1
|
Zheng XF, Sarkar A, Lotana H, Syed A, Nguyen H, Ivey RG, Kennedy JJ, Whiteaker JR, Tomasik B, Huang K, Li F, D'Andrea AD, Paulovich AG, Shah K, Spektor A, Chowdhury D. CDK5-cyclin B1 regulates mitotic fidelity. Nature 2024; 633:932-940. [PMID: 39232161 DOI: 10.1038/s41586-024-07888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
CDK1 has been known to be the sole cyclin-dependent kinase (CDK) partner of cyclin B1 to drive mitotic progression1. Here we demonstrate that CDK5 is active during mitosis and is necessary for maintaining mitotic fidelity. CDK5 is an atypical CDK owing to its high expression in post-mitotic neurons and activation by non-cyclin proteins p35 and p392. Here, using independent chemical genetic approaches, we specifically abrogated CDK5 activity during mitosis, and observed mitotic defects, nuclear atypia and substantial alterations in the mitotic phosphoproteome. Notably, cyclin B1 is a mitotic co-factor of CDK5. Computational modelling, comparison with experimentally derived structures of CDK-cyclin complexes and validation with mutational analysis indicate that CDK5-cyclin B1 can form a functional complex. Disruption of the CDK5-cyclin B1 complex phenocopies CDK5 abrogation in mitosis. Together, our results demonstrate that cyclin B1 partners with both CDK5 and CDK1, and CDK5-cyclin B1 functions as a canonical CDK-cyclin complex to ensure mitotic fidelity.
Collapse
Affiliation(s)
- Xiao-Feng Zheng
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Aniruddha Sarkar
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Humphrey Lotana
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Aleem Syed
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Huy Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Richard G Ivey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jacob J Kennedy
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jeffrey R Whiteaker
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bartłomiej Tomasik
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, Faculty of Medicine, Gdańsk, Poland
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Feng Li
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan D D'Andrea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Amanda G Paulovich
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Alexander Spektor
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Chong MK, Rosas-Salvans M, Tran V, Dumont S. Chromosome size-dependent polar ejection force impairs mammalian mitotic error correction. J Cell Biol 2024; 223:e202310010. [PMID: 38727808 PMCID: PMC11090132 DOI: 10.1083/jcb.202310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 05/15/2024] Open
Abstract
Accurate chromosome segregation requires sister kinetochores to biorient, attaching to opposite spindle poles. To this end, the mammalian kinetochore destabilizes incorrect attachments and stabilizes correct ones, but how it discriminates between these is not yet clear. Here, we test the model that kinetochore tension is the stabilizing cue and ask how chromosome size impacts that model. We live image PtK2 cells, with just 14 chromosomes, widely ranging in size, and find that long chromosomes align at the metaphase plate later than short chromosomes. Enriching for errors and imaging error correction live, we show that long chromosomes exhibit a specific delay in correcting attachments. Using chromokinesin overexpression and laser ablation to perturb polar ejection forces, we find that chromosome size and force on arms determine alignment order. Thus, we propose a model where increased force on long chromosomes can falsely stabilize incorrect attachments, delaying their biorientation. As such, long chromosomes may require compensatory mechanisms for correcting errors to avoid chromosomal instability.
Collapse
Affiliation(s)
- Megan K. Chong
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Miquel Rosas-Salvans
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Vanna Tran
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sophie Dumont
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
3
|
Titova E, Shagieva G, Dugina V, Kopnin P. The Role of Aurora B Kinase in Normal and Cancer Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2054-2062. [PMID: 38462449 DOI: 10.1134/s0006297923120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 03/12/2024]
Abstract
Aurora kinases are essential players in mammalian cell division. These kinases are involved in the regulation of spindle dynamics, microtubule-kinetochore interactions, and chromosome condensation and orientation during mitosis. At least three members of the Aurora family - Aurora kinases A, B, and C - have been identified in mammals. Aurora B is essential for maintaining genomic stability and normal cell division. Mutations and dysregulation of this kinase are implicated in tumor initiation and progression. In this review, we discuss the functions of Aurora B, the relationship between increased Aurora B activity and carcinogenesis, and the prospects for the use of Aurora B kinase inhibitors in antitumor therapy.
Collapse
Affiliation(s)
- Ekaterina Titova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Galina Shagieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vera Dugina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Pavel Kopnin
- Institute of Carcinogenesis, Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
4
|
Chong MK, Rosas-Salvans M, Tran V, Dumont S. Chromosome size-dependent polar ejection force impairs mammalian mitotic error correction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562637. [PMID: 37905080 PMCID: PMC10614862 DOI: 10.1101/2023.10.16.562637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Accurate chromosome segregation requires sister kinetochores to biorient, attaching to opposite spindle poles. To this end, the mammalian kinetochore destabilizes incorrect attachments and stabilizes correct ones, but how it discriminates between these is not yet clear. Here, we test the model that kinetochore tension is the stabilizing cue and ask how chromosome size impacts that model. We live image PtK2 cells, with just 14 chromosomes, widely ranging in size, and find that long chromosomes align at the metaphase plate later than short chromosomes. Enriching for errors and imaging error correction live, we show that long chromosomes exhibit a specific delay in correcting attachments. Using chromokinesin overexpression and laser ablation to perturb polar ejection forces, we find that chromosome size and force on arms determine alignment order. Thus, we propose a model where increased force on long chromosomes can falsely stabilize incorrect attachments, delaying their biorientation. As such, long chromosomes may require compensatory mechanisms for correcting errors to avoid chromosomal instability.
Collapse
Affiliation(s)
- Megan K. Chong
- Tetrad Graduate Program, UCSF, San Francisco, CA 94158, USA
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA
| | - Miquel Rosas-Salvans
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA
| | - Vanna Tran
- Tetrad Graduate Program, UCSF, San Francisco, CA 94158, USA
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA
| | - Sophie Dumont
- Tetrad Graduate Program, UCSF, San Francisco, CA 94158, USA
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA
- Department of Biochemistry & Biophysics, UCSF San Francisco 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
5
|
Ide AH, DeLuca KF, Wiggan O, Markus SM, DeLuca JG. The role of kinetochore dynein in checkpoint silencing is restricted to disassembly of the corona. Mol Biol Cell 2023; 34:ar76. [PMID: 37126397 PMCID: PMC10295480 DOI: 10.1091/mbc.e23-04-0130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
During mitosis, kinetochore-microtubule attachments are monitored by a molecular surveillance system known as the spindle assembly checkpoint. The prevailing model posits that dynein evicts checkpoint proteins (e.g., Mad1, Mad2) from stably attached kinetochores by transporting them away from kinetochores, thus contributing to checkpoint silencing. However, the mechanism by which dynein performs this function, and its precise role in checkpoint silencing remain unresolved. Here, we find that dynein's role in checkpoint silencing is restricted to evicting checkpoint effectors from the fibrous corona, and not the outer kinetochore. Dynein evicts these molecules from the corona in a manner that does not require stable, end-on microtubule attachments. Thus, by disassembling the corona through indiscriminate microtubule encounters, dynein primes the checkpoint signaling apparatus so it can respond to stable end-on microtubule attachments and permit cells to progress through mitosis. Accordingly, we find that dynein function in checkpoint silencing becomes largely dispensable in cells in which checkpoint effectors are excluded from the corona.
Collapse
Affiliation(s)
- Amy H. Ide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Keith F. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - O’Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Steven M. Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
6
|
Sobajima T, Kowalczyk KM, Skylakakis S, Hayward D, Fulcher LJ, Neary C, Batley C, Kurlekar S, Roberts E, Gruneberg U, Barr FA. PP6 regulation of Aurora A-TPX2 limits NDC80 phosphorylation and mitotic spindle size. J Cell Biol 2023; 222:e202205117. [PMID: 36897279 PMCID: PMC10041653 DOI: 10.1083/jcb.202205117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/22/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Amplification of the mitotic kinase Aurora A or loss of its regulator protein phosphatase 6 (PP6) have emerged as drivers of genome instability. Cells lacking PPP6C, the catalytic subunit of PP6, have amplified Aurora A activity, and as we show here, enlarged mitotic spindles which fail to hold chromosomes tightly together in anaphase, causing defective nuclear structure. Using functional genomics to shed light on the processes underpinning these changes, we discover synthetic lethality between PPP6C and the kinetochore protein NDC80. We find that NDC80 is phosphorylated on multiple N-terminal sites during spindle formation by Aurora A-TPX2, exclusively at checkpoint-silenced, microtubule-attached kinetochores. NDC80 phosphorylation persists until spindle disassembly in telophase, is increased in PPP6C knockout cells, and is Aurora B-independent. An Aurora-phosphorylation-deficient NDC80-9A mutant reduces spindle size and suppresses defective nuclear structure in PPP6C knockout cells. In regulating NDC80 phosphorylation by Aurora A-TPX2, PP6 plays an important role in mitotic spindle formation and size control and thus the fidelity of cell division.
Collapse
Affiliation(s)
| | | | | | - Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
| | - Luke J. Fulcher
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Colette Neary
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Caleb Batley
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samvid Kurlekar
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emile Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Francis A. Barr
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
McAinsh AD, Kops GJPL. Principles and dynamics of spindle assembly checkpoint signalling. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00593-z. [PMID: 36964313 DOI: 10.1038/s41580-023-00593-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/26/2023]
Abstract
The transmission of a complete set of chromosomes to daughter cells during cell division is vital for development and tissue homeostasis. The spindle assembly checkpoint (SAC) ensures correct segregation by informing the cell cycle machinery of potential errors in the interactions of chromosomes with spindle microtubules prior to anaphase. To do so, the SAC monitors microtubule engagement by specialized structures known as kinetochores and integrates local mechanical and chemical cues such that it can signal in a sensitive, responsive and robust manner. In this Review, we discuss how SAC proteins interact to allow production of the mitotic checkpoint complex (MCC) that halts anaphase progression by inhibiting the anaphase-promoting complex/cyclosome (APC/C). We highlight recent advances aimed at understanding the dynamic signalling properties of the SAC and how it interprets various naturally occurring intermediate attachment states. Further, we discuss SAC signalling in the context of the mammalian multisite kinetochore and address the impact of the fibrous corona. We also identify current challenges in understanding how the SAC ensures high-fidelity chromosome segregation.
