1
|
Lin H, Bei Y, Shen Z, Wei T, Ge Y, Yu L, Xu H, He W, Dai Y, Yao D, Dai H. HDAC9 Deficiency Upregulates cGMP-dependent Kinase II to Mitigate Neuronal Apoptosis in Ischemic Stroke. Transl Stroke Res 2025; 16:868-881. [PMID: 38940872 DOI: 10.1007/s12975-024-01272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Histone deacetylase 9 (HDAC9) is implicated in ischemic stroke by genome-wide association studies. We conducted a series of experiments using a mouse model of ischemic stroke (middle cerebral artery occlusion followed by reperfusion) to examine the potential role of HDAC9. Briefly, HDAC9 was upregulated in the penumbra. Deletion of HDAC9 from neurons reduced infarction volume, inhibited neuronal apoptosis in the penumbra, and improved neurological outcomes. HDAC9 knockout from neurons in the penumbra upregulated cGMP-dependent kinase II (cGK II), blocking which abrogated the protective effects of HDAC9 deletion. Mechanistically, HDAC9 interacts with the transcription factor MEF2, thereby inhibiting MEF2's binding to the promoter region of the cGK II gene, which results in the suppression of cGK II expression. Inhibiting the interaction between HDAC9 and MEF2 by BML210 upregulated cGK II and attenuated ischemic injury in mice. These results encourage targeting the HDAC9-MEF2 interaction in developing novel therapy against ischemic stroke.
Collapse
Affiliation(s)
- Haoran Lin
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Yun Bei
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Zexu Shen
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Taofeng Wei
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Yuyang Ge
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingyan Yu
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Huimin Xu
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Wei He
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Yunjian Dai
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Difei Yao
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | - Haibin Dai
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.
- Clinical Pharmacy Research Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Han G, Yao M, Ni J. Recent Advances in Genetics of Moyamoya Disease: Insights into the Different Pathogenic Pathways. Int J Mol Sci 2025; 26:5241. [PMID: 40508049 PMCID: PMC12154784 DOI: 10.3390/ijms26115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/19/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Moyamoya disease (MMD) is a rare yet clinically significant cerebrovascular disorder characterized by progressive stenosis of the distal internal carotid artery and/or its principal branches, accompanied by the development of characteristic collateral vessel networks. This disease demonstrates a complex multifactorial etiology with strong genetic determinants, as evidenced by its distinct geographical distribution patterns and familial clustering. Recent genetic researches have identified multiple pathogenic mutations contributing to MMD development through three principal mechanisms: progressive vascular stenosis, abnormal angiogenesis, and dysregulated inflammatory responses. Furthermore, moyamoya syndrome frequently occurs as a secondary vascular complication in various monogenic disorders. This review provides a comprehensive analysis of recent genetic advances in MMD in view of diverse pathogenic pathways, offering valuable perspectives on the molecular mechanisms underlying disease development and potential therapeutic targets.
Collapse
Affiliation(s)
| | - Ming Yao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Jun Ni
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China;
| |
Collapse
|
3
|
Ibrahim SY, Carter J, Bagchi RA. Histone Deacetylases in Metabolism: the Known and the Unexplored. Physiology (Bethesda) 2025; 40:0. [PMID: 39470602 DOI: 10.1152/physiol.00044.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from key lysine residues on histone and nonhistone proteins and thereby regulate gene transcription. They have been implicated in several biological processes in both healthy and pathological settings. This review discusses the role of HDACs in multiple metabolically active tissues and highlights their contribution to the pathogenesis of tissue-specific maladaptation and diseases. We also summarize the current knowledge gaps and potential ways to address them in future studies.
Collapse
Affiliation(s)
- Somaya Y Ibrahim
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Jayden Carter
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Rushita A Bagchi
- Department of Physiology and Cell Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
4
|
Wang M, Liu K, Guo D, Lv Y, Wang X. Arbovirus Infections and Epigenetic Mechanisms; a Potential Therapeutic Target. Rev Med Virol 2025; 35:e70033. [PMID: 40155348 DOI: 10.1002/rmv.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025]
Abstract
Arboviruses are a group of arthropod-borne viral pathogens that pose a significant threat to the public health system. The clinical manifestations associated with these viruses range from self-limiting infections to life-threatening disorders. As a group of systemic viral infections, arboviruses can affect various parts of human organ systems, such as the nervous system. In the nervous system, epigenetic mechanisms are involved in various mechanisms including adult neurogenesis, neuronal-glial differentiation, the regulation of neural behaviour and neural plasticity, as well as other brain functions such as memory, and cognition. Hence, epigenetic deregulation is a key factor in the aetiology of different neurological disorders that highlights the importance of studying the underlying mechanisms and risk factors to introduce effective therapeutic approaches. There is mounting evidence that arboviruses that affect the nervous system take advantage of various mechanisms to modulate epigenetic processes to regulate their life cycles. This phenomenon may affect the nervous system leading to neurotropic arboviral infection-associated neurological disorders. Hence, it is important to understand reciprocal interplays between neurotropic arboviral pathogens and epigenetic processes to better control these disorders. The present review provides an overview of different interactions of arboviruses with epigenetic mechanisms during neurotropic arboviral infections. It uniquely focuses on the interplay between epigenetic modifications and arboviral neurotropism, shedding light on potential therapeutic strategies that have not been comprehensively addressed before. Targeting virus-induced epigenetic alterations, such as miRNA regulation, could lead to novel antiviral therapies aimed at mitigating neuroinflammation and disease severity.
Collapse
Affiliation(s)
- Manhong Wang
- University Hospital, Jilin Normal University, Siping, China
| | - Kexin Liu
- Department of Pathology, Siping City Centeral People's Hospital, Siping, China
| | - Dan Guo
- University Hospital, Jilin Normal University, Siping, China
| | - Youjia Lv
- Department of Hepatology, Siping City Infectious Disease Hospital, Siping, China
| | - Xin Wang
- Student Affairs Office, Jilin Normal University, Siping, China
| |
Collapse
|
5
|
Hu J, Hu Z, Xia J, Chen Y, Cordato D, Cheng Q, Wang J. Targeting intracellular autophagic process for the treatment of post-stroke ischemia/reperfusion injury. Animal Model Exp Med 2025; 8:389-404. [PMID: 39908171 PMCID: PMC11904106 DOI: 10.1002/ame2.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/04/2024] [Indexed: 02/07/2025] Open
Abstract
Cerebral ischemia/reperfusion (I/R) injury is an important pathophysiological condition of ischemic stroke that involves a variety of physiological and pathological cell death pathways, including autophagy, apoptosis, necroptosis, and phagoptosis, among which autophagy is the most studied. We have reviewed studies published in the past 5 years regarding the association between autophagy and cerebral I/R injury. To the best of our knowledge, this is the first review article summarizing potential candidates targeting autophagic pathways in the treatment of I/R injury post ischemic stroke. The findings of this review may help to better understand the pathogenesis and mechanisms of I/R events and bridge the gap between basic and translational research that may lead to the development of novel therapeutic approaches for I/R injury.
Collapse
Affiliation(s)
- Jun Hu
- Department of Traditional RehabilitationThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| | - Zekai Hu
- The Clinical Research CentreThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| | - Jiayi Xia
- The Clinical Research CentreThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| | - Yeping Chen
- The Clinical Research CentreThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| | - Dennis Cordato
- Department of Neurology and NeurophysiologyLiverpool HospitalSydneyNew South WalesAustralia
- Stroke and Neurology Research GroupIngham Institute for Applied Medical ResearchSydneyNew South WalesAustralia
| | - Qi Cheng
- Department of Neurology and NeurophysiologyLiverpool HospitalSydneyNew South WalesAustralia
- Stroke and Neurology Research GroupIngham Institute for Applied Medical ResearchSydneyNew South WalesAustralia
| | - Jie Wang
- Department of Traditional RehabilitationThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
| |
Collapse
|
6
|
Lambert J, Jørgensen HF. Epigenetic regulation of vascular smooth muscle cell phenotypes in atherosclerosis. Atherosclerosis 2025; 401:119085. [PMID: 39709233 DOI: 10.1016/j.atherosclerosis.2024.119085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Vascular smooth muscle cells (VSMCs) in adult arteries maintain substantial phenotypic plasticity, which allows for the reversible cell state changes that enable vascular remodelling and homeostasis. In atherosclerosis, VSMCs dedifferentiate in response to lipid accumulation and inflammation, resulting in loss of their characteristic contractile state. Recent studies showed that individual, pre-existing VSMCs expand clonally and can acquire many different phenotypes in atherosclerotic lesions. The changes in gene expression underlying this phenotypic diversity are mediated by epigenetic modifications which affect transcription factor access and thereby gene expression dynamics. Additionally, epigenetic mechanisms can maintain cellular memory, potentially facilitating reversion to the contractile state. While technological advances have provided some insight, a comprehensive understanding of how VSMC phenotypes are governed in disease remains elusive. Here we review current literature in light of novel insight from studies at single-cell resolution. We also discuss how lessons from epigenetic studies of cellular regulation in other fields could help in translating the potential of targeting VSMC phenotype conversion into novel therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Lambert
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| |
Collapse
|
7
|
Yoshimoto T, Yamagami H, Matsumaru Y. Recent Advances in Stroke Genetics-Unraveling the Complexity of Cerebral Infarction: A Brief Review. Genes (Basel) 2025; 16:59. [PMID: 39858606 PMCID: PMC11764629 DOI: 10.3390/genes16010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES Recent advances in stroke genetics have substantially enhanced our understanding of the complex genetic architecture underlying cerebral infarction and other stroke subtypes. As knowledge in this field expands, healthcare providers must remain informed about these latest developments. This review aims to provide a comprehensive overview of recent advances in stroke genetics, with a focus on cerebral infarction, and discuss their potential impact on patient care and future research directions. METHODS We reviewed recent literature about advances in stroke genetics, focusing on cerebral infarction, and discussed their potential impact on patient care and future research directions. Key developments include the identification of monogenic stroke syndromes, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy caused by mutations in the NOTCH3 and HTRA1 genes, respectively. In addition, the role of RNF213 in moyamoya disease and other cerebrovascular disorders, particularly in East Asian populations, has been elucidated. The development of polygenic risk scores for assessing genetic predisposition to stroke has demonstrated the potential to improve risk prediction beyond traditional factors. Genetic studies have also elucidated the distinct genetic architecture of stroke subtypes, including large artery atherosclerosis, small vessel disease, and cardioembolic stroke. Furthermore, the investigation of epigenetic modifications influencing stroke risk and its outcomes has revealed new research avenues, while advancements in pharmacogenomics highlight the potential for personalized stroke treatment based on individual genetic profiles. CONCLUSIONS These genetic discoveries have important clinical implications, including improved risk stratification, targeted prevention strategies, and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Takeshi Yoshimoto
- Department of Stroke and Cerebrovascular Diseases, University of Tsukuba Hospital, Tsukuba 305-8576, Japan;
- Division of Stroke Prevention and Treatment, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Hiroshi Yamagami
- Division of Stroke Prevention and Treatment, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Yuji Matsumaru
- Department of Stroke and Cerebrovascular Diseases, University of Tsukuba Hospital, Tsukuba 305-8576, Japan;
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| |
Collapse
|
8
|
Thompson DJ, Wells D, Selzam S, Peneva I, Moore R, Sharp K, Tarran WA, Beard EJ, Riveros-Mckay F, Giner-Delgado C, Palmer D, Seth P, Harrison J, Futema M, McVean G, Plagnol V, Donnelly P, Weale ME. A systematic evaluation of the performance and properties of the UK Biobank Polygenic Risk Score (PRS) Release. PLoS One 2024; 19:e0307270. [PMID: 39292644 PMCID: PMC11410272 DOI: 10.1371/journal.pone.0307270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/01/2024] [Indexed: 09/20/2024] Open
Abstract
We assess the UK Biobank (UKB) Polygenic Risk Score (PRS) Release, a set of PRSs for 28 diseases and 25 quantitative traits that has been made available on the individuals in UKB, using a unified pipeline for PRS evaluation. We also release a benchmarking software tool to enable like-for-like performance evaluation for different PRSs for the same disease or trait. Extensive benchmarking shows the PRSs in the UKB Release to outperform a broad set of 76 published PRSs. For many of the diseases and traits we also validate the PRS algorithms in a separate cohort (100,000 Genomes Project). The availability of PRSs for 53 traits on the same set of individuals also allows a systematic assessment of their properties, and the increased power of these PRSs increases the evidence for their potential clinical benefit.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Marta Futema
- Cardiology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
9
|
Chen R, Wang X, Li N, Golubnitschaja O, Zhan X. Body fluid multiomics in 3PM-guided ischemic stroke management: health risk assessment, targeted protection against health-to-disease transition, and cost-effective personalized approach are envisaged. EPMA J 2024; 15:415-452. [PMID: 39239108 PMCID: PMC11371995 DOI: 10.1007/s13167-024-00376-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Because of its rapid progression and frequently poor prognosis, stroke is the third major cause of death in Europe and the first one in China. Many independent studies demonstrated sufficient space for prevention interventions in the primary care of ischemic stroke defined as the most cost-effective protection of vulnerable subpopulations against health-to-disease transition. Although several studies identified molecular patterns specific for IS in body fluids, none of these approaches has yet been incorporated into IS treatment guidelines. The advantages and disadvantages of individual body fluids are thoroughly analyzed throughout the paper. For example, multiomics based on a minimally invasive approach utilizing blood and its components is recommended for real-time monitoring, due to the particularly high level of dynamics of the blood as a body system. On the other hand, tear fluid as a more stable system is recommended for a non-invasive and patient-friendly holistic approach appropriate for health risk assessment and innovative screening programs in cost-effective IS management. This article details aspects essential to promote the practical implementation of highlighted achievements in 3PM-guided IS management. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00376-2.
