetric optical potential in the transverse focal plane of the trapping beam via trap laser polarization rotation. The presented theory and experiment demonstrate that coherence can be transferred across different modes of an optical tweezer phonon laser, and are a step toward using these systems for precision measurement and quantum information processing.
Collapse
|
4
|
Burgwal R, Verhagen E. Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device. Nat Commun 2023; 14:1526. [PMID: 36934101 PMCID: PMC10024728 DOI: 10.1038/s41467-023-37138-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/27/2023] [Indexed: 03/20/2023] Open
Abstract
The nonlinear component of the optomechanical interaction between light and mechanical vibration promises many exciting classical and quantum mechanical applications, but is generally weak. Here we demonstrate enhancement of nonlinear optomechanical measurement of mechanical motion by using pairs of coupled optical and mechanical modes in a photonic crystal device. In the same device we show linear optomechanical measurement with a strongly reduced input power and reveal how both enhancements are related. Our design exploits anisotropic mechanical elasticity to create strong coupling between mechanical modes while not changing optical properties. Additional thermo-optic tuning of the optical modes is performed with an auxiliary laser and a thermally-optimised device design. We envision broad use of this enhancement scheme in multimode phonon lasing, two-phonon heralding and eventually nonlinear quantum optomechanics.
Collapse
Affiliation(s)
- Roel Burgwal
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Ewold Verhagen
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Yang Z, Tang X, Zhang J. Nonlinearity in optomechanical microresonators –phenomena, applications, and future. FUNDAMENTAL RESEARCH 2023. [DOI: 10.1016/j.fmre.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
6
|
Baraillon J, Taurel B, Labeye P, Duraffourg L. A lensed fiber Bragg grating-based membrane-in-the-middle optomechanical cavity. Sci Rep 2022; 12:4937. [PMID: 35322110 PMCID: PMC8943148 DOI: 10.1038/s41598-022-08960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
Optomechanical systems benefit from the coupling between an optical field and mechanical vibrations. Fiber-based devices are well suited to easily exploit this interaction. We report an alternative approach of a silicon nitride membrane-in-the-middle of a high quality factor ([Formula: see text]-[Formula: see text]) Fabry-Perot, formed by a grating inscribed within a fiber core as an input mirror in front of a dielectric back mirror. The Pound-Drever-Hall technique used to stabilize the laser frequency on the optical resonance frequency allows us to reduce the low frequency noise down to [Formula: see text]. We present a detailed methodology for the characterization of the optical and optomechanical properties of this stabilized system, using various membrane geometries, with corresponding resonance frequencies in the range of several hundred of [Formula: see text]. The excellent long-term stability is illustrated by continuous measurements of the thermomechanical noise spectrum over several days, with the laser source maintained at optical resonance. This major result makes this system an ideal candidate for optomechanical sensing.
Collapse
Affiliation(s)
- Joris Baraillon
- Commissariat à l'Energie Atomique, LETI, Université Grenoble Alpes, 38054, Grenoble, France
| | - Boris Taurel
- Commissariat à l'Energie Atomique, LETI, Université Grenoble Alpes, 38054, Grenoble, France
| | - Pierre Labeye
- Commissariat à l'Energie Atomique, LETI, Université Grenoble Alpes, 38054, Grenoble, France
| | - Laurent Duraffourg
- Commissariat à l'Energie Atomique, LETI, Université Grenoble Alpes, 38054, Grenoble, France.
| |
Collapse
|
7
|
Shen Z, Zhang YL, Zou CL, Guo GC, Dong CH. Dissipatively Controlled Optomechanical Interaction via Cascaded Photon-Phonon Coupling. PHYSICAL REVIEW LETTERS 2021; 126:163604. [PMID: 33961448 DOI: 10.1103/physrevlett.126.163604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
In an optomechanical system, we experimentally engineer the optical density of state to reduce or broaden the effective linewidth of the optical mode by introducing an ancillary mechanical mode, which has a large decay rate, i.e., stimulated backward Brillouin scattering. Based on this dissipation engineering, we could engineer the optical mode linewidth by one order of magnitude. In addition, we can either enhance or suppress the optomechanical cooling and amplification of the target mechanical oscillations. Our scheme demonstrates the cascaded photon-phonon coupling to control the mechanical interactions, and also presents a novel approach for engineering coherent light-matter interaction in hybrid systems, which consist of different types of nonlinear interactions and multiple modes, and promote the performance of quantum devices.