Collapse
Affiliation(s)
- Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK.
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Bunning AR, Gupta Jr. ML. The importance of microtubule-dependent tension in accurate chromosome segregation. Front Cell Dev Biol 2023; 11:1096333. [PMID: 36755973 PMCID: PMC9899852 DOI: 10.3389/fcell.2023.1096333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Accurate chromosome segregation is vital for cell and organismal viability. The mitotic spindle, a bipolar macromolecular machine composed largely of dynamic microtubules, is responsible for chromosome segregation during each cell replication cycle. Prior to anaphase, a bipolar metaphase spindle must be formed in which each pair of chromatids is attached to microtubules from opposite spindle poles. In this bipolar configuration pulling forces from the dynamic microtubules can generate tension across the sister kinetochores. The tension status acts as a signal that can destabilize aberrant kinetochore-microtubule attachments and reinforces correct, bipolar connections. Historically it has been challenging to isolate the specific role of tension in mitotic processes due to the interdependency of attachment and tension status at kinetochores. Recent technical and experimental advances have revealed new insights into how tension functions during mitosis. Here we summarize the evidence that tension serves as a biophysical signal that unifies multiple aspects of kinetochore and centromere function to ensure accurate chromosome segregation.
Collapse
|
9
|
Klaasen SJ, Kops GJPL. Chromosome Inequality: Causes and Consequences of Non-Random Segregation Errors in Mitosis and Meiosis. Cells 2022; 11:3564. [PMID: 36428993 PMCID: PMC9688425 DOI: 10.3390/cells11223564] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Aneuploidy is a hallmark of cancer and a major cause of miscarriages in humans. It is caused by chromosome segregation errors during cell divisions. Evidence is mounting that the probability of specific chromosomes undergoing a segregation error is non-random. In other words, some chromosomes have a higher chance of contributing to aneuploid karyotypes than others. This could have important implications for the origins of recurrent aneuploidy patterns in cancer and developing embryos. Here, we review recent progress in understanding the prevalence and causes of non-random chromosome segregation errors in mammalian mitosis and meiosis. We evaluate its potential impact on cancer and human reproduction and discuss possible research avenues.
Collapse
Affiliation(s)
- Sjoerd J. Klaasen
- Hubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Geert J. P. L. Kops
- Hubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
10
|
Vukušić K, Tolić IM. Polar Chromosomes-Challenges of a Risky Path. Cells 2022; 11:1531. [PMID: 35563837 PMCID: PMC9101661 DOI: 10.3390/cells11091531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/29/2022] Open
Abstract
The process of chromosome congression and alignment is at the core of mitotic fidelity. In this review, we discuss distinct spatial routes that the chromosomes take to align during prometaphase, which are characterized by distinct biomolecular requirements. Peripheral polar chromosomes are an intriguing case as their alignment depends on the activity of kinetochore motors, polar ejection forces, and a transition from lateral to end-on attachments to microtubules, all of which can result in the delayed alignment of these chromosomes. Due to their undesirable position close to and often behind the spindle pole, these chromosomes may be particularly prone to the formation of erroneous kinetochore-microtubule interactions, such as merotelic attachments. To prevent such errors, the cell employs intricate mechanisms to preposition the spindle poles with respect to chromosomes, ensure the formation of end-on attachments in restricted spindle regions, repair faulty attachments by error correction mechanisms, and delay segregation by the spindle assembly checkpoint. Despite this protective machinery, there are several ways in which polar chromosomes can fail in alignment, mis-segregate, and lead to aneuploidy. In agreement with this, polar chromosomes are present in certain tumors and may even be involved in the process of tumorigenesis.
Collapse
Affiliation(s)
- Kruno Vukušić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | | |
Collapse
|
11
|
Herman JA, Arora S, Carter L, Zhu J, Biggins S, Paddison PJ. Functional dissection of human mitotic genes using CRISPR-Cas9 tiling screens. Genes Dev 2022; 36:495-510. [PMID: 35483740 PMCID: PMC9067404 DOI: 10.1101/gad.349319.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/12/2022] [Indexed: 12/03/2022]
Abstract
In this Resource/Methodology, Herman et al. developed a method that leverages CRISPR–Cas9-induced mutations across protein-coding genes for the a priori identification of functional regions at the sequence level. As a test case, they applied this method to 48 human mitotic genes, revealing hundreds of regions required for cell proliferation, including domains that were experimentally characterized, ones that were predicted based on homology, and novel ones. The identity of human protein-coding genes is well known, yet our in-depth knowledge of their molecular functions and domain architecture remains limited by shortcomings in homology-based predictions and experimental approaches focused on whole-gene depletion. To bridge this knowledge gap, we developed a method that leverages CRISPR–Cas9-induced mutations across protein-coding genes for the a priori identification of functional regions at the sequence level. As a test case, we applied this method to 48 human mitotic genes, revealing hundreds of regions required for cell proliferation, including domains that were experimentally characterized, ones that were predicted based on homology, and novel ones. We validated screen outcomes for 15 regions, including amino acids 387–402 of Mad1, which were previously uncharacterized but contribute to Mad1 kinetochore localization and chromosome segregation fidelity. Altogether, we demonstrate that CRISPR–Cas9-based tiling mutagenesis identifies key functional domains in protein-coding genes de novo, which elucidates separation of function mutants and allows functional annotation across the human proteome.
Collapse
Affiliation(s)
- Jacob A Herman
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Lucas Carter
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
12
|
Carvalhal S, Bader I, Rooimans MA, Oostra AB, Balk JA, Feichtinger RG, Beichler C, Speicher MR, van Hagen JM, Waisfisz Q, van Haelst M, Bruijn M, Tavares A, Mayr JA, Wolthuis RMF, Oliveira RA, de Lange J. Biallelic BUB1 mutations cause microcephaly, developmental delay, and variable effects on cohesion and chromosome segregation. SCIENCE ADVANCES 2022; 8:eabk0114. [PMID: 35044816 PMCID: PMC8769543 DOI: 10.1126/sciadv.abk0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Budding uninhibited by benzimidazoles (BUB1) contributes to multiple mitotic processes. Here, we describe the first two patients with biallelic BUB1 germline mutations, who both display microcephaly, intellectual disability, and several patient-specific features. The identified mutations cause variable degrees of reduced total protein level and kinase activity, leading to distinct mitotic defects. Both patients’ cells show prolonged mitosis duration, chromosome segregation errors, and an overall functional spindle assembly checkpoint. However, while BUB1 levels mostly affect BUBR1 kinetochore recruitment, impaired kinase activity prohibits centromeric recruitment of Aurora B, SGO1, and TOP2A, correlating with anaphase bridges, aneuploidy, and defective sister chromatid cohesion. We do not observe accelerated cohesion fatigue. We hypothesize that unresolved DNA catenanes increase cohesion strength, with concomitant increase in anaphase bridges. In conclusion, BUB1 mutations cause a neurodevelopmental disorder, with clinical and cellular phenotypes that partially resemble previously described syndromes, including autosomal recessive primary microcephaly, mosaic variegated aneuploidy, and cohesinopathies.
Collapse
Affiliation(s)
- Sara Carvalhal
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
- Algarve Biomedical Center Research Institute, Universidade do Algarve, 8005-139 Faro, Portugal
- Centre for Biomedical Research, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ingrid Bader
- Unit of Clinical Genetics, Paracelsus Medical University, Salzburg, Austria
| | - Martin A. Rooimans
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Anneke B. Oostra
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Jesper A. Balk
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - René G. Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Christine Beichler
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Johanna M. van Hagen
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Mieke van Haelst
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Martijn Bruijn
- Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, Netherlands
| | - Alexandra Tavares
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
| | - Johannes A. Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Rob M. F. Wolthuis
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
| | - Raquel A. Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156 Oeiras, Portugal
- Corresponding author. (R.A.O.); (J.d.L.)
| | - Job de Lange
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Oncogenetics Section, De Boelelaan 1118, 1081 HV Amsterdam, Netherlands
- Corresponding author. (R.A.O.); (J.d.L.)
| |
Collapse
|
13
|
Roy B, Han SJY, Fontan AN, Jema S, Joglekar AP. Aurora B phosphorylates Bub1 to promote spindle assembly checkpoint signaling. Curr Biol 2022; 32:237-247.e6. [PMID: 34861183 PMCID: PMC8752509 DOI: 10.1016/j.cub.2021.10.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
Accurate chromosome segregation during cell division requires amphitelic chromosome attachment to the spindle apparatus. It is ensured by the combined activity of the spindle assembly checkpoint (SAC),1 a signaling mechanism that delays anaphase onset in response to unattached chromosomes, and an error correction mechanism that eliminates syntelic attachments.2 The SAC becomes active when Mps1 kinase sequentially phosphorylates the kinetochore protein Spc105/KNL1 and the signaling proteins that Spc105/KNL1 recruits to facilitate the production of the mitotic checkpoint complex (MCC).3-8 The error correction mechanism is regulated by the Aurora B kinase, but Aurora B also promotes SAC signaling via indirect mechanisms.9-12 Here we present evidence that Aurora B kinase activity directly promotes MCC production by working downstream of Mps1 in budding yeast and human cells. Using the ectopic SAC activation (eSAC) system, we find that the conditional dimerization of Aurora B in budding yeast and an Aurora B recruitment domain in HeLa cells with either Bub1 or Mad1, but not the phosphodomain of Spc105/KNL1, leads to ectopic MCC production and mitotic arrest.13-16 Importantly, Bub1 must recruit both Mad1 and Cdc20 for this ectopic signaling activity. These and other data show that Aurora B cooperates with Bub1 to promote MCC production, but only after Mps1 licenses Bub1 recruitment to the kinetochore. This direct involvement of Aurora B in SAC signaling may maintain SAC signaling even after Mps1 activity in the kinetochore is lowered.
