1
|
Fulton J, Thenabadu M, Teh RY, Reid MD. Weak versus Deterministic Macroscopic Realism, and Einstein-Podolsky-Rosen's Elements of Reality. ENTROPY (BASEL, SWITZERLAND) 2023; 26:11. [PMID: 38275490 PMCID: PMC11154650 DOI: 10.3390/e26010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Abstract
The violation of a Leggett-Garg inequality confirms the incompatibility between quantum mechanics and the combined premises (called macro-realism) of macroscopic realism (MR) and noninvasive measurability (NIM). Arguments can be given that the incompatibility arises because MR fails for systems in a superposition of macroscopically distinct states-or else, that NIM fails. In this paper, we consider a strong negation of macro-realism, involving superpositions of coherent states, where the NIM premise is replaced by Bell's locality premise. We follow recent work and propose the validity of a subset of Einstein-Podolsky-Rosen (EPR) and Leggett-Garg premises, referred to as weak macroscopic realism (wMR). In finding consistency with wMR, we identify that the Leggett-Garg inequalities are violated because of failure of both MR and NIM, but also that both are valid in a weaker (less restrictive) sense. Weak MR is distinguished from deterministic macroscopic realism (dMR) by recognizing that a measurement involves a reversible unitary interaction that establishes the measurement setting. Weak MR posits that a predetermined value for the outcome of a measurement can be attributed to the system after the interaction, when the measurement setting is experimentally specified. An extended definition of wMR considers the "element of reality" defined by EPR for system A, where one can predict with certainty the outcome of a measurement on A by performing a measurement on system B. Weak MR posits that this element of reality exists once the unitary interaction determining the measurement setting at B has occurred. We demonstrate compatibility of systems violating Leggett-Garg inequalities with wMR but point out that dMR has been shown to be falsifiable. Other tests of wMR are proposed, the predictions of wMR agreeing with quantum mechanics. Finally, we compare wMR with macro-realism models discussed elsewhere. An argument in favour of wMR is presented: wMR resolves a potential contradiction pointed out by Leggett and Garg between failure of macro-realism and assumptions intrinsic to quantum measurement theory.
Collapse
Affiliation(s)
| | | | | | - Margaret D. Reid
- Centre for Quantum Science and Technology Theory, Swinburne University of Technology, Melbourne 3122, Australia; (J.F.); (M.T.); (R.Y.T.)
| |
Collapse
|
2
|
Leong WS, Xin M, Chen Z, Wang Y, Lan SY. Creation of Two-Mode Squeezed States in Atomic Mechanical Oscillators. PHYSICAL REVIEW LETTERS 2023; 131:193601. [PMID: 38000417 DOI: 10.1103/physrevlett.131.193601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 11/26/2023]
Abstract
Two-mode squeezed states, which are entangled states with bipartite quantum correlations in continuous-variable systems, are crucial in quantum information processing and metrology. Recently, continuous-variable quantum computing with the vibrational modes of trapped atoms has emerged with significant progress, featuring a high degree of control in hybridizing with spin qubits. Creating two-mode squeezed states in such a platform could enable applications that are only viable with photons. Here, we experimentally demonstrate two-mode squeezed states by employing atoms in a two-dimensional optical lattice as quantum registers. The states are generated by a controlled projection conditioned on the relative phase of two independent squeezed states. The individual squeezing is created by sudden jumps of the oscillators' frequencies, allowing generating of the two-mode squeezed states at a rate within a fraction of the oscillation frequency. We validate the states by entanglement steering criteria and Fock state analysis. Our results can be applied in other mechanical oscillators for quantum sensing and continuous-variable quantum information.
Collapse
Affiliation(s)
- Wui Seng Leong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Mingjie Xin
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zilong Chen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yu Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shau-Yu Lan
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Gärttner M, Haas T, Noll J. General Class of Continuous Variable Entanglement Criteria. PHYSICAL REVIEW LETTERS 2023; 131:150201. [PMID: 37897784 DOI: 10.1103/physrevlett.131.150201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/30/2023] [Indexed: 10/30/2023]
Abstract
We present a general class of entanglement criteria for continuous variable systems. Our criteria are based on the Husimi Q distribution and allow for optimization over the set of all concave functions rendering them extremely general and versatile. We show that several entropic criteria and second moment criteria are obtained as special cases. Our criteria reveal entanglement of families of states undetected by any commonly used criteria and provide clear advantages under typical experimental constraints such as finite detector resolution and measurement statistics.