Collapse
Affiliation(s)
- Ruofei Chen
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Xiaoyan Wang
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Na Li
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, University Hospital Bonn, Venusberg Campus 1, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, 53127 Germany
| | - Xianquan Zhan
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 P. R. China
- Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Jinan Key Laboratory of Cancer Multiomics, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 P. R. China
| |
Collapse
|
10
|
Pathan N, Kharod MK, Nawab S, Di Scipio M, Paré G, Chong M. Genetic Determinants of Vascular Dementia. Can J Cardiol 2024; 40:1412-1423. [PMID: 38579965 DOI: 10.1016/j.cjca.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
Vascular dementia (VaD) is a prevalent form of cognitive impairment with underlying vascular etiology. In this review, we examine recent genetic advancements in our understanding of VaD, encompassing a range of methodologies including genome-wide association studies, polygenic risk scores, heritability estimates, and family studies for monogenic disorders revealing the complex and heterogeneous nature of the disease. We report well known genetic associations and highlight potential pathways and mechanisms implicated in VaD and its pathological risk factors, including stroke, cerebral small vessel disease, and cerebral amyloid angiopathy. Moreover, we discuss important modifiable risk factors such as hypertension, diabetes, and dyslipidemia, emphasizing the importance of a multifactorial approach in prevention, treatment, and understanding the genetic basis of VaD. Last, we outline several areas of scientific advancements to improve clinical care, highlighting that large-scale collaborative efforts, together with an integromics approach can enhance the robustness of genetic discoveries. Indeed, understanding the genetics of VaD and its pathophysiological risk factors hold the potential to redefine VaD on the basis of molecular mechanisms and to generate novel diagnostic, prognostic, and therapeutic tools.
Collapse
Affiliation(s)
- Nazia Pathan
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada
| | - Muskaan Kaur Kharod
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Sajjha Nawab
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada
| | - Matteo Di Scipio
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada; Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada; Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.
| | - Michael Chong
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario, Canada.
| |
Collapse
|
11
|
Zeng W, Chu TTW, Chow EYK, Hu M, Fok BSP, Chan JCN, Yan BPY, Tomlinson B. Genetic factors related to aspirin resistance using the Multiplate® device in Hong Kong Chinese patients with stable coronary heart disease. Heliyon 2024; 10:e34552. [PMID: 39113978 PMCID: PMC11305287 DOI: 10.1016/j.heliyon.2024.e34552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE Associations between single nucleotide polymorphisms (SNPs) and aspirin resistance (AR) have been studied with variable results. The associations of genetic variants with AR may be helpful to explain why some individuals demonstrate aspirin insensitivity with this anti-platelet therapy. The purpose of this research was to investigate the effect of different genotypes in candidate genes on aspirin response in patients taking long-term aspirin therapy by measuring the serum thromboxane B2 (TXB2) and platelet function using the Multiplate® analyser. METHODS A total of 266 patients with stable coronary heart disease (CHD) taking low-dose aspirin for long periods of time and without any other anti-platelet drugs medications were enrolled into the study. They were required to take 80 mg of aspirin every morning for a week including the day before blood tests. Blood samples were collected 24 h after the last dose. The 80 mg dose of aspirin was taken orally and blood samples were collected again 1 h later. The serum TXB2 levels were measured in samples at 24 h post-dose and 1 h post-dose using the EIA kit and platelet activity was determined using the Multiplate® Impedance Platelet Aggregometry (ASPI) assay. Genotyping assays were performed by the TaqMan SNP genotyping technique. RESULTS Of the 266 patients, only 251 patients were enrolled in the present study. The PTGS1/COX1-1676 A > G (rs1330344) and the PTGS2/COX2-765 G > C (rs20417) SNPs showed significant associations with the ASPI measurements in samples taken at 24 h post-dose, but not with the values at 1 h post-dose or with the TXB2 levels (P < 0.05). CONCLUSIONS Our results suggest that polymorphisms in the PTGS1/COX1 and the PTGS2/COX2 genes may be associated with reduced anti-aggregatory effects and increased the risk of AR, but future larger-scale cohort studies are necessary for further validation.
Collapse
Affiliation(s)
- Weiwei Zeng
- Shenzhen Longgang Second People's Hospital, 518112, China
| | - Tanya TW. Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Elaine YK. Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Miao Hu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Benny SP. Fok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Juliana CN. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Bryan PY. Yan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Faculty of Medicine, Macau University of Science & Technology, Macau, 999078, China
| |
Collapse
|
12
|
Seo Y, Bae H, Lee C. Bayesian colocalization of GWAS and eQTL signals reveals cell type-specific genes and regulatory variants for susceptibility to subtypes of ischemic stroke. Comput Biol Chem 2024; 110:108086. [PMID: 38744227 DOI: 10.1016/j.compbiolchem.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
A colocalization analysis of genome-wide association study (GWAS) signals and expression quantitative trait loci (eQTL) was conducted to pinpoint target genes and their regulatory nucleotide variants for subtypes of ischemic stroke. We utilized GWAS data from prominent meta-analysis consortia (MEGASTROKE and GIGASTROKE) and single-cell eQTL data in brain and blood tissues to enhance accuracy and minimize noise inherent in bulk RNA-seq. Employing Bayesian colocalization methods, we identified ten shared loci between GWAS and eQTL signals, targeting five eGenes. Specifically, RAPH1 and ICA1L were discovered for small vessel stroke (SVS), whereas SCYL3, CAV1, and CAV2 were for cardioembolic stroke (CS). However, no findings have been made for large artery stroke. The exploration and subsequent functional analysis of causal variants within the colocalized regions revealed their regulatory roles, particularly as enhancer variants (e.g., rs144505847 and rs72932755 targeting ICA1L; rs629234 targeting SCYL3; rs3807989 targeting CAV1 and CAV2). Notably, our study unveiled that all eQTL for CS were identified in oligodendrocytes, while those for SVS were across excitatory neurons, astrocytes, and oligodendrocyte precursor cells. This underscores the heterogeneous tissue-specific genetic factors by subtypes of ischemic stroke. The study emphasizes the need for intensive research efforts to discover causative genes and variants, unravelling the cell type-specific genetic architecture of ischemic stroke subtypes. This knowledge is crucial for advancing our understanding of the underlying pathophysiology and paving the way for precision neurology applications.
Collapse
Affiliation(s)
- Yunji Seo
- Department of Bioinformatics and Life Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, South Korea
| | - Hojin Bae
- Department of Bioinformatics and Life Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, South Korea
| | - Chaeyoung Lee
- Department of Bioinformatics and Life Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, South Korea.
| |
Collapse
|
13
|
Bui HTT, Nguyễn Thị Phương Q, Cam Tu H, Nguyen Phuong S, Pham TT, Vu T, Nguyen Thi Thu H, Khanh Ho L, Nguyen Tien D. The Roles of NOTCH3 p.R544C and Thrombophilia Genes in Vietnamese Patients With Ischemic Stroke: Study Involving a Hierarchical Cluster Analysis. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2024; 5:e56884. [PMID: 38935968 PMCID: PMC11135231 DOI: 10.2196/56884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND The etiology of ischemic stroke is multifactorial. Several gene mutations have been identified as leading causes of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary disease that causes stroke and other neurological symptoms. OBJECTIVE We aimed to identify the variants of NOTCH3 and thrombophilia genes, and their complex interactions with other factors. METHODS We conducted a hierarchical cluster analysis (HCA) on the data of 100 patients diagnosed with ischemic stroke. The variants of NOTCH3 and thrombophilia genes were identified by polymerase chain reaction with confronting 2-pair primers and real-time polymerase chain reaction. The overall preclinical characteristics, cumulative cutpoint values, and factors associated with these somatic mutations were analyzed in unidimensional and multidimensional scaling models. RESULTS We identified the following optimal cutpoints: creatinine, 83.67 (SD 9.19) µmol/L; age, 54 (SD 5) years; prothrombin (PT) time, 13.25 (SD 0.17) seconds; and international normalized ratio (INR), 1.02 (SD 0.03). Using the Nagelkerke method, cutpoint 50% values of the Glasgow Coma Scale score; modified Rankin scale score; and National Institutes of Health Stroke Scale scores at admission, after 24 hours, and at discharge were 12.77, 2.86 (SD 1.21), 9.83 (SD 2.85), 7.29 (SD 2.04), and 6.85 (SD 2.90), respectively. CONCLUSIONS The variants of MTHFR (C677T and A1298C) and NOTCH3 p.R544C may influence the stroke severity under specific conditions of PT, creatinine, INR, and BMI, with risk ratios of 4.8 (95% CI 1.53-15.04) and 3.13 (95% CI 1.60-6.11), respectively (Pfisher<.05). It is interesting that although there are many genes linked to increased atrial fibrillation risk, not all of them are associated with ischemic stroke risk. With the detection of stroke risk loci, more information can be gained on their impacts and interconnections, especially in young patients.