Collapse
Affiliation(s)
- Babhrubahan Roy
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA
| | - Simon J. Y. Han
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA,present address: Medical Scientist Training Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Adrienne N. Fontan
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA,present address: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 455 Main St, Cambridge, MA 02142
| | - Soubhagyalaxmi Jema
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA
| | - Ajit P. Joglekar
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA,corresponding author, lead contact: , Twitter handle: @AjitJoglekar1
| |
Collapse
|
14
|
Aurora B Tension Sensing Mechanisms in the Kinetochore Ensure Accurate Chromosome Segregation. Int J Mol Sci 2021; 22:ijms22168818. [PMID: 34445523 PMCID: PMC8396173 DOI: 10.3390/ijms22168818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
The accurate segregation of chromosomes is essential for the survival of organisms and cells. Mistakes can lead to aneuploidy, tumorigenesis and congenital birth defects. The spindle assembly checkpoint ensures that chromosomes properly align on the spindle, with sister chromatids attached to microtubules from opposite poles. Here, we review how tension is used to identify and selectively destabilize incorrect attachments, and thus serves as a trigger of the spindle assembly checkpoint to ensure fidelity in chromosome segregation. Tension is generated on properly attached chromosomes as sister chromatids are pulled in opposing directions but resisted by centromeric cohesin. We discuss the role of the Aurora B kinase in tension-sensing and explore the current models for translating mechanical force into Aurora B-mediated biochemical signals that regulate correction of chromosome attachments to the spindle.
Collapse
|
15
|
Uchida KSK, Jo M, Nagasaka K, Takahashi M, Shindo N, Shibata K, Tanaka K, Masumoto H, Fukagawa T, Hirota T. Kinetochore stretching-mediated rapid silencing of the spindle-assembly checkpoint required for failsafe chromosome segregation. Curr Biol 2021; 31:1581-1591.e3. [PMID: 33651990 DOI: 10.1016/j.cub.2021.01.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2020] [Accepted: 01/19/2021] [Indexed: 11/15/2022]
Abstract
The spindle-assembly checkpoint facilitates mitotic fidelity by delaying anaphase onset in response to microtubule vacancy at kinetochores. Following microtubule attachment, kinetochores receive microtubule-derived force, which causes kinetochores to undergo repetitive cycles of deformation; this phenomenon is referred to as kinetochore stretching. The nature of the forces and the relevance relating this deformation are not well understood. Here, we show that kinetochore stretching occurs within a framework of single end-on attached kinetochores, irrespective of microtubule poleward pulling force. An experimental method to conditionally interfere with the stretching allowed us to determine that kinetochore stretching comprises an essential process of checkpoint silencing by promoting PP1 phosphatase recruitment after the establishment of end-on attachments and removal of the majority of checkpoint-activating kinase Mps1 from kinetochores. Remarkably, we found that a lower frequency of kinetochore stretching largely correlates with a prolonged metaphase in cancer cell lines with chromosomal instability. Perturbation of kinetochore stretching and checkpoint silencing in chromosomally stable cells produced anaphase bridges, which can be alleviated by reducing chromosome-loaded cohesin. These observations indicate that kinetochore stretching-mediated checkpoint silencing provides an unanticipated etiology underlying chromosomal instability and underscores the importance of a rapid metaphase-to-anaphase transition in sustaining mitotic fidelity.
Collapse
Affiliation(s)
- Kazuhiko S K Uchida
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan; Division of Functional Genomics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Minji Jo
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kota Nagasaka
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Motoko Takahashi
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Norihisa Shindo
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Katsushi Shibata
- Division of Functional Genomics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
16
|
The right place at the right time: Aurora B kinase localization to centromeres and kinetochores. Essays Biochem 2021; 64:299-311. [PMID: 32406506 DOI: 10.1042/ebc20190081] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
Abstract
The fidelity of chromosome segregation during mitosis is intimately linked to the function of kinetochores, which are large protein complexes assembled at sites of centromeric heterochromatin on mitotic chromosomes. These key "orchestrators" of mitosis physically connect chromosomes to spindle microtubules and transduce forces through these connections to congress chromosomes and silence the spindle assembly checkpoint. Kinetochore-microtubule attachments are highly regulated to ensure that incorrect attachments are not prematurely stabilized, but instead released and corrected. The kinase activity of the centromeric protein Aurora B is required for kinetochore-microtubule destabilization during mitosis, but how the kinase acts on outer kinetochore substrates to selectively destabilize immature and erroneous attachments remains debated. Here, we review recent literature that sheds light on how Aurora B kinase is recruited to both centromeres and kinetochores and discuss possible mechanisms for how kinase interactions with substrates at distinct regions of mitotic chromosomes are regulated.
Collapse
|
17
|
Herman JA, Miller MP, Biggins S. chTOG is a conserved mitotic error correction factor. eLife 2020; 9:e61773. [PMID: 33377866 PMCID: PMC7773332 DOI: 10.7554/elife.61773] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
Accurate chromosome segregation requires kinetochores on duplicated chromatids to biorient by attaching to dynamic microtubules from opposite spindle poles, which exerts forces to bring kinetochores under tension. However, kinetochores initially bind to microtubules indiscriminately, resulting in errors that must be corrected. While the Aurora B protein kinase destabilizes low-tension attachments by phosphorylating kinetochores, low-tension attachments are intrinsically less stable than those under higher tension in vitro independent of Aurora activity. Intrinsic tension-sensitive behavior requires the microtubule regulator Stu2 (budding yeast Dis1/XMAP215 ortholog), which we demonstrate here is likely a conserved function for the TOG protein family. The human TOG protein, chTOG, localizes to kinetochores independent of microtubules by interacting with Hec1. We identify a chTOG mutant that regulates microtubule dynamics but accumulates erroneous kinetochore-microtubule attachments that are not destabilized by Aurora B. Thus, TOG proteins confer a unique, intrinsic error correction activity to kinetochores that ensures accurate chromosome segregation.
Collapse
Affiliation(s)
- Jacob A Herman
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Matthew P Miller
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
18
|
Duro J, Nilsson J. SAC during early cell divisions: Sacrificing fidelity over timely division, regulated differently across organisms: Chromosome alignment and segregation are left unsupervised from the onset of development until checkpoint activity is acquired, varying from species to species. Bioessays 2020; 43:e2000174. [PMID: 33251610 DOI: 10.1002/bies.202000174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Early embryogenesis is marked by a frail Spindle Assembly Checkpoint (SAC). The time of SAC acquisition varies depending on the species, cell size or a yet to be uncovered developmental timer. This means that for a specific number of divisions, biorientation of sister chromatids occurs unsupervised. When error-prone segregation is an issue, an aneuploidy-selective apoptosis system can come into play to eliminate chromosomally unbalanced cells resulting in healthy newborns. However, aneuploidy content can be too great to overcome, endangering viability. SAC generates a diffusible signal to lengthen time spent in mitosis if needed, ensuring correct chromosome segregation, a fundamental factor in the generation of euploid cells. Thus, it remains puzzling what benefit could come from delaying SAC acquisition till later in the development. In this review, we describe what is known on SAC acquisition in distinct species and highlight pending research as well as potential applications for such knowledge.
Collapse
Affiliation(s)
- Joana Duro
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
19
|
Broad AJ, DeLuca KF, DeLuca JG. Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells. J Cell Biol 2020; 219:133701. [PMID: 32028528 PMCID: PMC7055008 DOI: 10.1083/jcb.201905144] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/26/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Aurora B kinase has a critical role in regulating attachments between kinetochores and spindle microtubules during mitosis. Early in mitosis, kinase activity at kinetochores is high to promote attachment turnover, and in later mitosis, activity decreases to ensure attachment stabilization. Aurora B localizes prominently to inner centromeres, and a population of the kinase is also detected at kinetochores. How Aurora B is recruited to and evicted from these regions to regulate kinetochore-microtubule attachments remains unclear. Here, we identified and investigated discrete populations of Aurora B at the centromere/kinetochore region. An inner centromere pool is recruited by Haspin phosphorylation of histone H3, and a kinetochore-proximal outer centromere pool is recruited by Bub1 phosphorylation of histone H2A. Finally, a third pool resides ~20 nm outside of the inner kinetochore protein CENP-C in early mitosis and does not require either the Bub1/pH2A/Sgo1 or Haspin/pH3 pathway for localization or activity. Our results suggest that distinct molecular pathways are responsible for Aurora B recruitment to centromeres and kinetochores.
Collapse
Affiliation(s)
- Amanda J Broad
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Keith F DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
20
|
Kuijt TEF, Lambers MLA, Weterings S, Ponsioen B, Bolhaqueiro ACF, Staijen DHM, Kops GJPL. A Biosensor for the Mitotic Kinase MPS1 Reveals Spatiotemporal Activity Dynamics and Regulation. Curr Biol 2020; 30:3862-3870.e6. [PMID: 32888483 DOI: 10.1016/j.cub.2020.07.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 01/10/2023]
Abstract
Accurate chromosome segregation during cell division critically depends on error correction of chromosome-spindle interactions and the spindle assembly checkpoint (SAC) [1-3]. The kinase MPS1 is an essential regulator of both processes, ensuring full chromosome biorientation before anaphase onset [3, 4]. To understand when and where MPS1 activation occurs and how MPS1 signaling is modulated during mitosis, we developed MPS1sen, a sensitive and specific FRET-based biosensor for MPS1 activity. By placing MPS1sen at different subcellular locations, we show that MPS1 activity initiates in the nucleus ∼9-12 min prior to nuclear envelope breakdown (NEB) in a kinetochore-dependent manner and reaches the cytoplasm at the start of NEB. Soon after initiation, MPS1 activity increases with switch-like kinetics, peaking at completion of NEB. We further show that timing and extent of pre-NEB MPS1 activity is regulated by Aurora B and PP2A-B56. MPS1sen phosphorylation declines in prometaphase as a result of formation of kinetochore-microtubule attachments, reaching low but still detectable levels at metaphase. Finally, leveraging the sensitivity and dynamic range of MPS1sen, we show deregulated MPS1 signaling dynamics in colorectal cancer cell lines and tumor organoids with diverse genomic instability phenotypes.