Collapse
Affiliation(s)
- Martin Gärttner
- Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
- Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Tobias Haas
- Centre for Quantum Information and Communication, École polytechnique de Bruxelles, CP 165, Université libre de Bruxelles, 1050 Brussels, Belgium
| | - Johannes Noll
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Li Z, Colombo S, Shu C, Velez G, Pilatowsky-Cameo S, Schmied R, Choi S, Lukin M, Pedrozo-Peñafiel E, Vuletić V. Improving metrology with quantum scrambling. Science 2023; 380:1381-1384. [PMID: 37384680 DOI: 10.1126/science.adg9500] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Quantum scrambling describes the spreading of information into many degrees of freedom in quantum systems, such that the information is no longer accessible locally but becomes distributed throughout the system. This idea can explain how quantum systems become classical and acquire a finite temperature, or how in black holes the information about the matter falling in is seemingly erased. We probe the exponential scrambling of a multiparticle system near a bistable point in phase space and utilize it for entanglement-enhanced metrology. A time-reversal protocol is used to observe a simultaneous exponential growth of both the metrological gain and the out-of-time-order correlator, thereby experimentally verifying the relation between quantum metrology and quantum information scrambling. Our results show that rapid scrambling dynamics capable of exponentially fast entanglement generation are useful for practical metrology, resulting in a 6.8(4)-decibel gain beyond the standard quantum limit.
Collapse
Affiliation(s)
- Zeyang Li
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Simone Colombo
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chi Shu
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Gustavo Velez
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Saúl Pilatowsky-Cameo
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Soonwon Choi
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mikhail Lukin
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Edwin Pedrozo-Peñafiel
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vladan Vuletić
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Sundar B, Barberena D, Orioli AP, Chu A, Thompson JK, Rey AM, Lewis-Swan RJ. Bosonic Pair Production and Squeezing for Optical Phase Measurements in Long-Lived Dipoles Coupled to a Cavity. PHYSICAL REVIEW LETTERS 2023; 130:113202. [PMID: 37001062 DOI: 10.1103/physrevlett.130.113202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
We propose to simulate bosonic pair creation using large arrays of long-lived dipoles with multilevel internal structure coupled to an undriven optical cavity. Entanglement between the atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast and is described by two-mode squeezing of effective bosonic quadratures. The mapping between an effective bosonic model and the natural spin description of the dipoles allows us to realize the analog of optical homodyne measurements via straightforward global rotations and population measurements of the electronic states, and we propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles). We discuss a specific implementation based on Sr atoms and show that our sensing protocol is robust to sources of decoherence intrinsic to cavity platforms. Our proposal can open unique opportunities for next-generation optical atomic clocks.
Collapse
Affiliation(s)
- Bhuvanesh Sundar
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Diego Barberena
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Asier Piñeiro Orioli
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Anjun Chu
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - James K Thompson
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Robert J Lewis-Swan
- Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019, USA
- Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
6
|
Chen CA, Khlebnikov S, Hung CL. Observation of Quasiparticle Pair Production and Quantum Entanglement in Atomic Quantum Gases Quenched to an Attractive Interaction. PHYSICAL REVIEW LETTERS 2021; 127:060404. [PMID: 34420342 DOI: 10.1103/physrevlett.127.060404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
We report observations of quasiparticle pair production by a modulational instability in an atomic superfluid and present a measurement technique that enables direct characterization of quasiparticle quantum entanglement. By quenching the atomic interaction to attractive and then back to weakly repulsive, we produce correlated quasiparticles and monitor their evolution in a superfluid through evaluating the in situ density noise power spectrum, which essentially measures a "homodyne" interference between ground-state atoms and quasiparticles of opposite momenta. We observe large amplitude growth in the power spectrum and subsequent coherent oscillations in a wide spatial frequency band within our resolution limit, demonstrating coherent quasiparticle generation and evolution. The spectrum is observed to oscillate below a quantum limit set by the Peres-Horodecki separability criterion of continuous-variable states, thereby confirming quantum entanglement between interaction quench-induced quasiparticles.