Collapse
Affiliation(s)
- Huong Thi Thu Bui
- Department of Biochemistry, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Vietnam
- Department of Immunology Molecular Genetic, Thainguyen National Hospital, Thai Nguyen, Vietnam
| | - Quỳnh Nguyễn Thị Phương
- Department of Clinical Pharmacy, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Vietnam
| | - Ho Cam Tu
- Center of Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sinh Nguyen Phuong
- Department of Rehabilitation, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Vietnam
| | - Thuy Thi Pham
- Department of Biochemistry, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Vietnam
| | - Thu Vu
- Center of Gene and Protein Research, Hanoi Medical University, Hanoi, Vietnam
| | - Huyen Nguyen Thi Thu
- Department of Internal Medicine, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Vietnam
| | - Lam Khanh Ho
- Department of Telecomunication, Hung Yen University of Technology and Education, Hung Yen, Vietnam
| | - Dung Nguyen Tien
- Department of Internal Medicine, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Vietnam
| |
Collapse
|
14
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
15
|
Dang Z, Li H, Xue S, Shao B, Ning Y, Su G, Zhang F, Yu W, Leng S. Histone deacetylase 9-mediated phenotypic transformation of vascular smooth muscle cells is a potential target for treating aortic aneurysm/dissection. Biomed Pharmacother 2024; 173:116396. [PMID: 38460370 DOI: 10.1016/j.biopha.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Aortic aneurysm/dissection (AAD) is a serious cardiovascular condition characterized by rapid onset and high mortality rates. Currently, no effective drug treatment options are known for AAD. AAD pathogenesis is associated with the phenotypic transformation and abnormal proliferation of vascular smooth muscle cells (VSMCs). However, endogenous factors that contribute to AAD progression remain unclear. We aimed to investigate the role of histone deacetylase 9 (HDAC9) in AAD pathogenesis. HDAC9 expression was considerably increased in human thoracic aortic dissection specimens. Using RNA-sequencing (RNA-seq) and chromatin immunoprecipitation, we demonstrated that HDAC9 transcriptionally inhibited the expression of superoxide dismutase 2 and insulin-like growth factor-binding protein-3, which are critically involved in various signaling pathways. Furthermore, HDAC9 triggered the transformation of VSMCs from a systolic to synthetic phenotype, increasing their proliferation and migration abilities and suppressing their apoptosis. Consistent with these results, in vivo experiments revealed that TMP195, a pharmacological inhibitor of HDAC9, suppressed the formation of the β-aminopropionitrile-induced AAD phenotype in mice. Our findings indicate that HDAC9 may be a novel endogenous risk factor that promotes the onset of AAD by mediating the phenotypic transformation of VSMCs. Therefore, HDAC9 may serve as a potential therapeutic target for drug-based AAD treatment. Furthermore, TMP195 holds potential as a therapeutic agent for AAD treatment.
Collapse
Affiliation(s)
- Zhiqiao Dang
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Haijie Li
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Shishan Xue
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Baowei Shao
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Yansong Ning
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Fengquan Zhang
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| | - Wenqian Yu
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| | - Shuai Leng
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| |
Collapse
|
16
|
Markus HS. How genetics is impacting on stroke, thrombolysis for central retinal artery occlusion, and cerebral microinfarcts. Int J Stroke 2024; 19:4-6. [PMID: 38161293 DOI: 10.1177/17474930231217911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
|
17
|
Xiong H, Tian X, He A, Chen T, Li Y, Leng J, Li L. A Bidirectional two-Sample Mendelian Randomization Study of the Association Between Venous Thromboembolism and Ischaemic Stroke. Clin Appl Thromb Hemost 2024; 30:10760296241293333. [PMID: 39449364 PMCID: PMC11528786 DOI: 10.1177/10760296241293333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Previous clinical and epidemiological studies have shown that patients with venous thromboembolism (VTE) are comorbid with symptoms of ischaemic stroke (IS). Current understanding about increased risk of IS after VTE remain inconclusive. This study use a bidirectional two-sample Mendelian randomization (MR) study to explore the causality of VTE, pulmonary embolism (PE), deep vein thrombosis (DVT), and IS. This study used pooled data from published genome-wide association studies (GWAS). GWAS statisics of IS (from EBI database, n = 484 121), VTE (from Finngen database, n = 218 792), PE (from Finngen database, n = 218 413), and DVT (from UK biobank database, n = 337 159) were assessed. Forward and reverse MR analysis were conducted to explore the causal relationship between three type of the exposure (VTE, PE, and DVT) and the outcome (IS). Our primary causal inference method was Inverse Variance Weighted (IVW). Secondary inference methods were Weighted Median and MR-Egger. For the sensitive analysis, MR-PRESSO, MR-Egger intercept, Cochran's Q, leave-one method were used to consolidate our findings. In the foward MR analysis, VTE increased the risk of IS (ORIVW = 1.034, PIVW = 0.021) and PE was also a risk factor for IS (OR = 1.055, PIVW = 0.009). There was no causality that DVT influenced on IS (PIVW > 0.05). In the reverse MR analysis, IS came to be a risk factor for DVT (OR = 1.003, PIVW = 0.046). Meanwhile, IS took not any causal effect on VTE and PE. All the results passed the reasonable sensitive analysis. Our findings provided genetic evidence that PE and VTE can lead to an increased risk of IS, whereas increased IS promoted the risk of DVT further. Our findings provided novel insights about the risk factors and management for IS.
Collapse
Affiliation(s)
- Haibing Xiong
- Department of Neurosurgery, Banan Hospital Affiliated to Chongqing Medical University (Banan District People's Hospital of Chongqing), Chongqing, China
| | - Xinhong Tian
- The First Clinical College of Chongqing Medical University, Chongqing, China
| | - Aiwei He
- The First Clinical College of Chongqing Medical University, Chongqing, China
| | - Tingting Chen
- School of Nursing, Chongqing Medical University, Chongqing, China
| | - Yanlin Li
- School of Pediatrics, Chongqing Medical University, Chongqing, China
| | - Jiajie Leng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Letai Li
- The First Clinical College of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Zhang L, Wang F, Xia K, Yu Z, Fu Y, Huang T, Fan D. Unlocking the Medicinal Mysteries: Preventing Lacunar Stroke with Drug Repurposing. Biomedicines 2023; 12:17. [PMID: 38275377 PMCID: PMC10813761 DOI: 10.3390/biomedicines12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Currently, only the general control of the risk factors is known to prevent lacunar cerebral infarction, but it is unknown which type of medication for controlling the risk factors has a causal relationship with reducing the risk of lacunar infarction. To unlock this medical mystery, drug-target Mendelian randomization analysis was applied to estimate the effect of common antihypertensive agents, hypolipidemic agents, and hypoglycemic agents on lacunar stroke. Lacunar stroke data for the transethnic analysis were derived from meta-analyses comprising 7338 cases and 254,798 controls. We have confirmed that genetic variants mimicking calcium channel blockers were found to most stably prevent lacunar stroke. The genetic variants at or near HMGCR, NPC1L1, and APOC3 were predicted to decrease lacunar stroke incidence in drug-target MR analysis. These variants mimic the effects of statins, ezetimibe, and antisense anti-apoC3 agents, respectively. Genetically proxied GLP1R agonism had a marginal effect on lacunar stroke, while a genetically proxied improvement in overall glycemic control was associated with reduced lacunar stroke risk. Here, we show that certain categories of drugs currently used in clinical practice can more effectively reduce the risk of stroke. Repurposing several drugs with well-established safety and low costs for lacunar stroke prevention should be given high priority when doctors are making decisions in clinical practice. This may contribute to healthier brain aging.
Collapse
Affiliation(s)
- Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
| | - Fan Wang
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
| | - Kailin Xia
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
| | - Zhou Yu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
| | - Yu Fu
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
| | - Tao Huang
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100871, China
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing 100871, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing 100191, China; (L.Z.); (F.W.); (K.X.); (Z.Y.); (Y.F.)
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing 100191, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Zhang K, Loong SSE, Yuen LZH, Venketasubramanian N, Chin HL, Lai PS, Tan BYQ. Genetics in Ischemic Stroke: Current Perspectives and Future Directions. J Cardiovasc Dev Dis 2023; 10:495. [PMID: 38132662 PMCID: PMC10743455 DOI: 10.3390/jcdd10120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Ischemic stroke is a heterogeneous condition influenced by a combination of genetic and environmental factors. Recent advancements have explored genetics in relation to various aspects of ischemic stroke, including the alteration of individual stroke occurrence risk, modulation of treatment response, and effectiveness of post-stroke functional recovery. This article aims to review the recent findings from genetic studies related to various clinical and molecular aspects of ischemic stroke. The potential clinical applications of these genetic insights in stratifying stroke risk, guiding personalized therapy, and identifying new therapeutic targets are discussed herein.
Collapse
Affiliation(s)
- Ka Zhang
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Shaun S. E. Loong
- Cardiovascular-Metabolic Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Linus Z. H. Yuen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | | | - Hui-Lin Chin
- Khoo Teck Puat National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore;
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore;
| | - Benjamin Y. Q. Tan
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
20
|
Abstract
The identification of a variant in the HDAC9 gene as a risk factor for large-artery atherosclerotic stroke, and subsequently coronary artery disease, has opened novel treatment pathways for stroke and more widely atherosclerotic disease. This article describes the pathway from gene discovery to novel therapeutic approaches that are now entering man. HDAC9 expression is elevated in human atherosclerotic plaque, while in animal and cellular models, reducing HDAC9 (histone deacetylase 9) protein is associated with reduced disease. Several mechanisms have been proposed to account for the association between HDAC9 and atherosclerosis including alterations in the inflammatory response and cholesterol efflux and endothelial-mesenchymal transition. The association raises the possibility that inhibiting HDAC9 may provide a novel treatment approach for atherosclerotic cardiovascular disease. This is supported by intervention studies demonstrating HDAC9 inhibition reduces atherosclerosis in animal and cellular models. Indirect data support such an approach in man. The antiseizure drug sodium valproate, which has nonspecific HDAC inhibitory properties, both inhibits atherosclerosis in animal models and is epidemiologically associated with reduced stroke and myocardial infarction risk in man. It is now being trailed in phase 2 studies in large-artery stroke, while more specific HDAC9 inhibitors are being developed.
Collapse
Affiliation(s)
- Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| |
Collapse
|
21
|
Filippenkov IB, Khrunin AV, Mozgovoy IV, Dergunova LV, Limborska SA. Are Ischemic Stroke and Alzheimer's Disease Genetically Consecutive Pathologies? Biomedicines 2023; 11:2727. [PMID: 37893101 PMCID: PMC10604604 DOI: 10.3390/biomedicines11102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Complex diseases that affect the functioning of the central nervous system pose a major problem for modern society. Among these, ischemic stroke (IS) holds a special place as one of the most common causes of disability and mortality worldwide. Furthermore, Alzheimer's disease (AD) ranks first among neurodegenerative diseases, drastically reducing brain activity and overall life quality and duration. Recent studies have shown that AD and IS share several common risk and pathogenic factors, such as an overlapping genomic architecture and molecular signature. In this review, we will summarize the genomics and RNA biology studies of IS and AD, discussing the interconnected nature of these pathologies. Additionally, we highlight specific genomic points and RNA molecules that can serve as potential tools in predicting the risks of diseases and developing effective therapies in the future.