Collapse
Affiliation(s)
- Timo E F Kuijt
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584CT Utrecht, the Netherlands
| | - Maaike L A Lambers
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584CT Utrecht, the Netherlands
| | - Sonja Weterings
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584CT Utrecht, the Netherlands
| | - Bas Ponsioen
- Cancer Genomics Netherlands, UMC Utrecht, 3584CG Utrecht, the Netherlands; Molecular Cancer Research, Centre for Molecular Medicine, UMC Utrecht, 3584CG Utrecht, the Netherlands
| | - Ana C F Bolhaqueiro
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584CT Utrecht, the Netherlands
| | - Debbie H M Staijen
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584CT Utrecht, the Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584CT Utrecht, the Netherlands.
| |
Collapse
|
21
|
Hara M, Fukagawa T. Dynamics of kinetochore structure and its regulations during mitotic progression. Cell Mol Life Sci 2020; 77:2981-2995. [PMID: 32052088 PMCID: PMC11104943 DOI: 10.1007/s00018-020-03472-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 12/27/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Faithful chromosome segregation during mitosis in eukaryotes requires attachment of the kinetochore, a large protein complex assembled on the centromere of each chromosome, to the spindle microtubules. The kinetochore is a structural interface for the microtubule attachment and provides molecular surveillance mechanisms that monitor and ensure the precise microtubule attachment as well, including error correction and spindle assembly checkpoint. During mitotic progression, the kinetochore undergoes dynamic morphological changes that are observable through electron microscopy as well as through fluorescence microscopy. These structural changes might be associated with the kinetochore function. In this review, we summarize how the dynamics of kinetochore morphology are associated with its functions and discuss recent findings on the switching of protein interaction networks in the kinetochore during cell cycle progression.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
22
|
Renda F, Magidson V, Tikhonenko I, Fisher R, Miles C, Mogilner A, Khodjakov A. Effects of malleable kinetochore morphology on measurements of intrakinetochore tension. Open Biol 2020; 10:200101. [PMID: 32634373 PMCID: PMC7571466 DOI: 10.1098/rsob.200101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The distance between fluorescent spots formed by various kinetochore proteins (delta) is commonly interpreted as a manifestation of intrakinetochore tension (IKT) caused by microtubule-mediated forces. However, large-scale changes of the kinetochore architecture (such as its shape or dimensions) may also contribute to the value of delta. To assess contributions of these non-elastic changes, we compare behaviour of delta values in human kinetochores with small yet mechanically malleable kinetochores against compound kinetochores in Indian muntjac (IM) cells whose architecture remains constant. Due to the micrometre-scale length of kinetochore plates in IM, their shape and orientation are discernible in conventional light microscopy, which enables precise measurements of IKT independent of contributions from changes in overall architecture of the organelle. We find that delta in IM kinetochores remains relatively constant when microtubule-mediated forces are suppressed by Taxol, but it prominently decreases upon detachment of microtubules. By contrast, large decreases of delta observed in Taxol-treated human cells coincide with prominent changes in length and curvature of the kinetochore plate. These observations, supported by computational modelling, suggest that at least 50% of the decrease in delta in human cells reflects malleable reorganization of kinetochore architecture rather than elastic recoil due to IKT.
Collapse
Affiliation(s)
- Fioranna Renda
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Valentin Magidson
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Irina Tikhonenko
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Rebecca Fisher
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Christopher Miles
- Courant Institute and Department of Biology, New York University, New York, NY, USA
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY, USA
| | - Alexey Khodjakov
- New York State Department of Health, Wadsworth Center, Albany, NY, USA.,Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
23
|
Wimbish RT, DeLuca KF, Mick JE, Himes J, Jiménez-Sánchez I, Jeyaprakash AA, DeLuca JG. The Hec1/Ndc80 tail domain is required for force generation at kinetochores, but is dispensable for kinetochore-microtubule attachment formation and Ska complex recruitment. Mol Biol Cell 2020; 31:1453-1473. [PMID: 32401635 PMCID: PMC7359571 DOI: 10.1091/mbc.e20-05-0286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
The conserved kinetochore-associated NDC80 complex (composed of Hec1/Ndc80, Nuf2, Spc24, and Spc25) has well-documented roles in mitosis including 1) connecting mitotic chromosomes to spindle microtubules to establish force-transducing kinetochore-microtubule attachments and 2) regulating the binding strength between kinetochores and microtubules such that correct attachments are stabilized and erroneous attachments are released. Although the NDC80 complex plays a central role in forming and regulating attachments to microtubules, additional factors support these processes as well, including the spindle and kinetochore-associated (Ska) complex. Multiple lines of evidence suggest that Ska complexes strengthen attachments by increasing the ability of NDC80 complexes to bind microtubules, especially to depolymerizing microtubule plus ends, but how this is accomplished remains unclear. Using cell-based and in vitro assays, we demonstrate that the Hec1 tail domain is dispensable for Ska complex recruitment to kinetochores and for generation of kinetochore-microtubule attachments in human cells. We further demonstrate that Hec1 tail phosphorylation regulates kinetochore-microtubule attachment stability independently of the Ska complex. Finally, we map the location of the Ska complex in cells to a region near the coiled-coil domain of the NDC80 complex and demonstrate that this region is required for Ska complex recruitment to the NDC80 complex--microtubule interface.
Collapse
Affiliation(s)
- Robert T. Wimbish
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Keith F. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jeanne E. Mick
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jack Himes
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | | | | | - Jennifer G. DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
24
|
Proudfoot KG, Anderson SJ, Dave S, Bunning AR, Sinha Roy P, Bera A, Gupta ML. Checkpoint Proteins Bub1 and Bub3 Delay Anaphase Onset in Response to Low Tension Independent of Microtubule-Kinetochore Detachment. Cell Rep 2020; 27:416-428.e4. [PMID: 30970246 PMCID: PMC6485967 DOI: 10.1016/j.celrep.2019.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 05/18/2018] [Accepted: 03/08/2019] [Indexed: 11/23/2022] Open
Abstract
The spindle assembly checkpoint (SAC) delays anaphase onset until sister chromosomes are bound to microtubules from opposite spindle poles. Only then can dynamic microtubules produce tension across sister kinetochores. The interdependence of kinetochore attachment and tension has proved challenging to understanding SAC mechanisms. Whether the SAC responds simply to kinetochore attachment or to tension status remains obscure. Unlike higher eukaryotes, budding yeast kinetochores bind only one microtubule, simplifying the relation between attachment and tension. We developed a Taxol-sensitive yeast model to reduce tension in fully assembled spindles. Our results show that low tension on bipolar-attached kinetochores delays anaphase onset, independent of detachment. The delay is transient relative to that imposed by unattached kinetochores. Furthermore, it is mediated by Bub1 and Bub3, but not Mad1, Mad2, and Mad3 (BubR1). Our results demonstrate that reduced tension delays anaphase onset via a signal that is temporally and mechanistically distinct from that produced by unattached kinetochores. Kinetochore attachment and tension are critical for proper chromosome segregation, but isolating the contribution of either stimulus has been challenging. Using a Taxol-sensitive yeast model, Proudfoot et al. show that reducing tension specifically produces a delay in mitotic progression that is temporally and mechanistically distinct from that produced by unattached kinetochores.
Collapse
Affiliation(s)
- Kathleen G Proudfoot
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA; Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Samuel J Anderson
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Sandeep Dave
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Angela R Bunning
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Pallavi Sinha Roy
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Abesh Bera
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
25
|
Roscioli E, Germanova TE, Smith CA, Embacher PA, Erent M, Thompson AI, Burroughs NJ, McAinsh AD. Ensemble-Level Organization of Human Kinetochores and Evidence for Distinct Tension and Attachment Sensors. Cell Rep 2020; 31:107535. [PMID: 32348762 PMCID: PMC7196887 DOI: 10.1016/j.celrep.2020.107535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/10/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Kinetochores are multi-protein machines that form dynamic attachments to microtubules and control chromosome segregation. High fidelity is ensured because kinetochores can monitor attachment status and tension, using this information to activate checkpoints and error-correction mechanisms. To explore how kinetochores achieve this, we used two- and three-color subpixel fluorescence localization to define how proteins from six major complexes (CCAN, MIS12, NDC80, KNL1, RZZ, and SKA) and the checkpoint proteins Bub1, Mad1, and Mad2 are organized in the human kinetochore. This reveals how the outer kinetochore has a high nematic order and is largely invariant to the loss of attachment or tension, except for two mechanical sensors. First, Knl1 unravels to relay tension, and second, NDC80 undergoes jackknifing and loss of nematic order under microtubule detachment, with only the latter wired up to the checkpoint signaling system. This provides insight into how kinetochores integrate mechanical signals to promote error-free chromosome segregation.
Collapse
Affiliation(s)
- Emanuele Roscioli
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Tsvetelina E Germanova
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Christopher A Smith
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Peter A Embacher
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Mathematics Institute, University of Warwick, Coventry, UK
| | - Muriel Erent
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Amelia I Thompson
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Nigel J Burroughs
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Mathematics Institute, University of Warwick, Coventry, UK.
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, UK; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| |
Collapse
|
26
|
Wimbish RT, DeLuca JG. Hec1/Ndc80 Tail Domain Function at the Kinetochore-Microtubule Interface. Front Cell Dev Biol 2020; 8:43. [PMID: 32161753 PMCID: PMC7054225 DOI: 10.3389/fcell.2020.00043] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/17/2020] [Indexed: 12/28/2022] Open
Abstract
Successful mitotic cell division is critically dependent on the formation of correct attachments between chromosomes and spindle microtubules. Microtubule attachments are mediated by kinetochores, which are large proteinaceous structures assembled on centromeric chromatin of mitotic chromosomes. These attachments must be sufficiently stable to transduce force; however, the strength of these attachments are also tightly regulated to ensure timely, error-free progression through mitosis. The highly conserved, kinetochore-associated NDC80 complex is a core component of the kinetochore-microtubule attachment machinery in eukaryotic cells. A small, disordered region within the Hec1 subunit of the NDC80 complex – the N-terminal “tail” domain – has been actively investigated during the last decade due to its roles in generating and regulating kinetochore-microtubule attachments. In this review, we discuss the role of the NDC80 complex, and specifically the Hec1 tail domain, at the kinetochore-microtubule interface, and how recent studies provide a more unified view of Hec1 tail domain function.
