1
|
Yang M, Nebozhyn MV, Schell MJ, Gandhi N, Pflieger L, Loboda A, Pledger WJ, Soundararajan R, Maurin M, Wang H, Silva JR, Alden A, Coppola D, Elliott A, Sledge G, Khushman M, Lou E, Goel S, Yeatman TJ. Identifying distinct prognostic and predictive contributions of tumor epithelium versus tumor microenvironment in colorectal cancer. BMC Cancer 2025; 25:441. [PMID: 40075322 PMCID: PMC11899100 DOI: 10.1186/s12885-025-13829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Accumulating evidence has suggested that cancer progression and therapeutic response depend on both tumor epithelium (EPI) and tumor microenvironment (TME). However, the dependency of clinical outcomes on the tumor EPI vs. the TME has neither been clearly defined nor quantified. METHODS We classified 2373 colorectal cancer (CRC) tumors into the consensus molecular subtypes (CMS1-4) and generated the 10-gene TMES and the 10-gene EPIS signatures as the serendipitous derivatives of the most (positively vs. negatively) correlated genes of a highly-prognostic, ~ 500-gene signature we previously identified. Distinct TME vs. EPI cellular features of the signature genes were identified by CIBERSORT deconvolution and validated by scRNASEQ in an independent public dataset. RESULTS The TMES signature was strongly associated with the immune/stromal TME-rich CMS1/CMS4 subtypes that portended worse survival, whereas the EPIS signature was predominantly related to the TME-poor, epithelial CMS2/CMS3 classes that portended better survival. Multivariable Cox regression analysis against 29 TME-related signatures revealed that the TMES signature was the most strikingly impacted by the "Cancer-associated fibroblasts" signature (HR: 10.87 vs. 0.13, both P < 0.0001). Moreover, the TMES score was strongly correlated with EMT, SRC activation and MEK inhibitor resistance in 2373 CRC tumors (Spearman r = 0.727, 0.802, 0.824, respectively), which was validated in two independent CRC datasets (n = 626 and n = 566). By contrast, the EPIS score was the dominant force in associating with longer progression free survival in cetuximab-treated metastatic CRC patients derived from two independent clinical trials (Logrank trend P = 0.0005/n = 80; P = 0.0013/n = 44). This finding was further validated in a large real-world clinico-genomics dataset with EGFR inhibitor therapy, which demonstrated that higher EPIS scores were associated with increased overall survival (EGFRi, Logrank trend P < 0.0001/n = 2343) and time on treatment (cetuximab, P = 0.003/n = 953; panitumumab, P < 0.0001/n = 1307). CONCLUSIONS Here we identified a pair of new, distinct 10-gene signatures (the EPIS vs. the TMES) capable of distinguishing the cellular contribution of the tumor EPI vs. the TME in determining CRC prognosis and therapeutic outcomes. With targeted approaches emerging to address both tumor epithelial cells and the TME, the EPIS vs. TMES signature scores may have a novel biomarker role to permit optimization of CRC therapy by identifying sensitive vs. resistant subpopulations.
Collapse
Affiliation(s)
- Mingli Yang
- Department of Surgery, University of South Florida, 560 Channelside Drive, Tampa, FL, 33602, USA.
| | - Michael V Nebozhyn
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - Michael J Schell
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Nishant Gandhi
- Medical Affairs, Caris Life Sciences, 4610 S 44th Pl, Phoenix, AZ, 85040, USA
| | - Lance Pflieger
- Phenome Health, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Andrey Loboda
- Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - W Jack Pledger
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL, 33612, USA
- Tampa General Hospital Cancer Institute, 1 Tampa General Circle, Tampa, FL, 33606, USA
| | - Ramani Soundararajan
- Department of Surgery, University of South Florida, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Michelle Maurin
- Department of Surgery, University of South Florida, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Heiman Wang
- Department of Surgery, University of South Florida, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Jetsen Rodriguez Silva
- Department of Surgery, University of South Florida, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Ashley Alden
- Department of Surgery, University of South Florida, 560 Channelside Drive, Tampa, FL, 33602, USA
| | - Domenico Coppola
- Department of Pathology, Florida Digestive Health Specialists, 10920 Technology Ter, Lakewood Ranch, FL, 34202, USA
- Department of Pathology, Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Andrew Elliott
- Medical Affairs, Caris Life Sciences, 4610 S 44th Pl, Phoenix, AZ, 85040, USA
| | - George Sledge
- Medical Affairs, Caris Life Sciences, 4610 S 44th Pl, Phoenix, AZ, 85040, USA
| | - Moh'd Khushman
- Division of Medical Oncology, Department of Medicine, Washington University, 4590 Nash Way, St. Louis, MO, 63110, USA
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, Department of Medicine and Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN, 55455, USA
| | - Sanjay Goel
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson School of Medicine, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Timothy J Yeatman
- Department of Surgery, University of South Florida, 560 Channelside Drive, Tampa, FL, 33602, USA.