Collapse
Affiliation(s)
| | | | | | | | - Svetlana A. Limborska
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia (A.V.K.); (I.V.M.); (L.V.D.)
| |
Collapse
|
22
|
Besin V, Yulianti T, Notopuro PB, Humardani FM. Genetic Polymorphisms of Ischemic Stroke in Asians. Clin Chim Acta 2023; 549:117527. [PMID: 37666385 DOI: 10.1016/j.cca.2023.117527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The increasing incidence of ischemic stroke emphasizes the necessity for early detection and preventive strategies. Diagnostic biomarkers currently available for ischemic stroke only become detectable shortly before the manifestation of stroke symptoms. Genetic variants associated with ischemic stroke offer a potential solution to address this diagnostic limitation. However, it is crucial to acknowledge that genetic variants cannot be modified in the same way as epigenetic changes. Nevertheless, individuals carrying risk or protective variants can modify their lifestyle to potentially influence the associated epigenetic factors. This study aims to summarize specific variants relevant to Asian populations that may aid in the early detection of ischemic stroke and explore their impact on the disease's pathophysiology. These variants give us important information about the genes that play a role in ischemic stroke by affecting things like atherosclerosis pathway, blood coagulation pathway, homocysteine metabolism, transporter function, transcription, and the activity of neurons regulation. It is important to recognize the variations in genetic variants among different ethnicities and avoid generalizing the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Valentinus Besin
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia
| | - Trilis Yulianti
- Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Paulus Budiono Notopuro
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Farizky Martriano Humardani
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia; Magister in Biomedical Science Program, Faculty of Medicine Universitas Brawijaya, Malang 65112, Indonesia.
| |
Collapse
|
23
|
Surakka I, Wu KH, Hornsby W, Wolford BN, Shen F, Zhou W, Huffman JE, Pandit A, Hu Y, Brumpton B, Skogholt AH, Gabrielsen ME, Walters RG, The TOPMed Stroke Working Group, Million Veteran Program (MVP), Hveem K, Kooperberg C, Zöllner S, Wilson PW, Sutton NR, Daly MJ, Neale BM, Willer CJ, on behalf of the Global Biobank Meta-analysis Initiative (GBMI). Multi-ancestry meta-analysis identifies 5 novel loci for ischemic stroke and reveals heterogeneity of effects between sexes and ancestries. CELL GENOMICS 2023; 3:100345. [PMID: 37601974 PMCID: PMC10435368 DOI: 10.1016/j.xgen.2023.100345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/18/2022] [Accepted: 05/26/2023] [Indexed: 08/22/2023]
Abstract
Stroke is the second leading cause of death and disability worldwide. Stroke prevalence varies by sex and ancestry, possibly due to genetic heterogeneity between subgroups. We performed a genome-wide meta-analysis of 16 biobanks across multiple ancestries to study the genetics of ischemic stroke (60,176 cases, 1,310,725 controls) as part of the Global Biobank Meta-analysis Initiative (GBMI) and further combined the results with previously published MegaStroke. Five novel loci for ischemic stroke (LAMC1, CALCRL, PLSCR1, CDKN1A, and SWAP70) were identified after replication in four additional datasets. One previously reported locus showed significant ancestry heterogeneity (ABO), and one showed significant sex heterogeneity (ALDH2). The ALDH2 association was male specific (males p = 1.67e-24, females p = 0.126) and was additionally observed only in the East Asian ancestry (male) samples. These findings emphasize the need for more diverse datasets with large sample sizes to further understand the genetic predisposition of stroke in different ancestry and sex groups.
Collapse
Affiliation(s)
- Ida Surakka
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kuan-Han Wu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Whitney Hornsby
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Brooke N. Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Fred Shen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer E. Huffman
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Anita Pandit
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Yao Hu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ben Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken E. Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robin G. Walters
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - The TOPMed Stroke Working Group
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Million Veteran Program (MVP)
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sebastian Zöllner
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Peter W.F. Wilson
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Nadia R. Sutton
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benjamin M. Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Cristen J. Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Clinic of Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - on behalf of the Global Biobank Meta-analysis Initiative (GBMI)
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Atlanta VA Health Care System, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Muzyka L, Winterhalter E, LoPresti MA, Scoville J, Bohnsack BL, Lam SK. Axenfeld-Rieger syndrome: A systematic review examining genetic, neurological, and neurovascular associations to inform screening. Heliyon 2023; 9:e18225. [PMID: 37539177 PMCID: PMC10395477 DOI: 10.1016/j.heliyon.2023.e18225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Axenfeld-Rieger Syndrome (ARS) is comprised of a group of autosomal dominant disorders that are each characterized by anterior segment abnormalities of the eye. Mutations in the transcription factors FOXC1 or PITX2 are the most well-studied genetic manifestations of this syndrome. Due to the rarity this syndrome, ARS-associated neurological manifestations have not been well characterized. The purpose of this systematic review is to characterize and describe ARS neurologic manifestations that affect the cerebral vasculature and their early and late sequelae. PRISMA guidelines were followed; studies meeting inclusion criteria were analyzed for study design, evidence level, number of patients, patient age, whether the patients were related, genotype, ocular findings, and nervous system findings, specifically neurostructural and neurovascular manifestations. 63 studies met inclusion criteria, 60 (95%) were case studies or case series. The FOXC1 gene was most commonly found, followed by COL4A1, then PITX2. The most commonly described structural neurological findings were white matter abnormalities in 26 (41.3%) of studies, followed by Dandy-Walker Complex 12 (19%), and agenesis of the corpus callosum 11 (17%). Neurovascular findings were examined in 6 (9%) of studies, identifying stroke, cerebral small vessel disease (CSVD), tortuosity/dolichoectasia of arteries, among others, with no mention of moyamoya. This is the first systematic review investigating the genetic, neurological, and neurovascular associations with ARS. Structural neurological manifestations were common, yet often benign, perhaps limiting the utility of MRI screening. Neurovascular abnormalities, specifically stroke and CSVD, were identified in this population. Stroke risk was present in the presence and absence of cardiac comorbidities. These findings suggest a relationship between ARS and neurovascular findings; however, larger scale studies are necessary inform therapeutic decisions.
Collapse
Affiliation(s)
- Logan Muzyka
- Dell Medical School at the University of Texas at Austin, Department of Neurosurgery, Austin, TX, United States
| | - Emily Winterhalter
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Chicago, IL, United States
| | - Melissa A. LoPresti
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Chicago, IL, United States
- Ann and Robert H Lurie Children's Hospital, Division of Pediatric Neurosurgery, Chicago, IL, United States
| | - Jonathan Scoville
- University of Utah School of Medicine, Department of Neurosurgery, Salt Lake City, UT, United States
| | - Brenda L. Bohnsack
- Northwestern University Feinberg School of Medicine, Department of Ophthalmology, Chicago, IL, United States
- Ann and Robert H Lurie Children's Hospital, Division of Ophthalmology, Chicago, IL, United States
- University of Rochester School of Medicine and Dentistry, Department of Neurosurgery, Rochester, NY, United States
| | - Sandi K. Lam
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Chicago, IL, United States
- Ann and Robert H Lurie Children's Hospital, Division of Pediatric Neurosurgery, Chicago, IL, United States
| |
Collapse
|
25
|
Xu Z, Cheng S, Qiu X, Wang X, Hu Q, Shi Y, Liu Y, Lin J, Tian J, Peng Y, Jiang Y, Yang Y, Ye J, Wang Y, Meng X, Li Z, Li H, Wang Y. A pipeline for sample tagging of whole genome bisulfite sequencing data using genotypes of whole genome sequencing. BMC Genomics 2023; 24:347. [PMID: 37353738 DOI: 10.1186/s12864-023-09413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/27/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND In large-scale high-throughput sequencing projects and biobank construction, sample tagging is essential to prevent sample mix-ups. Despite the availability of fingerprint panels for DNA data, little research has been conducted on sample tagging of whole genome bisulfite sequencing (WGBS) data. This study aims to construct a pipeline and identify applicable fingerprint panels to address this problem. RESULTS Using autosome-wide A/T polymorphic single nucleotide variants (SNVs) obtained from whole genome sequencing (WGS) and WGBS of individuals from the Third China National Stroke Registry, we designed a fingerprint panel and constructed an optimized pipeline for tagging WGBS data. This pipeline used Bis-SNP to call genotypes from the WGBS data, and optimized genotype comparison by eliminating wildtype homozygous and missing genotypes, and retaining variants with identical genomic coordinates and reference/alternative alleles. WGS-based and WGBS-based genotypes called from identical or different samples were extensively compared using hap.py. In the first batch of 94 samples, the genotype consistency rates were between 71.01%-84.23% and 51.43%-60.50% for the matched and mismatched WGS and WGBS data using the autosome-wide A/T polymorphic SNV panel. This capability to tag WGBS data was validated among the second batch of 240 samples, with genotype consistency rates ranging from 70.61%-84.65% to 49.58%-61.42% for the matched and mismatched data, respectively. We also determined that the number of genetic variants required to correctly tag WGBS data was on the order of thousands through testing six fingerprint panels with different orders for the number of variants. Additionally, we affirmed this result with two self-designed panels of 1351 and 1278 SNVs, respectively. Furthermore, this study confirmed that using the number of genetic variants with identical coordinates and ref/alt alleles, or identical genotypes could not correctly tag WGBS data. CONCLUSION This study proposed an optimized pipeline, applicable fingerprint panels, and a lower boundary for the number of fingerprint genetic variants needed for correct sample tagging of WGBS data, which are valuable for tagging WGBS data and integrating multi-omics data for biobanks.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Si Cheng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, 100069, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Xin Qiu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiaoqi Wang
- BioChain (Beijing) Science and Technology, Inc, Economic and Technological Development Area, 100176, Beijing, P. R. China
| | - Qiuwen Hu
- BioChain (Beijing) Science and Technology, Inc, Economic and Technological Development Area, 100176, Beijing, P. R. China
| | - Yanfeng Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jinxi Lin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jichao Tian
- BioChain (Beijing) Science and Technology, Inc, Economic and Technological Development Area, 100176, Beijing, P. R. China
| | - Yongfei Peng
- BioChain (Beijing) Science and Technology, Inc, Economic and Technological Development Area, 100176, Beijing, P. R. China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yadong Yang
- BioChain (Beijing) Science and Technology, Inc, Economic and Technological Development Area, 100176, Beijing, P. R. China
| | - Jianwei Ye
- BioChain (Beijing) Science and Technology, Inc, Economic and Technological Development Area, 100176, Beijing, P. R. China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, 100069, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
26
|
Sanguigno L, Guida N, Anzilotti S, Cuomo O, Mascolo L, Serani A, Brancaccio P, Pennacchio G, Licastro E, Pignataro G, Molinaro P, Annunziato L, Formisano L. Stroke by inducing HDAC9-dependent deacetylation of HIF-1 and Sp1, promotes TfR1 transcription and GPX4 reduction, thus determining ferroptotic neuronal death. Int J Biol Sci 2023; 19:2695-2710. [PMID: 37324938 PMCID: PMC10266075 DOI: 10.7150/ijbs.80735] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/30/2023] [Indexed: 06/17/2023] Open
Abstract
Background: The inhibition of histone deacetylase 9 (HDAC9) represents a promising druggable target for stroke intervention. Indeed, HDAC9 is overexpressed in neurons after brain ischemia where exerts a neurodetrimental role. However, mechanisms of HDAC9-dependent neuronal cell death are not yet well established. Methods: Brain ischemia was obtained in vitro by primary cortical neurons exposed to glucose deprivation plus reoxygenation (OGD/Rx) and in vivo by transient middle cerebral artery occlusion. Western blot and quantitative real-time polymerase chain reaction were used to evaluate transcript and protein levels. Chromatin immunoprecipitation was used to evaluate the binding of transcription factors to the promoter of target genes. Cell viability was measured by MTT and LDH assays. Ferroptosis was evaluated by iron overload and 4-hydroxynonenal (4-HNE) release. Results: Our results showed that HDAC9 binds to hypoxia-inducible factor 1 (HIF-1) and specificity protein 1 (Sp1), two transcription activators of transferrin 1 receptor (TfR1) and glutathione peroxidase 4 (GPX4) genes, respectively, in neuronal cells exposed to OGD/Rx. Consequently, HDAC9 induced: (1) an increase in protein level of HIF-1 by deacetylation and deubiquitination, thus promoting the transcription of the pro-ferroptotic TfR1 gene; and (2) a reduction in Sp1 protein levels by deacetylation and ubiquitination, thus resulting in a down-regulation of the anti-ferroptotic GPX4 gene. Supporting these results, the silencing of HDAC9 partially prevented either HIF-1 increase and Sp1 reduction after OGD/Rx. Interestingly, silencing of the neurodetrimental factors, HDAC9, HIF-1, or TfR1 or the overexpression of the prosurvival factors Sp1 or GPX4 significantly reduced a well-known marker of ferroptosis 4-HNE after OGD/Rx. More important, in vivo, intracerebroventricular injection of siHDAC9 reduced 4-HNE levels after stroke by preventing: (1) HIF-1 and TfR1 increase and thus the augmented intracellular iron overload; and (2) a reduction of Sp1 and its target gene GPX4. Conclusions: Collectively, results obtained suggest that HDAC9 mediates post-traslational modifications of HIF-1 and Sp1 that, in turn, increases TfR1 and decreases GPX4 expression, thus promoting neuronal ferroptosis in in vitro and in vivo models of stroke.