Collapse
Affiliation(s)
- Zhen Shen
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yan-Lei Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chang-Ling Zou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chun-Hua Dong
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
8
|
Holmes Z, Anders J, Mintert F. Enhanced Energy Transfer to an Optomechanical Piston from Indistinguishable Photons. PHYSICAL REVIEW LETTERS 2020; 124:210601. [PMID: 32530653 DOI: 10.1103/physrevlett.124.210601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/24/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Thought experiments involving gases and pistons, such as Maxwell's demon and Gibbs' mixing, are central to our understanding of thermodynamics. Here, we present a quantum thermodynamic thought experiment in which the energy transfer from two photonic gases to a piston membrane grows quadratically with the number of photons for indistinguishable gases, while it grows linearly for distinguishable gases. This signature of bosonic bunching may be observed in optomechanical experiments, highlighting the potential of these systems for the realization of thermodynamic thought experiments in the quantum realm.
Collapse
Affiliation(s)
- Zoë Holmes
- Controlled Quantum Dynamics Theory Group, Imperial College London, Prince Consort Road, London SW7 2BW, United Kingdom
| | - Janet Anders
- Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
- Institut für Physik, Potsdam University, 14476 Potsdam, Germany
| | - Florian Mintert
- Controlled Quantum Dynamics Theory Group, Imperial College London, Prince Consort Road, London SW7 2BW, United Kingdom
| |
Collapse
|
9
|
Dumont V, Bernard S, Reinhardt C, Kato A, Ruf M, Sankey JC. Flexure-tuned membrane-at-the-edge optomechanical system. OPTICS EXPRESS 2019; 27:25731-25748. [PMID: 31510440 DOI: 10.1364/oe.27.025731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
We introduce a passively-aligned, flexure-tuned cavity optomechanical system in which a membrane is positioned microns from one end mirror of a Fabry-Perot optical cavity. By displacing the membrane through gentle flexure of its silicon supporting frame (i.e., to ∼80 m radius of curvature (ROC)), we gain access to the full range of available optomechanical couplings, finding also that the optical spectrum exhibits none of the abrupt discontinuities normally found in "membrane-in-the-middle" (MIM) systems. More aggressive flexure (3 m ROC) enables >15 μm membrane travel, milliradian tilt tuning, and a wavelength-scale (1.64 ± 0.78 μm) membrane-mirror separation. We also provide a complete set of analytical expressions for this system's leading-order dispersive and dissipative optomechanical couplings. Notably, this system can potentially generate orders of magnitude larger linear dissipative or quadratic dispersive strong coupling parameters than is possible with a MIM system. Additionally, it can generate the same purely quadratic dispersive coupling as a MIM system, but with significantly suppressed linear dissipative back-action (and force noise).
Collapse
|
10
|
Duggan R, Del Pino J, Verhagen E, Alù A. Optomechanically Induced Birefringence and Optomechanically Induced Faraday Effect. PHYSICAL REVIEW LETTERS 2019; 123:023602. [PMID: 31386529 DOI: 10.1103/physrevlett.123.023602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate an optomechanical platform where optical mode conversion mediated by mechanical motion enables the arbitrary tailoring of polarization states of propagating light fields. Optomechanical interactions are realized in a Fabry-Pérot resonator, which naturally supports two polarization-degenerate states while an optical control field induces rotational symmetry breaking. Applying such principles, the entire Poincaré sphere is spanned by just optical control of the driving field, realizing reciprocal and nonreciprocal optomechanically induced birefringence for linearly polarized and circularly polarized control driving. A straightforward extension of this setup also enables all-optical tunable isolation and circulation. Our findings open new avenues to exploit optomechanics for the arbitrary manipulation of light polarization.