Collapse
Affiliation(s)
- Robert T Wimbish
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
27
|
Warren JD, Orr B, Compton DA. A comparative analysis of methods to measure kinetochore-microtubule attachment stability. Methods Cell Biol 2020; 158:91-116. [PMID: 32423652 PMCID: PMC7727308 DOI: 10.1016/bs.mcb.2020.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
During mitosis, spindle microtubules dynamically attach to and detach from kinetochores in a precise and regulated fashion. To ensure mitotic fidelity, kinetochore-microtubule (k-MT) attachments must be stable enough to satisfy the spindle assembly checkpoint (SAC), but sufficiently unstable to facilitate the correction of maloriented attachments. Different methods are available to assess k-MT stability in both live and fixed cells, but a comparative survey of these methods has not yet been reported. Here, we evaluate several quantitative and semiquantitative methods for determining k-MT stability and apply each technique to illustrate changes in spindle microtubule dynamics upon perturbation with physiologically relevant concentrations of microtubule stabilizing (Taxol) and destabilizing (UMK57 and nocodazole) compounds. We discuss the utility of each technique for defining specific features of spindle microtubule dynamics and k-MT attachment stability.
Collapse
Affiliation(s)
- Jessica D Warren
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, NH, United States; Norris Cotton Cancer Center, Lebanon, NH, United States
| | - Bernardo Orr
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Duane A Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, NH, United States; Norris Cotton Cancer Center, Lebanon, NH, United States.
| |
Collapse
|
28
|
Petsalaki E, Zachos G. DNA damage response proteins regulating mitotic cell division: double agents preserving genome stability. FEBS J 2020; 287:1700-1721. [PMID: 32027459 DOI: 10.1111/febs.15240] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
The DNA damage response recognizes DNA lesions and coordinates a cell cycle arrest with the repair of the damaged DNA, or removal of the affected cells to prevent the passage of genetic alterations to the next generation. The mitotic cell division, on the other hand, is a series of processes that aims to accurately segregate the genomic material from the maternal to the two daughter cells. Despite their great importance in safeguarding genomic integrity, the DNA damage response and the mitotic cell division were long viewed as unrelated processes, mainly because animal cells that are irradiated during mitosis continue cell division without repairing the broken chromosomes. However, recent studies have demonstrated that DNA damage proteins play an important role in mitotic cell division. This is performed through regulation of the onset of mitosis, mitotic spindle formation, correction of misattached kinetochore-microtubules, spindle checkpoint signaling, or completion of cytokinesis (abscission), in the absence of DNA damage. In this review, we summarize the roles of DNA damage proteins in unperturbed mitosis, analyze the molecular mechanisms involved, and discuss the potential implications of these findings in cancer therapy.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
29
|
Chuang SH, Lee YSE, Huang LYL, Chen CK, Lai CL, Lin YH, Yang JY, Yang SC, Chang LH, Chen CH, Liu CW, Lin HS, Lee YR, Huang KP, Fu KC, Jen HM, Lai JY, Jian PS, Wang YC, Hsueh WY, Tsai PY, Hong WH, Chang CC, Wu DZ, Wu J, Chen MH, Yu KM, Chern CY, Chang JM, Lau JYN, Huang JJ. Discovery of T-1101 tosylate as a first-in-class clinical candidate for Hec1/Nek2 inhibition in cancer therapy. Eur J Med Chem 2020; 191:112118. [PMID: 32113126 DOI: 10.1016/j.ejmech.2020.112118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Highly expressed in cancer 1 (Hec1) plays an essential role in mitosis and is correlated with cancer formation, progression, and survival. Phosphorylation of Hec1 by Nek2 kinase is essential for its mitotic function, thus any disruption of Hec1/Nek2 protein-protein interaction has potential for cancer therapy. We have developed T-1101 tosylate (9j tosylate, 9j formerly known as TAI-95), optimized from 4-aryl-N-pyridinylcarbonyl-2-aminothiazole of scaffold 9 by introducing various C-4' substituents to enhance potency and water solubility, as a first-in-class oral clinical candidate for Hec1 inhibition with potential for cancer therapy. T-1101 has good oral absorption, along with potent in vitro antiproliferative activity (IC50: 14.8-21.5 nM). It can achieve high concentrations in Huh-7 and MDA-MB-231 tumor tissues, and showed promise in antitumor activity in mice bearing human tumor xenografts of liver cancer (Huh-7), as well as of breast cancer (BT474, MDA-MB-231, and MCF7) with oral administration. Oral co-administration of T-1101 halved the dose of sorafenib (25 mg/kg to 12.5 mg/kg) required to exhibit comparable in vivo activity towards Huh-7 xenografts. Cellular events resulting from Hec1/Nek2 inhibition with T-1101 treatment include Nek2 degradation, chromosomal misalignment, and apoptotic cell death. A combination of T-1101 with either of doxorubicin, paclitaxel, and topotecan in select cancer cells also resulted in synergistic effects. Inactivity of T-1101 on non-cancerous cells, a panel of kinases, and hERG demonstrates cancer specificity, target specificity, and cardiac safety, respectively. Subsequent salt screening showed that T-1101 tosylate has good oral AUC (62.5 μM·h), bioavailability (F = 77.4%), and thermal stability. T-1101 tosylate is currently in phase I clinical trials as an orally administered drug for cancer therapy.
Collapse
Affiliation(s)
- Shih-Hsien Chuang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ying-Shuan E Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Lynn Y L Huang
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Chi-Kuan Chen
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Chun-Liang Lai
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Yu-Hsiang Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ju-Ying Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Sheng-Chuan Yang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Lien-Hsiang Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Ching-Hui Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Chia-Wei Liu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Her-Sheng Lin
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Yi-Ru Lee
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuan Pin Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuo Chu Fu
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Hsueh-Min Jen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Jun-Yu Lai
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Pei-Shiou Jian
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Yu-Chuan Wang
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Wen-Yun Hsueh
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Pei-Yi Tsai
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Wan-Hua Hong
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Chia-Chi Chang
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Diana Zc Wu
- Xenobiotic Laboratories, Inc., Plainsboro, NJ, USA
| | - Jinn Wu
- Xenobiotic Laboratories, Inc., Plainsboro, NJ, USA
| | - Meng-Hsin Chen
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Kuo-Ming Yu
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Ching Yuh Chern
- Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan
| | - Jia-Ming Chang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan
| | - Johnson Y N Lau
- Taivex Therapeutics Corporation, 2nd Floor, Dongxing Rd., Songshan Dist., Taipei City, 10511, Taiwan
| | - Jiann-Jyh Huang
- Development Center for Biotechnology, National Biotechnology Research Park, Taipei City, 11571, Taiwan; Department of Applied Chemistry, National Chiayi University, No. 300, Syuefu Rd., Chiayi City, 60004, Taiwan.
| |
Collapse
|
30
|
Keating L, Touati SA, Wassmann K. A PP2A-B56-Centered View on Metaphase-to-Anaphase Transition in Mouse Oocyte Meiosis I. Cells 2020; 9:E390. [PMID: 32046180 PMCID: PMC7072534 DOI: 10.3390/cells9020390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Meiosis is required to reduce to haploid the diploid genome content of a cell, generating gametes-oocytes and sperm-with the correct number of chromosomes. To achieve this goal, two specialized cell divisions without intermediate S-phase are executed in a time-controlled manner. In mammalian female meiosis, these divisions are error-prone. Human oocytes have an exceptionally high error rate that further increases with age, with significant consequences for human fertility. To understand why errors in chromosome segregation occur at such high rates in oocytes, it is essential to understand the molecular players at work controlling these divisions. In this review, we look at the interplay of kinase and phosphatase activities at the transition from metaphase-to-anaphase for correct segregation of chromosomes. We focus on the activity of PP2A-B56, a key phosphatase for anaphase onset in both mitosis and meiosis. We start by introducing multiple roles PP2A-B56 occupies for progression through mitosis, before laying out whether or not the same principles may apply to the first meiotic division in oocytes, and describing the known meiosis-specific roles of PP2A-B56 and discrepancies with mitotic cell cycle regulation.
Collapse
Affiliation(s)
- Leonor Keating
- Mammalian Oocyte Meiosis (MOM) UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France; (L.K.); (S.A.T.)
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, 75005 Paris, France
| | - Sandra A. Touati
- Mammalian Oocyte Meiosis (MOM) UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France; (L.K.); (S.A.T.)
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, 75005 Paris, France
| | - Katja Wassmann
- Mammalian Oocyte Meiosis (MOM) UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France; (L.K.); (S.A.T.)
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
31
|
Conti D, Gul P, Islam A, Martín-Durán JM, Pickersgill RW, Draviam VM. Kinetochores attached to microtubule-ends are stabilised by Astrin bound PP1 to ensure proper chromosome segregation. eLife 2019; 8:49325. [PMID: 31808746 PMCID: PMC6930079 DOI: 10.7554/elife.49325] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022] Open
Abstract
Microtubules segregate chromosomes by attaching to macromolecular kinetochores. Only microtubule-end attached kinetochores can be pulled apart; how these end-on attachments are selectively recognised and stabilised is not known. Using the kinetochore and microtubule-associated protein, Astrin, as a molecular probe, we show that end-on attachments are rapidly stabilised by spatially-restricted delivery of PP1 near the C-terminus of Ndc80, a core kinetochore-microtubule linker. PP1 is delivered by the evolutionarily conserved tail of Astrin and this promotes Astrin’s own enrichment creating a highly-responsive positive feedback, independent of biorientation. Abrogating Astrin:PP1-delivery disrupts attachment stability, which is not rescued by inhibiting Aurora-B, an attachment destabiliser, but is reversed by artificially tethering PP1 near the C-terminus of Ndc80. Constitutive Astrin:PP1-delivery disrupts chromosome congression and segregation, revealing a dynamic mechanism for stabilising attachments. Thus, Astrin-PP1 mediates a dynamic ‘lock’ that selectively and rapidly stabilises end-on attachments, independent of biorientation, and ensures proper chromosome segregation.