Collapse
Affiliation(s)
- Luca Sanguigno
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Natascia Guida
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Serenella Anzilotti
- Division of Pharmacology, Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Giuseppina Pennacchio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Ester Licastro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
27
|
Granata A. Functional genomics in stroke: current and future applications of iPSCs and gene editing to dissect the function of risk variants. BMC Cardiovasc Disord 2023; 23:223. [PMID: 37120540 PMCID: PMC10148993 DOI: 10.1186/s12872-023-03227-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/04/2023] [Indexed: 05/01/2023] Open
Abstract
Stroke is an important disease with unmet clinical need. To uncover novel paths for treatment, it is of critical importance to develop relevant laboratory models that may help to shed light on the pathophysiological mechanisms of stroke. Induced pluripotent stem cells (iPSCs) technology has enormous potential to advance our knowledge into stroke by creating novel human models for research and therapeutic testing. iPSCs models generated from patients with specific stroke types and specific genetic predisposition in combination with other state of art technologies including genome editing, multi-omics, 3D system, libraries screening, offer the opportunity to investigate disease-related pathways and identify potential novel therapeutic targets that can then be tested in these models. Thus, iPSCs offer an unprecedented opportunity to make rapid progress in the field of stroke and vascular dementia research leading to clinical translation. This review paper summarizes some of the key areas in which patient-derived iPSCs technology has been applied to disease modelling and discusses the ongoing challenges and the future directions for the application of this technology in the field of stroke research.
Collapse
Affiliation(s)
- Alessandra Granata
- Department of Clinical Neurosciences, Victor Phillip Dahdaleh Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0BB, UK.
| |
Collapse
|
28
|
Bax M, Romanov V, Junday K, Giannoulatou E, Martinac B, Kovacic JC, Liu R, Iismaa SE, Graham RM. Arterial dissections: Common features and new perspectives. Front Cardiovasc Med 2022; 9:1055862. [PMID: 36561772 PMCID: PMC9763901 DOI: 10.3389/fcvm.2022.1055862] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Arterial dissections, which involve an abrupt tear in the wall of a major artery resulting in the intramural accumulation of blood, are a family of catastrophic disorders causing major, potentially fatal sequelae. Involving diverse vascular beds, including the aorta or coronary, cervical, pulmonary, and visceral arteries, each type of dissection is devastating in its own way. Traditionally they have been studied in isolation, rather than collectively, owing largely to the distinct clinical consequences of dissections in different anatomical locations - such as stroke, myocardial infarction, and renal failure. Here, we review the shared and unique features of these arteriopathies to provide a better understanding of this family of disorders. Arterial dissections occur commonly in the young to middle-aged, and often in conjunction with hypertension and/or migraine; the latter suggesting they are part of a generalized vasculopathy. Genetic studies as well as cellular and molecular investigations of arterial dissections reveal striking similarities between dissection types, particularly their pathophysiology, which includes the presence or absence of an intimal tear and vasa vasorum dysfunction as a cause of intramural hemorrhage. Pathway perturbations common to all types of dissections include disruption of TGF-β signaling, the extracellular matrix, the cytoskeleton or metabolism, as evidenced by the finding of mutations in critical genes regulating these processes, including LRP1, collagen genes, fibrillin and TGF-β receptors, or their coupled pathways. Perturbances in these connected signaling pathways contribute to phenotype switching in endothelial and vascular smooth muscle cells of the affected artery, in which their physiological quiescent state is lost and replaced by a proliferative activated phenotype. Of interest, dissections in various anatomical locations are associated with distinct sex and age predilections, suggesting involvement of gene and environment interactions in disease pathogenesis. Importantly, these cellular mechanisms are potentially therapeutically targetable. Consideration of arterial dissections as a collective pathology allows insight from the better characterized dissection types, such as that involving the thoracic aorta, to be leveraged to inform the less common forms of dissections, including the potential to apply known therapeutic interventions already clinically available for the former.
Collapse
Affiliation(s)
- Monique Bax
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Valentin Romanov
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Keerat Junday
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Jason C. Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Siiri E. Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
29
|
Li W, Shao C, Zhou H, Du H, Chen H, Wan H, He Y. Multi-omics research strategies in ischemic stroke: A multidimensional perspective. Ageing Res Rev 2022; 81:101730. [PMID: 36087702 DOI: 10.1016/j.arr.2022.101730] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 01/31/2023]
Abstract
Ischemic stroke (IS) is a multifactorial and heterogeneous neurological disorder with high rate of death and long-term impairment. Despite years of studies, there are still no stroke biomarkers for clinical practice, and the molecular mechanisms of stroke remain largely unclear. The high-throughput omics approach provides new avenues for discovering biomarkers of IS and explaining its pathological mechanisms. However, single-omics approaches only provide a limited understanding of the biological pathways of diseases. The integration of multiple omics data means the simultaneous analysis of thousands of genes, RNAs, proteins and metabolites, revealing networks of interactions between multiple molecular levels. Integrated analysis of multi-omics approaches will provide helpful insights into stroke pathogenesis, therapeutic target identification and biomarker discovery. Here, we consider advances in genomics, transcriptomics, proteomics and metabolomics and outline their use in discovering the biomarkers and pathological mechanisms of IS. We then delineate strategies for achieving integration at the multi-omics level and discuss how integrative omics and systems biology can contribute to our understanding and management of IS.
Collapse
Affiliation(s)
- Wentao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haixia Du
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haiyang Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
30
|
Lin CN, Hsu KC, Huang KL, Huang WC, Hung YL, Lee TH. Identification of Metabolomics Biomarkers in Extracranial Carotid Artery Stenosis. Cells 2022; 11:3022. [PMID: 36230983 PMCID: PMC9563778 DOI: 10.3390/cells11193022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/28/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The biochemical identification of carotid artery stenosis (CAS) is still a challenge. Hence, 349 male subjects (176 normal controls and 173 stroke patients with extracranial CAS ≥ 50% diameter stenosis) were recruited. Blood samples were collected 14 days after stroke onset with no acute illness. Carotid plaque score (≥2, ≥5 and ≥8) was used to define CAS severity. Serum metabolites were analyzed using a targeted Absolute IDQ®p180 kit. Results showed hypertension, diabetes, smoking, and alcohol consumption were more common, but levels of diastolic blood pressure, HDL-C, LDL-C, and cholesterol were lower in CAS patients than controls (p < 0.05), suggesting intensive medical treatment for CAS. PCA and PLS-DA did not demonstrate clear separation between controls and CAS patients. Decision tree and random forest showed that acylcarnitine species (C4, C14:1, C18), amino acids and biogenic amines (SDMA), and glycerophospholipids (PC aa C36:6, PC ae C34:3) contributed to the prediction of CAS. Metabolite panel analysis showed high specificity (0.923 ± 0.081, 0.906 ± 0.086 and 0.881 ± 0.109) but low sensitivity (0.230 ± 0.166, 0.240 ± 0.176 and 0.271 ± 0.169) in the detection of CAS (≥2, ≥5 and ≥8, respectively). The present study suggests that metabolomics profiles could help in differentiating between controls and CAS patients and in monitoring the progression of CAS.
Collapse
Affiliation(s)
- Chia-Ni Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Kai-Cheng Hsu
- School of Medicine, College of Medicine, Artificial Intelligence Center for Medical Diagnosis, and Department of Neurology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Kuo-Lun Huang
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Cheng Huang
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yi-Lun Hung
- Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tsong-Hai Lee
- Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
31
|
Wang D, Hu X, Yang X, Yang M, Wu Q. Variants rs2200733 and rs6843082 Show Different Associations in Asian and Non-Asian Populations With Ischemic Stroke. Front Genet 2022; 13:905560. [PMID: 36061199 PMCID: PMC9435379 DOI: 10.3389/fgene.2022.905560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
A previous genome-wide association study (GWAS) has reported that variants rs2200733 and rs6843082 in the paired-like homeodomain transcription factor 2 (PITX2) gene may be one of the risk factors for ischemic stroke (IS) in European populations. However, more recently, studies in Asia have reported that rs2200733 and rs6843082 are only weakly or not associated with increased risk of IS. This difference may be caused by the sample size and genetic heterogeneity of rs2200733 and rs6843082 among different races. For this study, we selected eight articles with nine studies from the PubMed and Embase databases, including five articles from Asian and three articles from non-Asian, to evaluate the risk of IS caused by rs2200733 and rs6843082. Then, we investigated rs2200733 and rs6843082 single-nucleotide polymorphisms (SNPs) by analysis using allele, recessive, dominant, and additive models. We identified that rs2200733 and rs6843082 are weakly significantly associated with IS for the allele model (p = 0.8), recessive model (p = 0.8), dominant model (p = 0.49), and additive model (p = 0.76) in a pooled population. Next, we performed a subgroup analysis of the population, the result of which showed that rs2200733 and rs6843082 covey genetic risk for IS in a non-Asian population, but not in an Asian population. In conclusion, our analysis shows that the effect of PITX2 rs2200733 and rs6843082 SNPs on IS risk in Asia is inconsistent with the effect observed in European IS cohorts.
Collapse
Affiliation(s)
- Dongsen Wang
- Clinical Medical College of Jining Medical University, Jining, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, China
| | - Xuemei Hu
- Clinical Medical College of Jining Medical University, Jining, China
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, China
| | - Xue Yang
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, China
| | - Mingfeng Yang
- Second Affiliated Hospital, Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Brain Science Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- *Correspondence: Mingfeng Yang, ; Qingjian Wu,
| | - Qingjian Wu
- Department of Emergency, Jining No. 1 People’s Hospital, Jining, China
- *Correspondence: Mingfeng Yang, ; Qingjian Wu,
| |
Collapse
|
32
|
Liu C, Zhou Y, Zhao D, Yu L, Zhou Y, Xu M, Tang L. Identification and validation of differentially expressed chromatin regulators for diagnosis of aortic dissection using integrated bioinformatics analysis and machine-learning algorithms. Front Genet 2022; 13:950613. [PMID: 36035141 PMCID: PMC9403720 DOI: 10.3389/fgene.2022.950613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Aortic dissection (AD) is a life-threatening disease. Chromatin regulators (CRs) are indispensable epigenetic regulators. We aimed to identify differentially expressed chromatin regulators (DECRs) for AD diagnosis. Methods: We downloaded the GSE52093 and GSE190635 datasets from the Gene Expression Omnibus database. Following the merging and processing of datasets, bioinformatics analysis was applied to select candidate DECRs for AD diagnosis: CRs exertion; DECR identification using the “Limma” package; analyses of enrichment of function and signaling pathways; construction of protein–protein interaction (PPI) networks; application of machine-learning algorithms; evaluation of receiver operating characteristic (ROC) curves. GSE98770 served as the validation dataset to filter DECRs. Moreover, we collected peripheral-blood samples to further validate expression of DECRs by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Finally, a nomogram was built for clinical use. Results: A total of 841 CRs were extracted from the merged dataset. Analyses of functional enrichment of 23 DECRs identified using Limma showed that DECRs were enriched mainly in epigenetic-regulation processes. From the PPI network, 17 DECRs were selected as node DECRs. After machine-learning calculations, eight DECRs were chosen from the intersection of 13 DECRs identified using support vector machine recursive feature elimination (SVM-RFE) and the top-10 DECRs selected using random forest. DECR expression between the control group and AD group were considerably different. Moreover, the area under the ROC curve (AUC) of each DECR was >0.75, and four DECRs (tumor protein 53 (TP53), chromobox protein homolog 7 (CBX7), Janus kinase 2 (JAK2) and cyclin-dependent kinase 5 (CDK5)) were selected as candidate biomarkers after validation using the external dataset and clinical samples. Furthermore, a nomogram with robust diagnostic value was established (AUC = 0.960). Conclusion: TP53, CBX7, JAK2, and CDK5 might serve as diagnostic DECRs for AD diagnosis. These DECRs were enriched predominantly in regulating epigenetic processes.