Collapse
Affiliation(s)
- Robert Duggan
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Javier Del Pino
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ewold Verhagen
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Andrea Alù
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York 10031, USA
- Physics Program, Graduate Center, City University of New York, New York 10016, USA
- Department of Electrical Engineering, City College of The City University of New York, New York 10031, USA
| |
Collapse
|
11
|
Branford D, Miao H, Datta A. Fundamental Quantum Limits of Multicarrier Optomechanical Sensors. PHYSICAL REVIEW LETTERS 2018; 121:110505. [PMID: 30265105 DOI: 10.1103/physrevlett.121.110505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Optomechanical sensors involving multiple optical carriers can experience mechanically mediated interactions causing multimode correlations across the optical fields. One instance is laser-interferometric gravitational wave detectors which introduce multiple carrier frequencies for classical sensing and control purposes. An outstanding question is whether such multicarrier optomechanical sensors outperform their single-carrier counterpart in terms of quantum-limited sensitivity. We show that the best precision is achieved by a single-carrier instance of the sensor. For the current LIGO detection system this precision is already reachable.
Collapse
Affiliation(s)
- Dominic Branford
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Haixing Miao
- School of Physics and Astronomy, Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Animesh Datta
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
12
|
Higher-Order Interactions in Quantum Optomechanics: Analytical Solution of Nonlinearity. PHOTONICS 2017. [DOI: 10.3390/photonics4040048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Park K, Marek P, Filip R. Qubit-mediated deterministic nonlinear gates for quantum oscillators. Sci Rep 2017; 7:11536. [PMID: 28912504 PMCID: PMC5599512 DOI: 10.1038/s41598-017-11353-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/22/2017] [Indexed: 11/09/2022] Open
Abstract
Quantum nonlinear operations for harmonic oscillator systems play a key role in the development of analog quantum simulators and computers. Since strong highly nonlinear operations are often unavailable in the existing physical systems, it is a common practice to approximate them by using conditional measurement-induced methods. The conditional approach has several drawbacks, the most severe of which is the exponentially decreasing success rate of the strong and complex nonlinear operations. We show that by using a suitable two level system sequentially interacting with the oscillator, it is possible to resolve these issues and implement a nonlinear operation both nearly deterministically and nearly perfectly. We explicitly demonstrate the approach by constructing self-Kerr and cross-Kerr couplings in a realistic situation, which require a feasible dispersive coupling between the two-level system and the oscillator.
Collapse
Affiliation(s)
- Kimin Park
- Department of Optics, Palacký University, 17. listopadu 1192/12, 77146, Olomouc, Czech Republic.
| | - Petr Marek
- Department of Optics, Palacký University, 17. listopadu 1192/12, 77146, Olomouc, Czech Republic
| | - Radim Filip
- Department of Optics, Palacký University, 17. listopadu 1192/12, 77146, Olomouc, Czech Republic
| |
Collapse
|
14
|
Nair B, Naesby A, Dantan A. Optomechanical characterization of silicon nitride membrane arrays. OPTICS LETTERS 2017; 42:1341-1344. [PMID: 28362764 DOI: 10.1364/ol.42.001341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on the optical and mechanical characterization of arrays of parallel micromechanical membranes. Pairs of high-tensile stress, 100 nm thick silicon nitride membranes are assembled parallel to each other with separations ranging from 8.5 to 200 μm. Their optical properties are accurately determined using transmission measurements under broadband and monochromatic illuminations, and the lowest vibrational mode frequencies and mechanical quality factors are determined interferometrically. The results and techniques demonstrated are promising for investigations of collective phenomena in optomechanical arrays.
Collapse
|
15
|
Fonseca PZG, Aranas EB, Millen J, Monteiro TS, Barker PF. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles. PHYSICAL REVIEW LETTERS 2016; 117:173602. [PMID: 27824467 DOI: 10.1103/physrevlett.117.173602] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 06/06/2023]
Abstract
Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.