Collapse
Affiliation(s)
- Cheng-An Chen
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Sergei Khlebnikov
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chen-Lung Hung
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
7
|
Bergh B, Gärttner M. Experimentally Accessible Bounds on Distillable Entanglement from Entropic Uncertainty Relations. PHYSICAL REVIEW LETTERS 2021; 126:190503. [PMID: 34047593 DOI: 10.1103/physrevlett.126.190503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Entanglement is not only the resource that fuels many quantum technologies but also plays a key role for some of the most profound open questions of fundamental physics. Experiments controlling quantum systems at the single quantum level may shed light on these puzzles. However, measuring, or even bounding, entanglement experimentally has proven to be an outstanding challenge, especially when the prepared quantum states are mixed. We use entropic uncertainty relations for bipartite systems to derive measurable lower bounds on distillable entanglement. We showcase these bounds by applying them to physical models realizable in cold-atom experiments. The derived entanglement bounds rely on measurements in only two different bases and are generically applicable to any quantum simulation platform.
Collapse
Affiliation(s)
- Bjarne Bergh
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Martin Gärttner
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
- Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Gessner M, Smerzi A, Pezzè L. Multiparameter squeezing for optimal quantum enhancements in sensor networks. Nat Commun 2020; 11:3817. [PMID: 32733031 PMCID: PMC7393128 DOI: 10.1038/s41467-020-17471-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/12/2020] [Indexed: 11/09/2022] Open
Abstract
Squeezing currently represents the leading strategy for quantum enhanced precision measurements of a single parameter in a variety of continuous- and discrete-variable settings and technological applications. However, many important physical problems including imaging and field sensing require the simultaneous measurement of multiple unknown parameters. The development of multiparameter quantum metrology is yet hindered by the intrinsic difficulty in finding saturable sensitivity bounds and feasible estimation strategies. Here, we derive the general operational concept of multiparameter squeezing, identifying metrologically useful states and optimal estimation strategies. When applied to spin- or continuous-variable systems, our results generalize widely-used spin- or quadrature-squeezing parameters. Multiparameter squeezing provides a practical and versatile concept that paves the way to the development of quantum-enhanced estimation of multiple phases, gradients, and fields, and for the efficient characterization of multimode quantum states in atomic and optical sensor networks.
Collapse
Affiliation(s)
- Manuel Gessner
- Laboratoire Kastler Brossel, ENS-PSL Université, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, 75005, Paris, France.
| | - Augusto Smerzi
- QSTAR, CNR-INO and LENS, Largo Enrico Fermi 2, 50125, Firenze, Italy
| | - Luca Pezzè
- QSTAR, CNR-INO and LENS, Largo Enrico Fermi 2, 50125, Firenze, Italy
| |
Collapse
|
9
|
Pezzè L, Gessner M, Feldmann P, Klempt C, Santos L, Smerzi A. Heralded Generation of Macroscopic Superposition States in a Spinor Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2019; 123:260403. [PMID: 31951461 DOI: 10.1103/physrevlett.123.260403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Macroscopic superposition states enable fundamental tests of quantum mechanics and hold a huge potential in metrology, sensing, and other quantum technologies. We propose to generate macroscopic superposition states of a large number of atoms in the ground state of a spin-1 Bose-Einstein condensate. Measuring the number of particles in one mode prepares with large probability highly entangled macroscopic superposition states in the two remaining modes. The macroscopic superposition states are heralded by the measurement outcome. Our protocol is robust under realistic conditions in current experiments, including finite adiabaticity, particle loss, and measurement uncertainty.