Collapse
Affiliation(s)
- Duccio Conti
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Parveen Gul
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Asifa Islam
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - José M Martín-Durán
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Richard W Pickersgill
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Viji M Draviam
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.,Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
32
|
Roy B, Verma V, Sim J, Fontan A, Joglekar AP. Delineating the contribution of Spc105-bound PP1 to spindle checkpoint silencing and kinetochore microtubule attachment regulation. J Cell Biol 2019; 218:3926-3942. [PMID: 31649151 PMCID: PMC6891095 DOI: 10.1083/jcb.201810172] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/19/2019] [Accepted: 09/18/2019] [Indexed: 02/01/2023] Open
Abstract
Roy et al. highlight a harmful cross-talk that can arise between spindle assembly checkpoint silencing and chromosome biorientation due to the involvement of protein phosphatase 1 in both the processes. Accurate chromosome segregation during cell division requires the spindle assembly checkpoint (SAC), which detects unattached kinetochores, and an error correction mechanism that destabilizes incorrect kinetochore–microtubule attachments. While the SAC and error correction are both regulated by protein phosphatase 1 (PP1), which silences the SAC and stabilizes kinetochore–microtubule attachments, how these distinct PP1 functions are coordinated remains unclear. Here, we investigate the contribution of PP1, docked on its conserved kinetochore receptor Spc105/Knl1, to SAC silencing and attachment regulation. We find that Spc105-bound PP1 is critical for SAC silencing but dispensable for error correction; in fact, reduced PP1 docking on Spc105 improved chromosome segregation and viability of mutant/stressed states. We additionally show that artificially recruiting PP1 to Spc105/Knl1 before, but not after, chromosome biorientation interfered with error correction. These observations lead us to propose that recruitment of PP1 to Spc105/Knl1 is carefully regulated to ensure that chromosome biorientation precedes SAC silencing, thereby ensuring accurate chromosome segregation.
Collapse
Affiliation(s)
- Babhrubahan Roy
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Vikash Verma
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Janice Sim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Adrienne Fontan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Ajit P Joglekar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI .,Department of Biophysics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
33
|
Kuhn J, Dumont S. Mammalian kinetochores count attached microtubules in a sensitive and switch-like manner. J Cell Biol 2019; 218:3583-3596. [PMID: 31492713 PMCID: PMC6829666 DOI: 10.1083/jcb.201902105] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/10/2019] [Accepted: 08/08/2019] [Indexed: 01/09/2023] Open
Abstract
Kinetochores monitor their attachment to spindle microtubules to control spindle assembly checkpoint (SAC) signaling and cell cycle progression. Kuhn and Dumont show that individual mammalian kinetochores monitor the number of attached microtubules as a single unit in a sensitive and switch-like manner. The spindle assembly checkpoint (SAC) prevents anaphase until all kinetochores attach to the spindle. Each mammalian kinetochore binds many microtubules, but how many attached microtubules are required to turn off the checkpoint, and how the kinetochore monitors microtubule numbers, are not known and are central to understanding SAC mechanisms and function. To address these questions, here we systematically tune and fix the fraction of Hec1 molecules capable of microtubule binding. We show that Hec1 molecules independently bind microtubules within single kinetochores, but that the kinetochore does not independently process attachment information from different molecules. Few attached microtubules (20% occupancy) can trigger complete Mad1 loss, and Mad1 loss is slower in this case. Finally, we show using laser ablation that individual kinetochores detect changes in microtubule binding, not in spindle forces that accompany attachment. Thus, the mammalian kinetochore responds specifically to the binding of each microtubule and counts microtubules as a single unit in a sensitive and switch-like manner. This may allow kinetochores to rapidly react to early attachments and maintain a robust SAC response despite dynamic microtubule numbers.
Collapse
Affiliation(s)
- Jonathan Kuhn
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA .,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Sophie Dumont
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA .,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA.,Department of Cell and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
34
|
Alex A, Piano V, Polley S, Stuiver M, Voss S, Ciossani G, Overlack K, Voss B, Wohlgemuth S, Petrovic A, Wu Y, Selenko P, Musacchio A, Maffini S. Electroporated recombinant proteins as tools for in vivo functional complementation, imaging and chemical biology. eLife 2019; 8:48287. [PMID: 31310234 PMCID: PMC6656429 DOI: 10.7554/elife.48287] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Delivery of native or chemically modified recombinant proteins into mammalian cells shows promise for functional investigations and various technological applications, but concerns that sub-cellular localization and functional integrity of delivered proteins may be affected remain high. Here, we surveyed batch electroporation as a delivery tool for single polypeptides and multi-subunit protein assemblies of the kinetochore, a spatially confined and well-studied subcellular structure. After electroporation into human cells, recombinant fluorescent Ndc80 and Mis12 multi-subunit complexes exhibited native localization, physically interacted with endogenous binding partners, and functionally complemented depleted endogenous counterparts to promote mitotic checkpoint signaling and chromosome segregation. Farnesylation is required for kinetochore localization of the Dynein adaptor Spindly. In cells with chronically inhibited farnesyl transferase activity, in vitro farnesylation and electroporation of recombinant Spindly faithfully resulted in robust kinetochore localization. Our data show that electroporation is well-suited to deliver synthetic and chemically modified versions of functional proteins, and, therefore, constitutes a promising tool for applications in chemical and synthetic biology.
Collapse
Affiliation(s)
- Amal Alex
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Valentina Piano
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Soumitra Polley
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marchel Stuiver
- In-Cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Berlin, Germany
| | - Stephanie Voss
- Chemical Genomics Centre, Max Planck Society, Dortmund, Germany
| | - Giuseppe Ciossani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Katharina Overlack
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Beate Voss
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yaowen Wu
- Chemical Genomics Centre, Max Planck Society, Dortmund, Germany.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Philipp Selenko
- In-Cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Berlin, Germany.,Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
35
|
Qi F, Zhou J, Liu M. Microtubule-interfering agents, spindle defects, and interkinetochore tension. J Cell Physiol 2019; 235:26-30. [PMID: 31219174 DOI: 10.1002/jcp.28978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/29/2019] [Indexed: 01/29/2023]
Abstract
Microtubule-interfering agents have been very useful both as biological tools in studying mitosis and as chemotherapeutic agents against cancer. It remains poorly understood how these agents converge on the spindle assembly checkpoint (SAC) to halt mitotic progression, while inhibiting microtubule dynamics by different mechanisms. Cells arrested at mitosis by various microtubule-interfering agents exhibit strikingly different defects in the mitotic spindle. However, all the arrested cells possess the 3F3/2 phosphoepitope at the sister kinetochores of chromosomes, indicating the decrease of tension across the paired kinetochores. In addition, microtubule-interfering agents result in a comparable reduction in the distance between sister kinetochores, suggesting that these agents decrease interkinetochore tension to similar degrees. Here, we discuss recent progress that suggests impairment of kinetochore-microtubule attachment and reduction of interkinetochore tension as common mechanisms underlying the persistent SAC activation in response to diverse microtubule-interfering agents.
Collapse
Affiliation(s)
- Feifei Qi
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
36
|
Etemad B, Vertesy A, Kuijt TEF, Sacristan C, van Oudenaarden A, Kops GJPL. Spindle checkpoint silencing at kinetochores with submaximal microtubule occupancy. J Cell Sci 2019; 132:jcs.231589. [PMID: 31138679 DOI: 10.1242/jcs.231589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/17/2019] [Indexed: 11/20/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures proper chromosome segregation by monitoring kinetochore-microtubule interactions. SAC proteins are shed from kinetochores once stable attachments are achieved. Human kinetochores consist of hundreds of SAC protein recruitment modules and bind up to 20 microtubules, raising the question of how the SAC responds to intermediate attachment states. We show that one protein module ('RZZS-MAD1-MAD2') of the SAC is removed from kinetochores at low microtubule occupancy and remains absent at higher occupancies, while another module ('BUB1-BUBR1') is retained at substantial levels irrespective of attachment states. These behaviours reflect different silencing mechanisms: while BUB1 displacement is almost fully dependent on MPS1 inactivation, MAD1 (also known as MAD1L1) displacement is not. Artificially tuning the affinity of kinetochores for microtubules further shows that ∼50% occupancy is sufficient to shed MAD2 and silence the SAC. Kinetochores thus respond as a single unit to shut down SAC signalling at submaximal occupancy states, but retain one SAC module. This may ensure continued SAC silencing on kinetochores with fluctuating occupancy states while maintaining the ability for fast SAC re-activation.
Collapse
Affiliation(s)
- Banafsheh Etemad
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Abel Vertesy
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Timo E F Kuijt
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Carlos Sacristan
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Alexander van Oudenaarden
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
37
|
The mammalian kinetochore-microtubule interface: robust mechanics and computation with many microtubules. Curr Opin Cell Biol 2019; 60:60-67. [PMID: 31132675 DOI: 10.1016/j.ceb.2019.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
The kinetochore drives chromosome segregation at cell division. It acts as a physical link between chromosomes and dynamic microtubules, and as a signaling hub detecting and processing microtubule attachments to control anaphase onset. The mammalian kinetochore is a large macromolecular machine that forms a dynamic interface with the many microtubules that it binds. While we know most of the kinetochore's component parts, how they work together to give rise to its robust functions remains poorly understood. Here we highlight recent findings that shed light on this question, driven by an expanding physical and molecular toolkit. We present emerging principles that underlie the kinetochore's robust microtubule grip, such as redundancy, specialization, and dynamicity, and present signal processing principles that connect this microtubule grip to robust computation. Throughout, we identify open questions, and define simple engineering concepts that provide insight into kinetochore function.