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL, 33612, USA.
- Tampa General Hospital Cancer Institute, 1 Tampa General Circle, Tampa, FL, 33606, USA.
| |
Collapse
|
2
|
Wang SH, Chen YL, Huang SH, Fu YK, Lin SF, Jiang SS, Liu SC, Hsiao JR, Chang JY, Chen YW. Tumor cell-derived ISG15 promotes fibroblast recruitment in oral squamous cell carcinoma via CD11a-dependent glycolytic reprogramming. Oncogenesis 2025; 14:6. [PMID: 40069143 PMCID: PMC11897235 DOI: 10.1038/s41389-025-00549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Cancer-associated fibroblast (CAF) recruitment and activation within the tumor microenvironment (TME) are increasingly acknowledged as drivers of oral squamous cell carcinoma (OSCC) tumor growth and metastasis. Therefore, the mechanisms underlying tumor cell and fibroblast crosstalk warrant further investigation. We discovered that ectopic interferon-stimulated gene 15 (ISG15) expression, which is a promising and novel oncoprotein biomarker elevated in a variety of cancers, enhanced OSCC growth and elevated collagen and α-smooth muscle actin (α-SMA) expression in ISG15-expressing tumors. Analysis of immunohistochemistry revealed high ISG15 expression in human oral tissues correlated with high expression of α-SMA and fibroblast activation protein (FAP). Fibroblast migration and recruitment by ISG15-expressing OSCC cells were confirmed by in vitro and in vivo experiments. Exogenous ISG15 induced fibroblast migration, morphological changes, and vimentin expression. Enrichment of glycolysis pathway genes, as well as increased glycolysis-related gene expression, glucose uptake, and lactate production were observed in ISG15-treated fibroblasts. Lactate release and fibroblast migration were blocked by a competitive inhibitor of glucose metabolism. Furthermore, the knockdown of integrin αL (ITGAL)/CD11a, a subunit of ISG15 receptor lymphocyte functional-associated antigen-1 (LFA-1), in immortalized fibroblasts diminished extracellular ISG15-mediated glycolysis and migration. Our findings suggest that ISG15 derived from OSCC cells interacts with fibroblasts through the LFA-1 receptor, leading to glycolytic reprogramming and promotion of fibroblast migration into the TME.
Collapse
Affiliation(s)
- Ssu-Han Wang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Lin Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Han Huang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Ke Fu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jang-Yang Chang
- Taipei Cancer Center, Taipei Medical University Hospital, TMU Research Center of Cancer Translational Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.