Collapse
Affiliation(s)
- L Pezzè
- QSTAR, INO-CNR, and LENS, Largo Enrico Fermi 2, IT-50125 Firenze, Italy
| | - M Gessner
- QSTAR, INO-CNR, and LENS, Largo Enrico Fermi 2, IT-50125 Firenze, Italy
- Département de Physique, École Normale Supérieure, PSL Université, CNRS, 24 Rue Lhomond, 75005 Paris, France
| | - P Feldmann
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, DE-30167 Hannover, Germany
| | - C Klempt
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, DE-30167 Hannover, Germany
| | - L Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, DE-30167 Hannover, Germany
| | - A Smerzi
- QSTAR, INO-CNR, and LENS, Largo Enrico Fermi 2, IT-50125 Firenze, Italy
| |
Collapse
|
10
|
Bell correlations between spatially separated pairs of atoms. Nat Commun 2019; 10:4447. [PMID: 31575860 PMCID: PMC6773866 DOI: 10.1038/s41467-019-12192-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
Bell correlations are a foundational demonstration of how quantum entanglement contradicts the classical notion of local realism. Rigorous validation of quantum nonlocality have only been achieved between solid-state electron spins, internal states of trapped atoms, and photon polarisations, all weakly coupling to gravity. Bell tests with freely propagating massive particles, which could provide insights into the link between gravity and quantum mechanics, have proven to be much more challenging to realise. Here we use a collision between two Bose-Einstein condensates to generate spin entangled pairs of ultracold helium atoms, and measure their spin correlations along uniformly rotated bases. We show that correlations in the pairs agree with the theoretical prediction of a Bell triplet state, and observe a quantum mechanical witness of Bell correlations with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$6\sigma$$\end{document}6σ significance. Extensions to this scheme could find promising applications in quantum metrology, as well as for investigating the interplay between quantum mechanics and gravity. Entangled particles some distance apart can be used to show the strikingly nonlocal nature of quantum mechanics. Here the authors generate spatially separated pairs of helium atoms by colliding Bose-Einstein condensates and show that they are entangled by observing nonlocal correlations.
Collapse
|
11
|
Reid MD, He QY. Quantifying the Mesoscopic Nature of Einstein-Podolsky-Rosen Nonlocality. PHYSICAL REVIEW LETTERS 2019; 123:120402. [PMID: 31633988 DOI: 10.1103/physrevlett.123.120402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/21/2019] [Indexed: 06/10/2023]
Abstract
Evidence for Bell's nonlocality is so far mainly restricted to microscopic systems, where the elements of reality that are negated predetermine results of measurements to within one spin unit. Any observed nonlocal effect (or lack of classical predetermination) is then limited to no more than the difference of a single photon or electron being detected or not (at a given detector). In this paper, we analyze experiments that report the Einstein-Podolsky-Rosen (EPR) steering form of nonlocality for mesoscopic photonic or Bose-Einstein condensate systems. Using an EPR steering parameter, we show how the EPR nonlocalities involved can be quantified for four-mode states, to give evidence of EPR-nonlocal effects corresponding to a two-mode number difference of 10^{5} photons, or of several tens of atoms (at a given site). Applying to experiments, we also show how the variance criterion of Duan, Giedke, Cirac and Zoller for EPR entanglement can be used to determine a lower bound on the number of particles in a pure two-mode EPR-entangled or steerable state.
Collapse
Affiliation(s)
- M D Reid
- Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Institute of Theoretical Atomic, Molecular and Optical Physics (ITAMP), Harvard University, Cambridge, Massachusetts 02138, USA
| | - Q Y He
- State Key Laboratory of Mesoscopic Physics, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
12
|
Shinjo A, Eto Y, Hirano T. Pulse-resolved measurement of continuous-variable Einstein-Podolsky-Rosen entanglement with shaped local oscillators. OPTICS EXPRESS 2019; 27:17610-17619. [PMID: 31252718 DOI: 10.1364/oe.27.017610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
We report an experimental demonstration of the continuous-variable Einstein-Podolsky-Rosen (EPR) paradox and quantum steering using a pulsed light source and nonlinear optical waveguides. In this pulsed light source experiment, time-domain measurements were performed in which one measured value of the quadrature phase amplitude of the light field was independently obtained for each pulse. This independence is useful for application to quantum information processing and fundamental physics. To realize time-domain measurements, in-house built homodyne detectors were used to detect individual pulses. In addition, to improve the temporal-mode matching between the local oscillator (LO) and entangled pulse, the duration of the LO pulse was shortened by single-pass optical parametric amplification. The product of the conditional variances of the quadrature amplitudes was 0.82 ± 0.09 < 1, which satisfies the condition for realization of the EPR paradox and quantum steering.