Collapse
|
38
|
Taveras C, Liu C, Mao Y. A tension-independent mechanism reduces Aurora B-mediated phosphorylation upon microtubule capture by CENP-E at the kinetochore. Cell Cycle 2019; 18:1349-1363. [PMID: 31122175 DOI: 10.1080/15384101.2019.1617615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
During mitosis, Aurora B kinase is required for forming proper bi-oriented kinetochore-microtubule attachments. Current models suggest that tension exerted between a pair of sister-kinetochores (inter-kinetochore stretch) produces a spatial separation of Aurora B kinase from kinetochore-associated microtubule binding substrates, such as the Knl1-Mis12-Ndc80 (KMN) network, resulting in a decrease of phosphorylation and, thus, an increase of affinity for microtubules. Using Single-Molecule High-Resolution Colocalization (SHREC) microscopy analysis of the kinetochore-associated motor CENP-E, we now show that CENP-E undergoes structural rearrangements prior to and after tension generation at the kinetochore, and displays a bi-modal Gaussian distribution on a pair of bi-oriented sister kinetochores. The conformational change of CENP-E depends on its microtubule-stimulated motor motility and the highly flexible coiled-coil between its motor and kinetochore-binding tail domains. Chemical inhibition of the motor motility or perturbations of the coiled-coil domain of CENP-E increases Aurora B-mediated Ndc80 phosphorylation in a tension-independent manner. Metaphase chromosome misalignment caused by CENP-E inhibition can be rescued by chemical inhibition of Aurora B kinase. Furthermore, a pair of monotelic sister-kinetochores shows asymmetric levels of Aurora B-mediated phosphorylation in mono-polar spindles depending on CENP-E motor activity. These results collectively suggest a tension-independent mechanism to reduce Aurora B-mediated phosphorylation of outer kinetochore components in response to microtubule capture by CENP-E.
Collapse
Affiliation(s)
- Carmen Taveras
- a Department of Pathology and Cell Biology , Columbia University Vagelos College of Physicians and Surgeons , New York , NY , USA
| | - Chenshu Liu
- a Department of Pathology and Cell Biology , Columbia University Vagelos College of Physicians and Surgeons , New York , NY , USA
| | - Yinghui Mao
- a Department of Pathology and Cell Biology , Columbia University Vagelos College of Physicians and Surgeons , New York , NY , USA
| |
Collapse
|
39
|
Scarborough EA, Davis TN, Asbury CL. Tight bending of the Ndc80 complex provides intrinsic regulation of its binding to microtubules. eLife 2019; 8:44489. [PMID: 31045495 PMCID: PMC6516834 DOI: 10.7554/elife.44489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of the outer kinetochore complex Ndc80 is essential to ensure correct kinetochore-microtubule attachments during mitosis. Here, we present a novel mechanism of regulation that is intrinsic to its structure; tight bending of the Ndc80 complex inhibits its microtubule binding. Using single molecule Förster resonance energy transfer (FRET), we show that the Saccharomyces cerevisiae Ndc80 complex can fluctuate between straight and bent forms, and that binding of the complex to microtubules selects for straightened forms. The loop region of the complex enables its bent conformation, as deletion of the loop promotes straightening. In addition, the kinetochore complex MIND enhances microtubule binding by opposing the tightly bent, auto-inhibited conformation of the Ndc80 complex. We suggest that prior to its assembly at the kinetochore, the Ndc80 complex interchanges between bent (auto-inhibited) and open conformations. Once assembled, its association with MIND stabilizes the Ndc80 complex in a straightened form for higher affinity microtubule binding.
Collapse
Affiliation(s)
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, United States
| |
Collapse
|
40
|
A Survey on Tubulin and Arginine Methyltransferase Families Sheds Light on P. lividus Embryo as Model System for Antiproliferative Drug Development. Int J Mol Sci 2019; 20:ijms20092136. [PMID: 31052191 PMCID: PMC6539552 DOI: 10.3390/ijms20092136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/27/2019] [Indexed: 01/18/2023] Open
Abstract
Tubulins and microtubules (MTs) represent targets for taxane-based chemotherapy. To date, several lines of evidence suggest that effectiveness of compounds binding tubulin often relies on different post-translational modifications on tubulins. Among them, methylation was recently associated to drug resistance mechanisms impairing taxanes binding. The sea urchin is recognized as a research model in several fields including fertilization, embryo development and toxicology. To date, some α- and β-tubulin genes have been identified in P. lividus, while no data are available in echinoderms for arginine methyl transferases (PRMT). To evaluate the exploiting of the sea urchin embryo in the field of antiproliferative drug development, we carried out a survey of the expressed α- and β-tubulin gene sets, together with a comprehensive analysis of the PRMT gene family and of the methylable arginine residues in P. lividus tubulins. Because of their specificities, the sea urchin embryo may represent an interesting tool for dissecting mechanisms of tubulin targeting drug action. Therefore, results herein reported provide evidences supporting the P. lividus embryo as animal system for testing antiproliferative drugs.
Collapse
|
41
|
Pachis ST, Kops GJPL. Leader of the SAC: molecular mechanisms of Mps1/TTK regulation in mitosis. Open Biol 2019; 8:rsob.180109. [PMID: 30111590 PMCID: PMC6119859 DOI: 10.1098/rsob.180109] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
Discovered in 1991 in a screen for genes involved in spindle pole body duplication, the monopolar spindle 1 (Mps1) kinase has since claimed a central role in processes that ensure error-free chromosome segregation. As a result, Mps1 kinase activity has become an attractive candidate for pharmaceutical companies in the search for compounds that target essential cellular processes to eliminate, for example, tumour cells or pathogens. Research in recent decades has offered many insights into the molecular function of Mps1 and its regulation. In this review, we integrate the latest knowledge regarding the regulation of Mps1 activity and its spatio-temporal distribution, highlight gaps in our understanding of these processes and propose future research avenues to address them.
Collapse
Affiliation(s)
- Spyridon T Pachis
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
42
|
Dwivedi D, Kumari A, Rathi S, Mylavarapu SVS, Sharma M. The dynein adaptor Hook2 plays essential roles in mitotic progression and cytokinesis. J Cell Biol 2019; 218:871-894. [PMID: 30674580 PMCID: PMC6400558 DOI: 10.1083/jcb.201804183] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/29/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
Hook proteins are evolutionarily conserved dynein adaptors that promote assembly of highly processive dynein-dynactin motor complexes. Mammals express three Hook paralogs, namely Hook1, Hook2, and Hook3, that have distinct subcellular localizations and expectedly, distinct cellular functions. Here we demonstrate that Hook2 binds to and promotes dynein-dynactin assembly specifically during mitosis. During the late G2 phase, Hook2 mediates dynein-dynactin localization at the nuclear envelope (NE), which is required for centrosome anchoring to the NE. Independent of its binding to dynein, Hook2 regulates microtubule nucleation at the centrosome; accordingly, Hook2-depleted cells have reduced astral microtubules and spindle positioning defects. Besides the centrosome, Hook2 localizes to and recruits dynactin and dynein to the central spindle. Dynactin-dependent targeting of centralspindlin complex to the midzone is abrogated upon Hook2 depletion; accordingly, Hook2 depletion results in cytokinesis failure. We find that the zebrafish Hook2 homologue promotes dynein-dynactin association and was essential for zebrafish early development. Together, these results suggest that Hook2 mediates assembly of the dynein-dynactin complex and regulates mitotic progression and cytokinesis.
Collapse
Affiliation(s)
- Devashish Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, Faridabad, India.,Affiliated to Manipal Academy of Higher Education, Manipal, India
| | - Siddhi Rathi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, Faridabad, India.,Affiliated to Manipal Academy of Higher Education, Manipal, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| |
Collapse
|
43
|
Funabiki H. Correcting aberrant kinetochore microtubule attachments: a hidden regulation of Aurora B on microtubules. Curr Opin Cell Biol 2019; 58:34-41. [PMID: 30684807 DOI: 10.1016/j.ceb.2018.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/16/2018] [Indexed: 01/06/2023]
Abstract
For equal chromosome segregation, a pair of kinetochores on each duplicated chromosome must attach to microtubules connecting to opposite poles. The protein kinase Aurora B plays a critical role in destabilizing microtubules attached in a wrong orientation through phosphorylating kinetochore proteins. The mechanism behind this selective destabilization of aberrant attachments remains elusive. While Aurora B is most enriched on the centromere from prophase to metaphase, emerging evidence suggests the importance of Aurora B on microtubules in this process. Here I discuss two hypothetical models that could explain the requirement of Aurora B on microtubules for selective destabilization of aberrant attachments; microtubule-induced substrate masking and treadmill-removal of Aurora B on microtubules proximal to polymerizing ends.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
44
|
Shen CH, Lin JY, Chang YL, Wu SY, Peng CK, Wu CP, Huang KL. Inhibition of NKCC1 Modulates Alveolar Fluid Clearance and Inflammation in Ischemia-Reperfusion Lung Injury via TRAF6-Mediated Pathways. Front Immunol 2018; 9:2049. [PMID: 30271405 PMCID: PMC6146090 DOI: 10.3389/fimmu.2018.02049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Background: The expression of Na-K-2Cl cotransporter 1 (NKCC1) in the alveolar epithelium is responsible for fluid homeostasis in acute lung injury (ALI). Increasing evidence suggests that NKCC1 is associated with inflammation in ALI. We hypothesized that inhibiting NKCC1 would attenuate ALI after ischemia-reperfusion (IR) by modulating pathways that are mediated by tumor necrosis-associated factor 6 (TRAF6). Methods: IR-ALI was induced by producing 30 min of ischemia followed by 90 min of reperfusion in situ in an isolated and perfused rat lung model. The rats were randomly allotted into four groups comprising two control groups and two IR groups with and without bumetanide. Alveolar fluid clearance (AFC) was measured for each group. Mouse alveolar MLE-12 cells were cultured in control and hypoxia-reoxygenation (HR) conditions with or without bumetanide. Flow cytometry and transwell monolayer permeability assay were carried out for each group. Results: Bumetanide attenuated the activation of p-NKCC1 and lung edema after IR. In the HR model, bumetanide decreased the cellular volume and increased the transwell permeability. In contrast, bumetanide increased the expression of epithelial sodium channel (ENaC) via p38 mitogen-activated protein kinase (p38 MAPK), which attenuated the reduction of AFC after IR. Bumetanide also modulated lung inflammation via nuclear factor-κB (NF-κB). TRAF6, which is upstream of p38 MAPK and NF-κB, was attenuated by bumetanide after IR and HR. Conclusions: Inhibition of NKCC1 by bumetanide reciprocally modulated epithelial p38 MAPK and NF-κB via TRAF6 in IR-ALI. This interaction attenuated the reduction of AFC via upregulating ENaC expression and reduced lung inflammation.