Collapse
Affiliation(s)
- Chunjiang Liu
- Department of General Surgery, Vascular Surgery Division, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, China
| | - Yufei Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Di Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luchen Yu
- Case Western Reserve University, Cleveland, OH, United States
| | - Yue Zhou
- Department of General Surgery, Vascular Surgery Division, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, China
| | - Miaojun Xu
- Department of General Surgery, Vascular Surgery Division, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, China
| | - Liming Tang
- Department of General Surgery, Vascular Surgery Division, Shaoxing People’s Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, China
- *Correspondence: Liming Tang,
| |
Collapse
|
33
|
Yin L, Wang FY, Zhang W, Wang X, Tang YH, Wang T, Chen YT, Huang CX. RA signaling pathway combined with Wnt signaling pathway regulates human-induced pluripotent stem cells (hiPSCs) differentiation to sinus node-like cells. Stem Cell Res Ther 2022; 13:324. [PMID: 35851424 PMCID: PMC9290266 DOI: 10.1186/s13287-022-03006-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The source of SAN is debated among researchers. Many studies have shown that RA and Wnt signaling are involved in heart development. In this study, we investigated the role of retinoic acid (RA) and Wnt signaling in the induction of sinus node-like cells. METHODS The experimental samples were divided into four groups: control group (CHIR = 0), CHIR = 3, RA + CHIR = 0 andRA + CHIR = 3. After 20 days of differentiation, Western blot, RT-qPCR, immunofluorescence and flow cytometry were performed to identify sinus node-like cells. Finally, whole-cell patch clamp technique was used to record pacing funny current and action potential (AP) in four groups. RESULTS The best intervention method used in our experiment was RA = 0.25 µmol/L D5-D9 + CHIR = 3 µmol/L D5-D7. Results showed that CHIR can increase the expression of ISL-1 and TBX3, while RA mainly elevated Shox2. Immunofluorescence assay and flow cytometry further illustrated that combining RA with CHIR can induce sinus node-like cells (CTNT+Shox2+Nkx2.5-). Moreover, CHIR might reduce the frequency of cell beats, but in conjunction with RA could partly compensate for this side effect. Whole cell patch clamps were able to record funny current and the typical sinus node AP in the experimental group, which did not appear in the control group. CONCLUSIONS Combining RA with Wnt signaling within a specific period can induce sinus node-like cells.
Collapse
Affiliation(s)
- Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Feng-yuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Yan-hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Yu-ting Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| | - Cong-xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060 Hubei People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 People’s Republic of China
| |
Collapse
|
34
|
Gallego-Fabrega C, Muiño E, Cárcel-Márquez J, Llucià-Carol L, Lledós M, Martín-Campos JM, Cullell N, Fernández-Cadenas I. Genome-Wide Studies in Ischaemic Stroke: Are Genetics Only Useful for Finding Genes? Int J Mol Sci 2022; 23:6840. [PMID: 35743317 PMCID: PMC9224543 DOI: 10.3390/ijms23126840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Ischaemic stroke is a complex disease with some degree of heritability. This means that heritability factors, such as genetics, could be risk factors for ischaemic stroke. The era of genome-wide studies has revealed some of these heritable risk factors, although the data generated by these studies may also be useful in other disciplines. Analysis of these data can be used to understand the biological mechanisms associated with stroke risk and stroke outcome, to determine the causality between stroke and other diseases without the need for expensive clinical trials, or to find potential drug targets with higher success rates than other strategies. In this review we will discuss several of the most relevant studies regarding the genetics of ischaemic stroke and the potential use of the data generated.
Collapse
Affiliation(s)
- Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Laia Llucià-Carol
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
- Institute for Biomedical Research of Barcelona (IIBB), National Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Miquel Lledós
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Jesús M. Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
- Stroke Pharmacogenomics and Genetics Group, Fundació MútuaTerrassa per la Docència i la Recerca, 08221 Terrassa, Spain
| |
Collapse
|
35
|
Bai N, Liu W, Xiang T, Zhou Q, Pu J, Zhao J, Luo D, Liu X, Liu H. Genetic association of ANRIL with susceptibility to Ischemic stroke: A comprehensive meta-analysis. PLoS One 2022; 17:e0263459. [PMID: 35653368 PMCID: PMC9162336 DOI: 10.1371/journal.pone.0263459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Ischemic stroke (IS) is a complex polygenic disease with a strong genetic background. The relationship between the ANRIL (antisense non-coding RNA in the INK4 locus) in chromosome 9p21 region and IS has been reported across populations worldwide; however, these studies have yielded inconsistent results. The aim of this study is to clarify the types of single-nucleotide polymorphisms on the ANRIL locus associated with susceptibility to IS using meta-analysis and comprehensively assess the strength of the association.
Methods
Relevant studies were identified by comprehensive and systematic literature searches. The quality of each study was assessed using the Newcastle-Ottawa Scale. Allele and genotype frequencies were extracted from each of the included studies. Odds ratios with corresponding 95% confidence intervals of combined analyses were calculated under three genetic models (allele frequency comparison, dominant model, and recessive model) using a random-effects or fixed-effects model. Heterogeneity was tested using the chi-square test based on the Cochran Q statistic and I2 metric, and subgroup analyses and a meta-regression model were used to explore sources of heterogeneity. The correction for multiple testing used the false discovery rate method proposed by Benjamini and Hochberg. The assessment of publication bias employed funnel plots and Egger’s test.
Results
We identified 25 studies (15 SNPs, involving a total of 11,527 cases and 12,216 controls maximum) and performed a meta-analysis. Eight SNPs (rs10757274, rs10757278, rs2383206, rs1333040, rs1333049, rs1537378, rs4977574, and rs1004638) in ANRIL were significantly associated with IS risk. Six of these SNPs (rs10757274, rs10757278, rs2383206, rs1333040, rs1537378, and rs4977574) had a significant relationship to the large artery atherosclerosis subtype of IS. Two SNPs (rs2383206 and rs4977574) were associated with IS mainly in Asians, and three SNPs (rs10757274, rs1333040, and rs1333049) were associated with susceptibility to IS mainly in Caucasians. Sensitivity analyses confirmed the reliability of the original results. Ethnicity and individual studies may be the main sources of heterogeneity in ANRIL.
Conclusions
Our results suggest that some single-nucleotide polymorphisms on the ANRIL locus may be associated with IS risk. Future studies with larger sample numbers are necessary to confirm this result. Additional functional analyses of causal effects of these polymorphisms on IS subtypes are also essential.
Collapse
Affiliation(s)
- Na Bai
- Department of Neurology, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Nanbu People’s Hospital, Nanbu, Sichuan, China
| | - Tao Xiang
- Department of Neurology, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Qiang Zhou
- Department of Neurology, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jing Zhao
- Department of Neurology, Nanbu People’s Hospital, Nanbu, Sichuan, China
| | - Danyang Luo
- Nuclear Industry 416 Hospital & The Second Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xindong Liu
- Nuclear Industry 416 Hospital & The Second Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Hua Liu
- Department of Neurology, The Third People’s Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
36
|
Ma L, Bryce NS, Turner AW, Di Narzo AF, Rahman K, Xu Y, Ermel R, Sukhavasi K, d’Escamard V, Chandel N, V’Gangula B, Wolhuter K, Kadian-Dodov D, Franzen O, Ruusalepp A, Hao K, Miller CL, Björkegren JLM, Kovacic JC. The HDAC9-associated risk locus promotes coronary artery disease by governing TWIST1. PLoS Genet 2022; 18:e1010261. [PMID: 35714152 PMCID: PMC9246173 DOI: 10.1371/journal.pgen.1010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/30/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Genome wide association studies (GWAS) have identified thousands of single nucleotide polymorphisms (SNPs) associated with the risk of common disorders. However, since the large majority of these risk SNPs reside outside gene-coding regions, GWAS generally provide no information about causal mechanisms regarding the specific gene(s) that are affected or the tissue(s) in which these candidate gene(s) exert their effect. The 'gold standard' method for understanding causal genes and their mechanisms of action are laborious basic science studies often involving sophisticated knockin or knockout mouse lines, however, these types of studies are impractical as a high-throughput means to understand the many risk variants that cause complex diseases like coronary artery disease (CAD). As a solution, we developed a streamlined, data-driven informatics pipeline to gain mechanistic insights on complex genetic loci. The pipeline begins by understanding the SNPs in a given locus in terms of their relative location and linkage disequilibrium relationships, and then identifies nearby expression quantitative trait loci (eQTLs) to determine their relative independence and the likely tissues that mediate their disease-causal effects. The pipeline then seeks to understand associations with other disease-relevant genes, disease sub-phenotypes, potential causality (Mendelian randomization), and the regulatory and functional involvement of these genes in gene regulatory co-expression networks (GRNs). Here, we applied this pipeline to understand a cluster of SNPs associated with CAD within and immediately adjacent to the gene encoding HDAC9. Our pipeline demonstrated, and validated, that this locus is causal for CAD by modulation of TWIST1 expression levels in the arterial wall, and by also governing a GRN related to metabolic function in skeletal muscle. Our results reconciled numerous prior studies, and also provided clear evidence that this locus does not govern HDAC9 expression, structure or function. This pipeline should be considered as a powerful and efficient way to understand GWAS risk loci in a manner that better reflects the highly complex nature of genetic risk associated with common disorders.
Collapse
Affiliation(s)
- Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nicole S. Bryce
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia; St Vincent’s Clinical School, University of NSW, Sydney, Australia
| | - Adam W. Turner
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, Unites States of America
| | - Antonio F. Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Karishma Rahman
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Raili Ermel
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Katyayani Sukhavasi
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Valentina d’Escamard
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nirupama Chandel
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Bhargavi V’Gangula
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kathryn Wolhuter
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia; St Vincent’s Clinical School, University of NSW, Sydney, Australia
| | - Daniella Kadian-Dodov
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R, Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, New York, New York, Unites States of America
| | - Oscar Franzen
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Arno Ruusalepp
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital, Tartu, Estonia
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Clint L. Miller
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, Unites States of America
| | - Johan L. M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Jason C. Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia; St Vincent’s Clinical School, University of NSW, Sydney, Australia
- Zena and Michael A. Wiener Cardiovascular Institute and Marie-Josée and Henry R, Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, New York, New York, Unites States of America
| |
Collapse
|
37
|
Stroke and Etiopathogenesis: What Is Known? Genes (Basel) 2022; 13:genes13060978. [PMID: 35741740 PMCID: PMC9222702 DOI: 10.3390/genes13060978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Background: A substantial portion of stroke risk remains unexplained, and a contribution from genetic factors is supported by recent findings. In most cases, genetic risk factors contribute to stroke risk as part of a multifactorial predisposition. A major challenge in identifying the genetic determinants of stroke is fully understanding the complexity of the phenotype. Aims: Our narrative review is needed to improve our understanding of the biological pathways underlying the disease and, through this understanding, to accelerate the identification of new drug targets. Methods: We report, the research in the literature until February 2022 in this narrative review. The keywords are stroke, causes, etiopathogenesis, genetic, epigenetic, ischemic stroke. Results: While better risk prediction also remains a long-term goal, its implementation is still complex given the small effect-size of genetic risk variants. Some authors encourage the use of stroke genetic panels for stroke risk assessment and further stroke research. In addition, new biomarkers for the genetic causes of stroke and new targets for gene therapy are on the horizon. Conclusion: We summarize the latest evidence and perspectives of ischemic stroke genetics that may be of interest to the physician and useful for day-to-day clinical work in terms of both prevention and treatment of ischemic stroke.