- Ph.D. Program for Aging, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Lee HJ, Park SW, Lee JH, Chang SY, Oh SM, Mun S, Kang J, Park JE, Choi JK, Kim TI, Kim JY, Kim P. Differential cellular origins of the extracellular matrix of tumor and normal tissues according to colorectal cancer subtypes. Br J Cancer 2025:10.1038/s41416-025-02964-z. [PMID: 40032993 DOI: 10.1038/s41416-025-02964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Understanding the proteomic-level heterogeneity of the tumor microenvironment (TME) in colorectal cancer (CRC) is crucial due to its well-known heterogeneity. While heterogenous CRC has been extensively characterized at the molecular subtype level, research into the functional heterogeneity of fibroblasts, particularly their relationship with extracellular matrix (ECM) alterations, remains limited. Addressing this gap is essential for a comprehensive understanding of CRC progression and the development of targeted therapies. METHODS 24 tissue samples from 21 CRC patients, along with adjacent normal tissues (NAT), were collected and decellularized using a detergent-based method to enrich the ECM component. Proteomic analysis of ECM-enriched samples was performed using tandem mass tag (TMT) spectrometry, followed by statistical analysis including differential expression protein (DEP) analysis. Single-cell RNA sequencing (scRNA-Seq) data from public datasets were integrated and analyzed to delineate cell states within the TME. Bulk tissue RNA-Seq and bioinformatics analysis, including consensus molecular subtype (CMS) classification and single-cell level deconvolution of TCGA bulk RNA-seq data, were conducted to further explore gene expression patterns and TME composition. RESULTS Differential cellular origin of the NAT and tumorous ECM proteins were identified, revealing 110 ECM proteins enriched in NAT and 28 ECM proteins in tumor tissues. Desmoplastic and WNT5A+ inflammatory fibroblasts were indicated as the sources of tumor-enriched ECM proteins, while ADAMDEC1+ expressing fibroblasts and PI16+ expressing fibroblast were identified as the sources of NAT-enriched ECM proteins. Deconvolution of bulk RNA-seq of CRC tissues discriminated CMS-specific fibroblast state, reflecting the biological traits of each CMS subtype. Specially, seven ECM genes specific to mesenchymal subtype (CMS4), including PI16+ fibroblast-related 4 genes (SFRP2, PRELP, OGN, SRPX) and desmoplastic fibroblast-related 3 genes (THBS2, CTHRC1, BGN), showed a significant association with poorer survival in patient with CRC. CONCLUSION We conducted an extracellular matrix (ECM)-focused profiling of the TME by integrating quantitative proteomics with single-cell RNA sequencing (scRNA-seq) data from CRC patients. We identified the ECM proteins of NAT and tumor tissue, and established a cell-matrisome database. We defined mesenchymal subtype-specific molecules associated with specific fibroblast subtypes showing a significant association with poorer survival in patients with CRC. Our ECM-focused profiling of tumor stroma provides new insights as indicators for biological processes and clinical endpoints.
Collapse
Affiliation(s)
- Hyun Jin Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Woo Park
- Korea Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Jun Hyeong Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Shin Young Chang
- Department of Internal Medicine, Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sang Mi Oh
- Department of Internal Medicine, Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Siwon Mun
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Junho Kang
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- SCL-KAIST Institute of Translational Research, KAIST, Daejeon, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
- SCL-KAIST Institute of Translational Research, KAIST, Daejeon, Republic of Korea
| | - Tae Il Kim
- Department of Internal Medicine, Institute of Gastroenterology, Brain Korea 21 Project for Medical Science, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jin Young Kim
- Korea Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, Republic of Korea.
| | - Pilnam Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
- SCL-KAIST Institute of Translational Research, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
4
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
5
|
Geng M, Du H, Wei X, Chen S, Cheng J, Meng S, Gong L, Yang H, Cai K, Dai L. Engineered platelets-based nano-aircraft system for precise tumor chemo-immunotherapy with graded drug delivery and self-recognized tumor targeting. Sci Bull (Beijing) 2025:S2095-9273(25)00164-1. [PMID: 39979208 DOI: 10.1016/j.scib.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
Metastasis and heterogeneity pose major challenges in cancer treatment. Although chemoimmunotherapy shows promising efficacy, its therapeutic impact is limited by off-target effects and differences in the delivery sites of chemotherapeutic drugs and immunosuppressants. In this study, an engineered platelets (Pts)-based nano-aircraft, Pts@DOX/HANGs@Gal, was constructed with an internally loaded chemotherapeutic drug, doxorubicin, and externally grafted reduction-responsive hyaluronidase-cross-linked nanospheroids loaded with the immunosuppressant galunisertib for precise tumor chemo-immunotherapy. The normal physiological features of host Pts, including their excellent targeting capability for both metastatic and orthotopic tumors, are not disturbed by functional nanosystems. The interaction between Pts@DOX/HANGs@Gal and tumors gives rise to Pts activation, achieving the continuous targeted delivery of DOX to tumors, inducing the transition from cold to hot tumors, and promoting the recruitment of immune cells. Simultaneously, the external nanospheres disintegrate from Pts@DOX/HANGs@Gal, releasing galunisertib and hyaluronidase into the extracellular matrix to relieve immune tolerance and open up a high-speed channel for the tumor infiltration of immune cells and deep tumor penetration of the nanosystem. Consequently, Pts@DOX/HANGs@Gal not only effectively reinforced the antitumor immune response through self-recognized tumor-targeting chemo-immunotherapy and graded drug delivery but also reduced tumor metastasis in vivo. This study presents promising Pt-based nanovesicles for precise cancer treatment.