Collapse
Affiliation(s)
- P Z G Fonseca
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - E B Aranas
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - J Millen
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - T S Monteiro
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - P F Barker
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
16
|
Kalaee M, Paraïso TK, Pfeifer H, Painter O. Design of a quasi-2D photonic crystal optomechanical cavity with tunable, large x 2-coupling. OPTICS EXPRESS 2016; 24:21308-21328. [PMID: 27661874 DOI: 10.1364/oe.24.021308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present the optical and mechanical design of a mechanically compliant quasi-two-dimensional photonic crystal cavity formed from thin-film silicon in which a pair of linear nanoscale slots are used to create two coupled high-Q optical resonances. The optical cavity supermodes, whose frequencies are designed to lie in the 1500 nm wavelength band, are shown to interact strongly with mechanical resonances of the structure whose frequencies range from a few MHz to a few GHz. Depending upon the symmetry of the mechanical modes and the symmetry of the slot sizes, we show that the optomechanical coupling between the optical supermodes can be either linear or quadratic in the mechanical displacement amplitude. Tuning of the nanoscale slot size is also shown to adjust the magnitude and sign of the cavity supermode splitting 2J, enabling near-resonant motional scattering between the two optical supermodes and greatly enhancing the x2-coupling strength. Specifically, for the fundamental flexural mode of the central nanobeam of the structure at 10 MHz the per-phonon linear cross-mode coupling rate is calculated to be g˜+-/2π=1MHz, corresponding to a per-phonon x2-coupling rate of g˜'/2π=1kHz for a mode splitting 2J/2π = 1 GHz which is greater than the radiation-limited supermode linewidths.
Collapse
|
17
|
Huang P, Zhang L, Zhou J, Tian T, Yin P, Duan C, Du J. Nonreciprocal Radio Frequency Transduction in a Parametric Mechanical Artificial Lattice. PHYSICAL REVIEW LETTERS 2016; 117:017701. [PMID: 27419591 DOI: 10.1103/physrevlett.117.017701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Indexed: 06/06/2023]
Abstract
Generating nonreciprocal radio frequency transduction plays important roles in a wide range of research and applications, and an aspiration is to integrate this functionality into microcircuits without introducing a magnetic field, which, however, remains challenging. By designing a 1D artificial lattice structure with a neighbor interaction engineered parametrically, we predicted a nonreciprocity transduction with a large unidirectionality. We then experimentally demonstrated the phenomenon on a nanoelectromechanical chip fabricated by conventional complementary metal-silicon processing. A unidirectionality with isolation as high as 24 dB is achieved, and several different transduction schemes are realized by programing the control voltage topology. Apart from being used as a radio frequency isolator, the system provides a way to build a practical on-chip programmable device for broad research and applications in the radio frequency domain.
Collapse
Affiliation(s)
- Pu Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Liang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jingwei Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Tian Tian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Peiran Yin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Changkui Duan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jiangfeng Du
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
18
|
Li T, Bao TY, Zhang YL, Zou CL, Zou XB, Guo GC. Long-distance synchronization of unidirectionally cascaded optomechanical systems. OPTICS EXPRESS 2016; 24:12336-12348. [PMID: 27410149 DOI: 10.1364/oe.24.012336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synchronization is of great scientific interest due to the abundant applications in a wide range of systems. We propose an all-optical scheme to achieve the controllable long-distance synchronization of two dissimilar optomechanical systems, which are unidirectionally coupled through a fiber with light. Synchronization, unsynchronization, and the dependence of the synchronization on driving laser strength and intrinsic frequency mismatch are studied based on the numerical simulation. Taking the fiber attenuation into account, we show that two optomechanical resonators can be unidirectionally synchronized over a distance of tens of kilometers. We also analyze the unidirectional synchronization of three optomechanical systems, demonstrating the scalability of our scheme.
Collapse
|