Collapse
|
38
|
Wu BS, Chen SF, Huang SY, Ou YN, Deng YT, Chen SD, Dong Q, Yu JT. Identifying causal genes for stroke via integrating the proteome and transcriptome from brain and blood. J Transl Med 2022; 20:181. [PMID: 35449099 PMCID: PMC9022281 DOI: 10.1186/s12967-022-03377-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have revealed numerous loci associated with stroke. However, the underlying mechanisms at these loci in the pathogenesis of stroke and effective stroke drug targets are elusive. Therefore, we aimed to identify causal genes in the pathogenesis of stroke and its subtypes. Methods Utilizing multidimensional high-throughput data generated, we integrated proteome-wide association study (PWAS), transcriptome-wide association study (TWAS), Mendelian randomization (MR), and Bayesian colocalization analysis to prioritize genes that contribute to stroke and its subtypes risk via affecting their expression and protein abundance in brain and blood. Results Our integrative analysis revealed that ICA1L was associated with small-vessel stroke (SVS), according to robust evidence at both protein and transcriptional levels based on brain-derived data. We also identified NBEAL1 that was causally related to SVS via its cis-regulated brain expression level. In blood, we identified 5 genes (MMP12, SCARF1, ABO, F11, and CKAP2) that had causal relationships with stroke and stroke subtypes. Conclusions Together, via using an integrative analysis to deal with multidimensional data, we prioritized causal genes in the pathogenesis of SVS, which offered hints for future biological and therapeutic studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03377-9.
Collapse
Affiliation(s)
- Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Fen Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Yi Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yue-Ting Deng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
39
|
Abstract
Stroke is the second leading cause of death worldwide and a complex, heterogeneous condition. In this review, we provide an overview of the current knowledge on monogenic and multifactorial forms of stroke, highlighting recent insight into the continuum between these. We describe how, in recent years, large-scale genome-wide association studies have enabled major progress in deciphering the genetic basis for stroke and its subtypes, although more research is needed to interpret these findings. We cover the potential of stroke genetics to reveal novel pathophysiological processes underlying stroke, to accelerate the discovery of new therapeutic approaches, and to identify individuals in the population who are at high risk of stroke and could be targeted for tailored preventative interventions.
Collapse
Affiliation(s)
- Stéphanie Debette
- Bordeaux Population Health Research Center, Inserm U1219, University of Bordeaux, France (S.D.).,Department of Neurology, Bordeaux University Hospital, Institute for Neurodegenerative Diseases, France (S.D.)
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom (H.S.M.)
| |
Collapse
|
40
|
Peng JW, Nfor ON, Ho CC, Hsu SY, Chou MC, Liaw YP. Independent and Interactive Effects of Sex and CYP2C9 Variant rs4918758 on Ischemic Stroke Risk in Taiwan Biobank. Int J Gen Med 2022; 15:3583-3589. [PMID: 35392030 PMCID: PMC8982806 DOI: 10.2147/ijgm.s351753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/11/2022] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Stroke is a complex health condition caused by multiple risk factors. We investigated whether the Cytochrome P450 2C9 (CYP2C9) rs4918758 polymorphism and sex were independently and interactively associated with ischemic stroke risk among Taiwan Biobank (TWB) participants. MATERIAL AND METHODS We analyzed TWB data pertaining to 9197 female and 8625 male individuals. Data collected between 2008 and 2015 were linked to medical records in the National Health Insurance Database (NHIRD). Based on multiple logistic regression analyses, we estimated odds ratios (OR) and 95% confidence intervals (CI) for ischemic stroke. RESULTS We found that 441 women and 468 men had ischemic stroke. There were no differences in the risk of ischemic stroke between individuals with the TC/CC genotype and those with the TT genotype [OR (95% CI) = 1.04 (0.90-1.21)]. When compared to women, men had an OR of 1.03 (95% CI = 0.87-1.22) for ischemic stroke. Based on further analysis, sex was found to interact with polymorphism rs4918758 (p for interaction = 0.0019). After categorizing by sex, men with TC/CC genotype showed significant ORs but not women [OR (95% CI) = 1.32 (1.07-16.33) vs 0.83 (0.68-1.00)]. Further stratification by genotype showed that in comparison with their female counterparts, men with the TT and TC/CC genotypes had ORs of 0.59 (95% CI = 0.44-0.80) and 1.36 (95% CI = 1.10-1.68), respectively. CONCLUSION According to our study, the TT genotype of rs4918758 was associated with a reduced risk of ischemic stroke in Taiwanese men when compared to women, whereas the TC/CC genotype was associated with a greater risk.
Collapse
Affiliation(s)
- Jui-Wen Peng
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Chien-Chang Ho
- Department of Physical Education, Fu-Jen Catholic University, New Taipei City, 24205, Taiwan
- Research and Development Center for Physical Education, Health, and Information Technology, Fu Jen Catholic University, New Taipei, 24205, Taiwan
| | - Shu-Yi Hsu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung, 40201, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, 40201, Taiwan
| |
Collapse
|
41
|
Yang H, Sun Y, Li Q, Jin F, Dai Y. Diverse Epigenetic Regulations of Macrophages in Atherosclerosis. Front Cardiovasc Med 2022; 9:868788. [PMID: 35425818 PMCID: PMC9001883 DOI: 10.3389/fcvm.2022.868788] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Emerging research on epigenetics has resulted in many novel discoveries in atherosclerosis (AS), an inflammaging-associated disease characterized by chronic inflammation primarily driven by macrophages. The bulk of evidence has demonstrated the central role of epigenetic machinery in macrophage polarization to pro- (M1-like) or anti-inflammatory (M2-like) phenotype. An increasing number of epigenetic alterations and their modifiers involved in reprogramming macrophages by regulating DNA methylation or histone modifications (e.g., methylation, acetylation, and recently lactylation) have been identified. They may act to determine or skew the direction of macrophage polarization in AS lesions, thereby representing a promising target. Here we describe the current understanding of the epigenetic machinery involving macrophage polarization, to shed light on chronic inflammation-driving onset and progression of inflammaging-associated diseases, using AS as a prototypic example, and discuss the challenge for developing effective therapies targeting the epigenetic modifiers against these diseases, particularly highlighting a potential strategy based on epigenetically-governed repolarization from M1-like to M2-like phenotype.
Collapse
Affiliation(s)
- Hongmei Yang
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Qingchao Li
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengyan Jin
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Hu Y, Haessler JW, Manansala R, Wiggins KL, Moscati A, Beiser A, Heard-Costa NL, Sarnowski C, Raffield LM, Chung J, Marini S, Anderson CD, Rosand J, Xu H, Sun X, Kelly TN, Wong Q, Lange LA, Rotter JI, Correa A, Vasan RS, Seshadri S, Rich SS, Do R, Loos RJ, Longstreth WT, Bis JC, Psaty BM, Tirschwell DL, Assimes TL, Silver B, Liu S, Jackson R, Smoller S, Mitchell BD, Fornage M, Auer PL, Reiner AP, Kooperberg C. Whole-Genome Sequencing Association Analyses of Stroke and Its Subtypes in Ancestrally Diverse Populations From Trans-Omics for Precision Medicine Project. Stroke 2022; 53:875-885. [PMID: 34727735 PMCID: PMC8885789 DOI: 10.1161/strokeaha.120.031792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Stroke is the leading cause of death and long-term disability worldwide. Previous genome-wide association studies identified 51 loci associated with stroke (mostly ischemic) and its subtypes among predominantly European populations. Using whole-genome sequencing in ancestrally diverse populations from the Trans-Omics for Precision Medicine (TOPMed) Program, we aimed to identify novel variants, especially low-frequency or ancestry-specific variants, associated with all stroke, ischemic stroke and its subtypes (large artery, cardioembolic, and small vessel), and hemorrhagic stroke and its subtypes (intracerebral and subarachnoid). METHODS Whole-genome sequencing data were available for 6833 stroke cases and 27 116 controls, including 22 315 European, 7877 Black, 2616 Hispanic/Latino, 850 Asian, 54 Native American, and 237 other ancestry participants. In TOPMed, we performed single variant association analysis examining 40 million common variants and aggregated association analysis focusing on rare variants. We also combined TOPMed European populations with over 28 000 additional European participants from the UK BioBank genome-wide array data through meta-analysis. RESULTS In the single variant association analysis in TOPMed, we identified one novel locus 13q33 for large artery at whole-genome-wide significance (P<5.00×10-9) and 4 novel loci at genome-wide significance (P<5.00×10-8), all of which need confirmation in independent studies. Lead variants in all 5 loci are low-frequency but are more common in non-European populations. An aggregation of synonymous rare variants within the gene C6orf26 demonstrated suggestive evidence of association for hemorrhagic stroke (P<3.11×10-6). By meta-analyzing European ancestry samples in TOPMed and UK BioBank, we replicated several previously reported stroke loci including PITX2, HDAC9, ZFHX3, and LRCH1. CONCLUSIONS We represent the first association analysis for stroke and its subtypes using whole-genome sequencing data from ancestrally diverse populations. While our findings suggest the potential benefits of combining whole-genome sequencing data with populations of diverse genetic backgrounds to identify possible low-frequency or ancestry-specific variants, they also highlight the need to increase genome coverage and sample sizes.
Collapse
Affiliation(s)
- Yao Hu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jeffrey W. Haessler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Regina Manansala
- School of Public Health, University of Wisconsin–Milwaukee, Milwaukee, WI
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexa Beiser
- Department of Neurology, Boston University School of Medicine, Boston, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | | | - Chloe Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Jaeyoon Chung
- Department of Medicine, Boston University School of Medicine, Boston, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Sandro Marini
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Christopher D. Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA
| | - Huichun Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Xiao Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Tanika N. Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Quenna Wong
- Department of Biostatistics, University of Washington, Seattle, WA
| | | | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Adolfo Correa
- Department of Pediatrics and Medicine, University of Mississippi Medical Center, Jackson, MS
| | | | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Departments of Epidemiology and Health Services, University of Washington, Seattle, WA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA
| | | | | | - Brian Silver
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA
| | - Simin Liu
- Center for Global Cardiometabolic Health, Departments of Epidemiology, Medicine, and Surgery, Brown University, Providence, RI
| | - Rebecca Jackson
- Division of Endocrinology Diabetes and Metabolism, The Ohio State University, Columbus, OH
| | - Sylvia Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX
| | - Paul L. Auer
- School of Public Health, University of Wisconsin–Milwaukee, Milwaukee, WI
| | - Alex P. Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, University of Washington, Seattle, WA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
43
|
Zhao W, Hu X, Hao J, Guo L, Zhang W, Liu J, Jin T, Gao D, Zhi J. Effect of PITX2 genetic variants on the susceptibility to stroke in the Chinese Han population. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105201. [PMID: 34990849 DOI: 10.1016/j.meegid.2021.105201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Stroke is a multifactorial and complex disease caused by the obstruction or rupture of cerebrovascular. To explore the influence of genetic factors on stroke susceptibility, we investigated the association between four single nucleotide polymorphisms (SNPs) in the paired-like homeodomain transcription factor 2 (PITX2) gene and stroke risk. METHODS A total of 977 volunteers including 476 stroke patients and 501 control individuals were recruited. The association between PITX2 polymorphisms and stroke risk was evaluated using genetic models and haplotype analyses. The strength of the association between each studied polymorphisms and stroke risk was evaluated by calculating odds ratios (ORs) and 95% confidence intervals (CIs). What's more, multifactor dimensionality reduction (MDR) was used to predict the interaction between SNPs. RESULTS Our study showed that rs6817105 in PITX2 was related to a significant increase in stroke susceptibility (OR = 1.42, 95% CI = 1.04-1.94, p = 0.028). Stratified analyses based on gender indicated that rs6817105, rs13143308, and rs6843082 polymorphisms were significantly associated with an increased risk of stroke in male (OR = 0.68, 95% CI = 0.47-0.99, p = 0.042; OR = 0.53, 95% CI = 0.30-0.96, p = 0.035; and OR = 0.55, 95% CI = 0.30-0.99, p = 0.047). Besides, SNP rs6817105 was significantly increased the risk of stroke in people at age over 65 years (OR = 1.87, 95% CI =1.12-3.11, p = 0.016). MDR showed that the interaction model of rs6817105 and rs3853445 emerged as the best predictor between the PITX2 gene and stroke susceptibility. CONCLUSIONS This study indicated that there was a significant association between the PITX2 gene and stroke risk, and provided some data as far as possible to support the prevention of stroke.