Collapse
|
13
|
Masson SJ, Parkins S. Rapid Production of Many-Body Entanglement in Spin-1 Atoms via Cavity Output Photon Counting. PHYSICAL REVIEW LETTERS 2019; 122:103601. [PMID: 30932652 DOI: 10.1103/physrevlett.122.103601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 06/09/2023]
Abstract
We propose a simple and efficient method for generating metrologically useful quantum entanglement in an ensemble of spin-1 atoms that interacts with a high-finesse optical cavity mode. It requires straightforward preparation of N atoms in the m_{F}=0 sublevel, tailoring of the atom-field interaction to give an effective Tavis-Cummings model for the collective spin-1 ensemble, and a photon counting measurement on the cavity output field. The photon number provides a projective measurement of the collective spin length S, which, for the chosen initial state, is heavily weighted around values S≃sqrt[N], for which the corresponding spin states are strongly entangled and exhibit Heisenberg scaling of the metrological sensitivity with N, as quantified by the quantum Fisher information.
Collapse
Affiliation(s)
- Stuart J Masson
- Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand and Department of Physics, University of Auckland, Private Bag 92109, Auckland, New Zealand
| | - Scott Parkins
- Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand and Department of Physics, University of Auckland, Private Bag 92109, Auckland, New Zealand
| |
Collapse
|
14
|
Gessner M, Smerzi A, Pezzè L. Metrological Nonlinear Squeezing Parameter. PHYSICAL REVIEW LETTERS 2019; 122:090503. [PMID: 30932524 DOI: 10.1103/physrevlett.122.090503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 06/09/2023]
Abstract
The well-known metrological linear squeezing parameters (such as quadrature or spin squeezing) efficiently quantify the sensitivity of Gaussian states. Yet, these parameters are insufficient to characterize the much wider class of highly sensitive non-Gaussian states. Here, we introduce a class of metrological nonlinear squeezing parameters obtained by analytical optimization of measurement observables among a given set of accessible (possibly nonlinear) operators. This allows for the metrological characterization of non-Gaussian quantum states of discrete and continuous variables. Our results lead to optimized and experimentally feasible recipes for a high-precision moment-based estimation of a phase parameter and can be used to systematically construct multipartite entanglement and nonclassicality witnesses for complex quantum states.
Collapse
Affiliation(s)
- Manuel Gessner
- QSTAR, CNR-INO and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
- Département de Physique, École Normale Supérieure, PSL Université, CNRS, 24 Rue Lhomond, 75005 Paris, France
| | - Augusto Smerzi
- Département de Physique, École Normale Supérieure, PSL Université, CNRS, 24 Rue Lhomond, 75005 Paris, France
| | - Luca Pezzè
- Département de Physique, École Normale Supérieure, PSL Université, CNRS, 24 Rue Lhomond, 75005 Paris, France
| |
Collapse
|
15
|
Lange K, Peise J, Lücke B, Kruse I, Vitagliano G, Apellaniz I, Kleinmann M, Tóth G, Klempt C. Entanglement between two spatially separated atomic modes. Science 2018; 360:416-418. [PMID: 29700263 DOI: 10.1126/science.aao2035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 03/22/2018] [Indexed: 02/15/2024]
Abstract
Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.
Collapse
Affiliation(s)
- Karsten Lange
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Jan Peise
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Bernd Lücke
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Ilka Kruse
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Giuseppe Vitagliano
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria
- Department of Theoretical Physics, University of the Basque Country UPV/EHU, Post Office Box 644, E-48080 Bilbao, Spain
| | - Iagoba Apellaniz
- Department of Theoretical Physics, University of the Basque Country UPV/EHU, Post Office Box 644, E-48080 Bilbao, Spain
| | - Matthias Kleinmann
- Department of Theoretical Physics, University of the Basque Country UPV/EHU, Post Office Box 644, E-48080 Bilbao, Spain
- Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, D-57068 Siegen, Germany
| | - Géza Tóth
- Department of Theoretical Physics, University of the Basque Country UPV/EHU, Post Office Box 644, E-48080 Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, Post Office Box 49, H-1525 Budapest, Hungary
| | - Carsten Klempt
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany.
| |
Collapse
|
16
|
Fadel M, Zibold T, Décamps B, Treutlein P. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates. Science 2018; 360:409-413. [DOI: 10.1126/science.aao1850] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 03/13/2018] [Indexed: 11/03/2022]
Abstract
Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks.