Collapse
Affiliation(s)
- Chih-Hao Shen
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jr-Yu Lin
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Chin-Pyng Wu
- Department of Critical Care Medicine, Landseed Hospital, Taoyuan, Taiwan
| | - Kun-Lun Huang
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan.,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
45
|
Loss of Kif18A Results in Spindle Assembly Checkpoint Activation at Microtubule-Attached Kinetochores. Curr Biol 2018; 28:2685-2696.e4. [DOI: 10.1016/j.cub.2018.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/21/2018] [Accepted: 06/13/2018] [Indexed: 11/18/2022]
|
46
|
Li JA, Liu BC, Song Y, Chen X. Cyclin A2 regulates symmetrical mitotic spindle formation and centrosome amplification in human colon cancer cells. Am J Transl Res 2018; 10:2669-2676. [PMID: 30210703 PMCID: PMC6129552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Colon cancer is one of the most fatal cancers in the United States, and is characterized by the presence of chromosomal instability (CIN), causes of which are largely unclear. Emerging evidence indicates that abnormal spindle geometry and supernumerary centrosomes lead to CIN in cells. However, if and how spindle geometry defects and centrosomes amplification occur in colon cancer remains unknown. Here we show that decrease in the cell cycle regulatory protein, cyclin A2, induces spindle geometry defects in colon cancer cells. In mechanistic studies, we found that cyclin A2 is located at the centrosomes, and its depletion reduces phosphorylation of EG5, which is important for centrosome localization and movement of duplicated centrosomes to opposite poles. We also found that cyclin A2 silencing leads to centrosome amplification in the cells. Collectively, these findings demonstrate previously unrecognized role for cyclin A2 in preventing centrosomal defects in colon cancer cells and provide insights into mechanisms that may potentially cause CIN in these tumors.
Collapse
Affiliation(s)
- Jun-An Li
- Department of Digestive Endoscopy, Second Affiliated Hospital of Jilin University Zi Qiang Road, Nan Guan District, Changchun 130041, Jilin, China
| | - Bai-Chun Liu
- Department of Digestive Endoscopy, Second Affiliated Hospital of Jilin University Zi Qiang Road, Nan Guan District, Changchun 130041, Jilin, China
| | - Ying Song
- Department of Digestive Endoscopy, Second Affiliated Hospital of Jilin University Zi Qiang Road, Nan Guan District, Changchun 130041, Jilin, China
| | - Xin Chen
- Department of Digestive Endoscopy, Second Affiliated Hospital of Jilin University Zi Qiang Road, Nan Guan District, Changchun 130041, Jilin, China
| |
Collapse
|
47
|
Joglekar AP, Kukreja AA. How Kinetochore Architecture Shapes the Mechanisms of Its Function. Curr Biol 2018; 27:R816-R824. [PMID: 28829971 DOI: 10.1016/j.cub.2017.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The eukaryotic kinetochore is a sophisticated multi-protein machine that segregates chromosomes during cell division. To ensure accurate chromosome segregation, it performs three major functions using disparate molecular mechanisms. It operates a mechanosensitive signaling cascade known as the spindle assembly checkpoint (SAC) to detect and signal the lack of attachment to spindle microtubules, and delay anaphase onset in response. In addition, after attaching to spindle microtubules, the kinetochore generates the force necessary to move chromosomes. Finally, if the two sister kinetochores on a chromosome are both attached to microtubules emanating from the same spindle pole, they activate another mechanosensitive mechanism to correct the monopolar attachments. All three of these functions maintain genome stability during cell division. The outlines of the biochemical activities responsible for these functions are now available. How the kinetochore integrates the underlying molecular mechanisms is still being elucidated. In this Review, we discuss how the nanoscale protein organization in the kinetochore, which we refer to as kinetochore 'architecture', organizes its biochemical activities to facilitate the realization and integration of emergent mechanisms underlying its three major functions. For this discussion, we will use the relatively simple budding yeast kinetochore as a model, and extrapolate insights gained from this model to elucidate functional roles of the architecture of the much more complex human kinetochore.
Collapse
Affiliation(s)
- Ajit P Joglekar
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
48
|
Bourmoum M, Charles R, Claing A. ARF6 protects sister chromatid cohesion to ensure the formation of stable kinetochore-microtubule attachments. J Cell Sci 2018; 131:jcs216598. [PMID: 29724911 DOI: 10.1242/jcs.216598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/25/2018] [Indexed: 01/02/2023] Open
Abstract
Sister chromatid cohesion, facilitated by the cohesin protein complex, is crucial for the establishment of stable bipolar attachments of chromosomes to the spindle microtubules and their faithful segregation. Here, we demonstrate that the GTPase ARF6 prevents the premature loss of sister chromatid cohesion. During mitosis, ARF6-depleted cells normally completed chromosome congression. However, at the metaphase plate, chromosomes failed to establish stable kinetochore-microtubule attachments because of the impaired cohesion at centromeres. As a result, the spindle assembly checkpoint (SAC) was active and cyclin B ubiquitylation and degradation were blocked. Chromosomes and/or chromatids in these cells scattered gradually from the metaphase plate to the two poles of the cell or remained blocked at the metaphase plate for hours. Our study demonstrates that the small GTP-binding protein ARF6 is essential for maintaining centromeric cohesion between sister chromatids, which is necessary for the establishment of stable k-fibres, SAC satisfaction and the onset of anaphase.
Collapse
Affiliation(s)
- Mohamed Bourmoum
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128 Succursale Centre-ville, Montreal, Quebec, Canada, H3T 1J4
| | - Ricardo Charles
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128 Succursale Centre-ville, Montreal, Quebec, Canada, H3T 1J4
| | - Audrey Claing
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128 Succursale Centre-ville, Montreal, Quebec, Canada, H3T 1J4
| |
Collapse
|
49
|
Dudka D, Noatynska A, Smith CA, Liaudet N, McAinsh AD, Meraldi P. Complete microtubule-kinetochore occupancy favours the segregation of merotelic attachments. Nat Commun 2018; 9:2042. [PMID: 29795284 PMCID: PMC5966435 DOI: 10.1038/s41467-018-04427-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/30/2018] [Indexed: 12/03/2022] Open
Abstract
Kinetochores are multi-protein complexes that power chromosome movements by tracking microtubules plus-ends in the mitotic spindle. Human kinetochores bind up to 20 microtubules, even though single microtubules can generate sufficient force to move chromosomes. Here, we show that high microtubule occupancy at kinetochores ensures robust chromosome segregation by providing a strong mechanical force that favours segregation of merotelic attachments during anaphase. Using low doses of the microtubules-targeting agent BAL27862 we reduce microtubule occupancy and observe that spindle morphology is unaffected and bi-oriented kinetochores can still oscillate with normal intra-kinetochore distances. Inter-kinetochore stretching is, however, dramatically reduced. The reduction in microtubule occupancy and inter-kinetochore stretching does not delay satisfaction of the spindle assembly checkpoint or induce microtubule detachment via Aurora-B kinase, which was so far thought to release microtubules from kinetochores under low stretching. Rather, partial microtubule occupancy slows down anaphase A and increases incidences of lagging chromosomes due to merotelically attached kinetochores. Single microtubules (MTs) can move chromosomes, but it is unclear why kinetochores bind up to 20 MTs. Here, the authors decrease the number of kinetochore MTs with BAL27862 and see lagging chromosomes, suggesting that numerous kinetochore MTs provide force ensuring robust chromosomal segregation.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland
| | - Anna Noatynska
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland
| | - Chris A Smith
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK.,Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Nicolas Liaudet
- Bioimaging Facility, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland
| | - Andrew D McAinsh
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland. .,Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
50
|
Tension-Induced Error Correction and Not Kinetochore Attachment Status Activates the SAC in an Aurora-B/C-Dependent Manner in Oocytes. Curr Biol 2017; 28:130-139.e3. [PMID: 29276128 DOI: 10.1016/j.cub.2017.11.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Abstract
Cell division with partitioning of the genetic material should take place only when paired chromosomes named bivalents (meiosis I) or sister chromatids (mitosis and meiosis II) are correctly attached to the bipolar spindle in a tension-generating manner. For this to happen, the spindle assembly checkpoint (SAC) checks whether unattached kinetochores are present, in which case anaphase onset is delayed to permit further establishment of attachments. Additionally, microtubules are stabilized when they are attached and under tension. In mitosis, attachments not under tension activate the so-named error correction pathway depending on Aurora B kinase substrate phosphorylation. This leads to microtubule detachments, which in turn activates the SAC [1-3]. Meiotic divisions in mammalian oocytes are highly error prone, with severe consequences for fertility and health of the offspring [4, 5]. Correct attachment of chromosomes in meiosis I leads to the generation of stretched bivalents, but-unlike mitosis-not to tension between sister kinetochores, which co-orient. Here, we set out to address whether reduction of tension applied by the spindle on bioriented bivalents activates error correction and, as a consequence, the SAC. Treatment of oocytes in late prometaphase I with Eg5 kinesin inhibitor affects spindle tension, but not attachments, as we show here using an optimized protocol for confocal imaging. After Eg5 inhibition, bivalents are correctly aligned but less stretched, and as a result, Aurora-B/C-dependent error correction with microtubule detachment takes place. This loss of attachments leads to SAC activation. Crucially, SAC activation itself does not require Aurora B/C kinase activity in oocytes.
Collapse
|