Collapse
Affiliation(s)
- Weiwei Zhao
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China; Quality Control Department, Internal Medicine-Neurology, Xi'an First Hospital, First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi province 710002, China
| | - Xiuxia Hu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Jie Hao
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Le Guo
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Wenjie Zhang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Jianfeng Liu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Tianbo Jin
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jin Zhi
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Quality Control Department, Internal Medicine-Neurology, Xi'an First Hospital, First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi province 710002, China.
| |
Collapse
|
44
|
Stroke Genomics: Current Knowledge, Clinical Applications and Future Possibilities. Brain Sci 2022; 12:brainsci12030302. [PMID: 35326259 PMCID: PMC8946102 DOI: 10.3390/brainsci12030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022] Open
Abstract
The pathophysiology of stoke involves many complex pathways and risk factors. Though there are several ongoing studies on stroke, treatment options are limited, and the prevalence of stroke is continuing to increase. Understanding the genomic variants and biological pathways associated with stroke could offer novel therapeutic alternatives in terms of drug targets and receptor modulations for newer treatment methods. It is challenging to identify individual causative mutations in a single gene because many alleles are responsible for minor effects. Therefore, multiple factorial analyses using single nucleotide polymorphisms (SNPs) could be used to gain new insight by identifying potential genetic risk factors. There are many studies, such as Genome-Wide Association Studies (GWAS) and Phenome-Wide Association Studies (PheWAS) which have identified numerous independent loci associated with stroke, which could be instrumental in developing newer drug targets and novel therapies. Additionally, using analytical techniques, such as meta-analysis and Mendelian randomization could help in evaluating stroke risk factors and determining treatment priorities. Combining SNPs into polygenic risk scores and lifestyle risk factors could detect stroke risk at a very young age and help in administering preventive interventions.
Collapse
|
45
|
Tutino VM, Kuo CC, Avasthi N, Rai HH, Waqas M, Siddiqui AH, Jarvis JN, Poppenberg KE. Chromatin architecture around stroke haplotypes provides evidence that genetic risk is conferred through vascular cells. Epigenomics 2022; 14:243-259. [PMID: 35184600 DOI: 10.2217/epi-2021-0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction: Genome-wide association studies (GWAS) have identified numerous stroke-associated SNPs. To understand how SNPs affect gene expression related to increased stroke risk, we studied epigenetic landscapes surrounding 26 common, validated stroke-associated loci. Methods: We mapped the SNPs to linkage disequilibrium (LD) blocks and examined H3K27ac, H3K4me1, H3K9ac, and H3K4me3 histone marks and transcription-factor binding-sites in pathologically relevant cell types (hematopoietic and vascular cells). Hi-C data were used to identify topologically associated domains (TADs) encompassing the LD blocks and overlapping genes. Results: Fibroblasts, smooth muscle, and endothelial cells showed significant enrichment for enhancer-associated marks within stroke-associated LD blocks. Genes within encompassing TADs reflected vessel homeostasis, cellular turnover, and enzymatic activity. Conclusions: Stroke-associated genetic variants confer risk predominantly through vascular cells rather than hematopoietic cell types.
Collapse
Affiliation(s)
- Vincent M Tutino
- Canon Stroke & Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA.,Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA.,Department of Pathology & Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA.,Department of Mechanical & Aerospace Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Cathleen C Kuo
- Canon Stroke & Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA
| | - Naval Avasthi
- Canon Stroke & Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA.,Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14203, USA
| | - Hamid H Rai
- Canon Stroke & Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA.,Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Muhammad Waqas
- Canon Stroke & Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA.,Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| | - Adnan H Siddiqui
- Canon Stroke & Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA.,Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA.,Department of Radiology, University at Buffalo, Buffalo, NY 14203, USA
| | - James N Jarvis
- Department of Pediatrics, Department of Pathology & Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA.,Genetics, Genomics, & Bioinformatics Program, University at Buffalo, Buffalo, NY 14203, USA
| | - Kerry E Poppenberg
- Canon Stroke & Vascular Research Center, University at Buffalo, Buffalo, NY 14203, USA.,Department of Neurosurgery, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
46
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall, characterized by the formation of plaques containing lipid, connective tissue and immune cells in the intima of large and medium-sized arteries. Over the past three decades, a substantial reduction in cardiovascular mortality has been achieved largely through LDL-cholesterol-lowering regimes and therapies targeting other traditional risk factors for cardiovascular disease, such as hypertension, smoking, diabetes mellitus and obesity. However, the overall benefits of targeting these risk factors have stagnated, and a huge global burden of cardiovascular disease remains. The indispensable role of immunological components in the establishment and chronicity of atherosclerosis has come to the forefront as a clinical target, with proof-of-principle studies demonstrating the benefit and challenges of targeting inflammation and the immune system in cardiovascular disease. In this Review, we provide an overview of the role of the immune system in atherosclerosis by discussing findings from preclinical research and clinical trials. We also identify important challenges that need to be addressed to advance the field and for successful clinical translation, including patient selection, identification of responders and non-responders to immunotherapies, implementation of patient immunophenotyping and potential surrogate end points for vascular inflammation. Finally, we provide strategic guidance for the translation of novel targets of immunotherapy into improvements in patient outcomes. In this Review, the authors provide an overview of the immune cells involved in atherosclerosis, discuss preclinical research and published and ongoing clinical trials assessing the therapeutic potential of targeting the immune system in atherosclerosis, highlight emerging therapeutic targets from preclinical studies and identify challenges for successful clinical translation.
Inflammation is an important component of the pathophysiology of cardiovascular disease; an imbalance between pro-inflammatory and anti-inflammatory processes drives chronic inflammation and the formation of atherosclerotic plaques in the vessel wall. Clinical trials assessing canakinumab and colchicine therapies in atherosclerotic cardiovascular disease have provided proof-of-principle of the benefits associated with therapeutic targeting of the immune system in atherosclerosis. The immunosuppressive adverse effects associated with the systemic use of anti-inflammatory drugs can be minimized through targeted delivery of anti-inflammatory drugs to the atherosclerotic plaque, defining the window of opportunity for treatment and identifying more specific targets for cardiovascular inflammation. Implementing immunophenotyping in clinical trials in patients with atherosclerotic cardiovascular disease will allow the identification of immune signatures and the selection of patients with the highest probability of deriving benefit from a specific therapy. Clinical stratification via novel risk factors and discovery of new surrogate markers of vascular inflammation are crucial for identifying new immunotherapeutic targets and their successful translation into the clinic.
Collapse
|
47
|
Kristinsson S, Fridriksson J. Genetics in aphasia recovery. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:283-296. [PMID: 35078606 DOI: 10.1016/b978-0-12-823384-9.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Considerable research efforts have been exerted toward understanding the mechanisms underlying recovery in aphasia. However, predictive models of spontaneous and treatment-induced recovery remain imprecise. Some of the hitherto unexplained variability in recovery may be accounted for with genetic data. A few studies have examined the effects of the BDNF val66met polymorphism on aphasia recovery, yielding mixed results. Advances in the study of stroke genetics and genetics of stroke recovery, including identification of several susceptibility genes through candidate-gene or genome-wide association studies, may have implications for the recovery of language function. The current chapter discusses both the direct and indirect evidence for a genetic basis of aphasia recovery, the implications of recent findings within the field, and potential future directions to advance understanding of the genetics-recovery associations.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
48
|
Wei W, Xuan X, Zhu J, Chen T, Fang Y, Ding J, Ji D, Zhou G, Tang B, He X. EDNRA Gene rs1878406 Polymorphism is Associated With Susceptibility to Large Artery Atherosclerotic Stroke. Front Genet 2022; 12:783074. [PMID: 35047010 PMCID: PMC8763384 DOI: 10.3389/fgene.2021.783074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: We performed this study to investigate whether the EDNRA gene rs1878406 C > T polymorphism is associated with risk of large artery atherosclerosis (LAA) stroke in the Chinese Han population. Methods: Genotyping of rs1878406 was performed in 1,112 LAA stroke patients and 1,192 healthy controls. Multivariate logistic regression analyses were applied to assess the effect of the rs1878406 C > T polymorphism on susceptibility to LAA stroke. Results: A significant increase of LAA stroke risk was found in the recessive model (TT vs. CC/TC, OR = 1.74, 95% CI = 1.23-2.48, p = 0.002) and co-dominant model (TC vs. CC, OR = 1.06, 95% CI = 0.89-1.27, TT vs. CC, OR = 1.79, 95% CI = 1.25-2.55, p = 0.006). However, the interaction between age and genotypes of rs1878406 was not statistically significant, and no significant interactive effect was observed between the rs1878406 C > T polymorphism and sex (p > 0.05). Conclusion: The rs1878406 C > T polymorphism is associated with increased risk of LAA stroke in the Chinese Han population.
Collapse
Affiliation(s)
- Wan Wei
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianjun Xuan
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Jiahui Zhu
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianwen Chen
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Yudan Fang
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Jiao Ding
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Danfei Ji
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoyi Zhou
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Tang
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Xudong He
- Sir Run Xuedong Shaw Hospital, Hangzhou, China
| |
Collapse
|
49
|
Granata A, Kasioulis I, Serrano F, Cooper JD, Traylor M, Sinha S, Markus HS. The Histone Deacetylase 9 Stroke-Risk Variant Promotes Apoptosis and Inflammation in a Human iPSC-Derived Smooth Muscle Cells Model. Front Cardiovasc Med 2022; 9:849664. [PMID: 35433850 PMCID: PMC9005977 DOI: 10.3389/fcvm.2022.849664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
A common variant in the Histone Deacetylase 9 (HDAC9) gene is the strongest genetic risk for large-vessel stroke, and HDAC9 offers a novel target for therapeutic modulation. However, the mechanisms linking the HDAC9 variant with increased stroke risk is still unclear due to the lack of relevant models to study the underlying molecular mechanisms. We generated vascular smooth muscle cells using human induced pluripotent stem cells with the HDAC9 stroke risk variant to assess HDAC9-mediated phenotypic changes in a relevant cells model and test the efficacy of HDAC inhibitors for potential therapeutic strategies. Our human induced pluripotent stem cells derived vascular smooth muscle cells show enhanced HDAC9 expression and allow us to assess HDAC9-mediated effects on promoting smooth muscle cell dysfunction, including proliferation, migration, apoptosis and response to inflammation. These phenotypes could be reverted by treatment with HDAC inhibitors, including sodium valproate and small molecules inhibitors. By demonstrating the relevance of the model and the efficacy of HDAC inhibitors, our model provides a robust phenotypic screening platform, which could be applied to other stroke-associated genetic variants.
Collapse
Affiliation(s)
- Alessandra Granata
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ioannis Kasioulis
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Felipe Serrano
- Anne McLaren Laboratory, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - James D Cooper
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Sanjay Sinha
- Department of Medicine, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Meschia JF, Fornage M. Genetic Basis of Stroke Occurrence, Prevention, and Outcome. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|