Collapse
Affiliation(s)
- Matteo Fadel
- Department of Physics and Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Tilman Zibold
- Department of Physics and Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Boris Décamps
- Department of Physics and Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Philipp Treutlein
- Department of Physics and Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
17
|
Kunkel P, Prüfer M, Strobel H, Linnemann D, Frölian A, Gasenzer T, Gärttner M, Oberthaler MK. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science 2018; 360:413-416. [DOI: 10.1126/science.aao2254] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/16/2018] [Indexed: 11/02/2022]
Abstract
A key resource for distributed quantum-enhanced protocols is entanglement between spatially separated modes. However, the robust generation and detection of entanglement between spatially separated regions of an ultracold atomic system remain a challenge. We used spin mixing in a tightly confined Bose-Einstein condensate to generate an entangled state of indistinguishable particles in a single spatial mode. We show experimentally that this entanglement can be spatially distributed by self-similar expansion of the atomic cloud. We used spatially resolved spin read-out to reveal a particularly strong form of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering between distinct parts of the expanded cloud. Based on the strength of EPR steering, we constructed a witness, which confirmed genuine 5-partite entanglement.
Collapse
Affiliation(s)
- Philipp Kunkel
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Maximilian Prüfer
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Helmut Strobel
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Daniel Linnemann
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Anika Frölian
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Thomas Gasenzer
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Martin Gärttner
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Markus K. Oberthaler
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Wrubel JP, Schwettmann A, Fahey DP, Glassman Z, Pechkis HK, Griffin PF, Barnett R, Tiesinga E, Lett PD. A spinor Bose-Einstein condensate phase-sensitive amplifier for SU(1,1) interferometry. PHYSICAL REVIEW. A 2018; 98:10.1103/PhysRevA.98.023620. [PMID: 31093591 PMCID: PMC6513353 DOI: 10.1103/physreva.98.023620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The SU(1,1) interferometer was originally conceived as a Mach-Zehnder interferometer with the beam-splitters replaced by parametric amplifiers. The parametric amplifiers produce states with correlations that result in enhanced phase sensitivity. F = 1 spinor Bose-Einstein condensates (BECs) can serve as the parametric amplifiers for an atomic version of such an interferometer by collisionally producing entangled pairs of |F = 1, m = ±1〉 atoms. We simulate the effect of single and double-sided seeding of the inputs to the amplifier using the truncated-Wigner approximation. We find that single-sided seeding degrades the performance of the interferometer exactly at the phase the unseeded interferometer should operate the best. Double-sided seeding results in a phase-sensitive amplifier, where the maximal sensitivity is a function of the phase relationship between the input states of the amplifier. In both single and double-sided seeding we find there exists an optimal phase that achieves sensitivity beyond the standard quantum limit. Experimentally, we demonstrate a spinor phase-sensitive amplifier using a BEC of 23Na in an optical dipole trap. This configuration could be used as an input to such an interferometer. We are able to control the initial phase of the double-seeded amplifier, and demonstrate sensitivity to initial population fractions as small as 0.1%.
Collapse
Affiliation(s)
- J P Wrubel
- Department of Physics, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - A Schwettmann
- Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, 440 W. Brooks Street, Norman, Oklahoma 73019, USA
| | - D P Fahey
- Quantum Measurement Division, National Institute of Standards and Technology, and Joint Quantum Institute, NIST and University of Maryland, 100 Bureau Drive, Gaithersburg, Maryland 20899-8424, USA
| | - Z Glassman
- Quantum Measurement Division, National Institute of Standards and Technology, and Joint Quantum Institute, NIST and University of Maryland, 100 Bureau Drive, Gaithersburg, Maryland 20899-8424, USA
| | - H K Pechkis
- Department of Physics, California State University, Chico, CA, 95973, USA
| | - P F Griffin
- Quantum Measurement Division, National Institute of Standards and Technology, and Joint Quantum Institute, NIST and University of Maryland, 100 Bureau Drive, Gaithersburg, Maryland 20899-8424, USA
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
| | - R Barnett
- Department of Mathematics, Imperial College London, London, United Kingdom, SW7 2AZ
| | - E Tiesinga
- Quantum Measurement Division, National Institute of Standards and Technology, and Joint Quantum Institute, NIST and University of Maryland, 100 Bureau Drive, Gaithersburg, Maryland 20899-8424, USA
| | - P D Lett
- Quantum Measurement Division, National Institute of Standards and Technology, and Joint Quantum Institute, NIST and University of Maryland, 100 Bureau Drive, Gaithersburg, Maryland 20899-8424, USA
| |
Collapse
|
19
|
Masson SJ, Barrett MD, Parkins S. Cavity QED Engineering of Spin Dynamics and Squeezing in a Spinor Gas. PHYSICAL REVIEW LETTERS 2017; 119:213601. [PMID: 29219405 DOI: 10.1103/physrevlett.119.213601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 06/07/2023]
Abstract
We propose a method for engineering spin dynamics in ensembles of integer-spin atoms confined within a high-finesse optical cavity. Our proposal uses cavity-assisted Raman transitions to engineer a Dicke model for integer-spin atoms, which, in a dispersive limit, reduces to effective atom-atom interactions within the ensemble. This scheme offers a promising and flexible new avenue for the exploration of a wide range of spinor many-body physics. As an example of this, we present results showing that this method can be used to generate spin-nematic squeezing in an ensemble of spin-1 atoms. With realistic parameters, the scheme should enable substantial squeezing on time scales much shorter than current experiments with spin-1 Bose-Einstein condensates.
Collapse
Affiliation(s)
- Stuart J Masson
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - M D Barrett
- Centre for Quantum Technologies, 3 Science Drive 2, Singapore 117543
- Department of Physics, National University of Singapore, 3 Science Drive 2, Singapore 117543
| | - Scott Parkins
- Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
20
|
Robertson S, Michel F, Parentani R. Assessing degrees of entanglement of phonon states in atomic Bose gases through the measurement of commuting observables. Int J Clin Exp Med 2017. [DOI: 10.1103/physrevd.96.045012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Kittipute K, Saratayon P, Srisook S, Wardkein P. Homodyne detection of short-range Doppler radar using a forced oscillator model. Sci Rep 2017; 7:43680. [PMID: 28252000 PMCID: PMC5333100 DOI: 10.1038/srep43680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/26/2017] [Indexed: 11/09/2022] Open
Abstract
This article presents the homodyne detection in a self-oscillation system, which represented by a short-range radar (SRR) circuit, that is analysed using a multi-time forced oscillator (MTFO) model. The MTFO model is based on a forced oscillation perspective with the signal and system theory, a second-order differential equation, and the multiple time variable technique. This model can also apply to analyse the homodyne phenomenon in a difference kind of the oscillation system under same method such as the self-oscillation system, and the natural oscillation system with external forced. In a free oscillation system, which forced by the external source is represented by a pendulum with an oscillating support experiment, and a modified Colpitts oscillator circuit in the UHF band with input as a Doppler signal is a representative of self-oscillation system. The MTFO model is verified with the experimental result, which well in line with the theoretical analysis.
Collapse
|
22
|
Kruse I, Lange K, Peise J, Lücke B, Pezzè L, Arlt J, Ertmer W, Lisdat C, Santos L, Smerzi A, Klempt C. Improvement of an Atomic Clock using Squeezed Vacuum. PHYSICAL REVIEW LETTERS 2016; 117:143004. [PMID: 27740781 DOI: 10.1103/physrevlett.117.143004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 06/06/2023]
Abstract
Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10000 atoms by 2.05_{-0.37}^{+0.34} dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed vacuum.
Collapse
Affiliation(s)
- I Kruse
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - K Lange
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - J Peise
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - B Lücke
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - L Pezzè
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy
| | - J Arlt
- Institut for Fysik og Astronomi, Aarhus Universitet, Ny Munkegade 120, DK-8000 Århus C, Denmark
| | - W Ertmer
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - C Lisdat
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
| | - L Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
| | - A Smerzi
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy
| | - C Klempt
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| |
Collapse
|
23
|
Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan RJ, Kheruntsyan KV, Oberthaler MK. Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics. PHYSICAL REVIEW LETTERS 2016; 117:013001. [PMID: 27419565 DOI: 10.1103/physrevlett.117.013001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 06/06/2023]
Abstract
We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.
Collapse
Affiliation(s)
- D Linnemann
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - H Strobel
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - W Muessel
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - J Schulz
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - R J Lewis-Swan
- The University of Queensland, School of Mathematics and Physics, Brisbane, Queensland 4072, Australia
| | - K V Kheruntsyan
- The University of Queensland, School of Mathematics and Physics, Brisbane, Queensland 4072, Australia
| | - M K Oberthaler
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| |
Collapse
|