Collapse
Affiliation(s)
- Meijuan Geng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huiping Du
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuan Wei
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Siyu Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiamin Cheng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Siyu Meng
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liyang Gong
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yang
- School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Liangliang Dai
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
6
|
Wahab A, Siddique HR. An update understanding of stemness and chemoresistance of prostate cancer. Expert Rev Anticancer Ther 2025. [PMID: 39935028 DOI: 10.1080/14737140.2025.2466680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/13/2025] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION Globally, prostate cancer (CaP) is a leading cause of death and disability among men and a substantial public health burden. Despite advancements in cancer treatment, chemoresistance remains a significant issue in cancer therapy, accounting for the majority of patient relapses and poor survival. Cancer stem cells (CSCs) are considered the main cause of cancer recurrence, chemoresistance, and poor survival of patients. These CSCs acquire stemness and chemoresistance by certain mechanisms such as enhanced DNA repair processes, increased expression of drug efflux pumps, resistance to apoptosis, and altered cell cycle and tumor microenvironment (TME). AREA COVERED We cover the latest developments in this field and give an overview of future research directions. EXPERT OPINION CSCs show dysregulation of several signaling pathways, mostly related to conferring chemoresistance phenotype, such as high drug efflux, apoptotic resistance, quiescent cell cycle, tumor microenvironment, and DNA repair. There are several research articles published on this topic. However, still, this field warrants further investigations to identify the therapeutic molecule that can either chemosensitize CSCs or kill them effectively. This can only be possible when we know the complete mechanisms to comprehend the fundamental causes of cancer stemness and therapy resistance.
Collapse
Affiliation(s)
- Afiya Wahab
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
7
|
Chitra U, Arnold BJ, Sarkar H, Sanno K, Ma C, Lopez-Darwin S, Raphael BJ. Mapping the topography of spatial gene expression with interpretable deep learning. Nat Methods 2025; 22:298-309. [PMID: 39849132 DOI: 10.1038/s41592-024-02503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/14/2024] [Indexed: 01/25/2025]
Abstract
Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of these data complicates analysis of spatial gene expression patterns. We address this issue by deriving a topographic map of a tissue slice-analogous to a map of elevation in a landscape-using a quantity called the isodepth. Contours of constant isodepths enclose domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in expression. We develop GASTON (gradient analysis of spatial transcriptomics organization with neural networks), an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gradients and piecewise linear expression functions that model both continuous gradients and discontinuous variation in gene expression. We show that GASTON accurately identifies spatial domains and marker genes across several tissues, gradients of neuronal differentiation and firing in the brain, and gradients of metabolism and immune activity in the tumor microenvironment.
Collapse
Affiliation(s)
- Uthsav Chitra
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Brian J Arnold
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Hirak Sarkar
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Ludwig Cancer Institute, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Kohei Sanno
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Cong Ma
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Sereno Lopez-Darwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
8
|
Deng L, Wu Z, Sun C, Liu Z. Transcriptome analysis revealed SMURF2 as a prognostic biomarker for oral cancer. J Appl Genet 2025; 66:155-170. [PMID: 38698292 PMCID: PMC11762210 DOI: 10.1007/s13353-024-00869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND The activation of TGF-β pathway can facilitate tumorigenesis. Understanding the TGF-related genes (TRGs) in oral cancer and determining their prognostic value is of utmost importance. METHODS The TRGs were selected to develop a prognostic model based on lasso regression. Oral cancer patients were classified into high-risk and low-risk groups based on the risk model. Subsequently, multivariate COX regression was employed to identify the prognostic marker. Additionally, the expression of SMURF2 was validated using quantitative real-time polymerase chain reaction (qRT-PCR) and the Human Protein Atlas (HPA) database. To investigate the relationship between SMURF2 expression and immune cell infiltrations, we conducted single-sample Gene Set Enrichment Analysis (ssGSEA) analyses. RESULTS We identified 16 differentially expressed TRGs in oral cancer, all of which showed upregulation. From these, we selected eight TRGs as prognostic signatures. Furthermore, the high-risk group demonstrated lower infiltration levels of immune cells, immune score, and higher tumor purity. Interestingly, we also found that SMURF2 serves as an independent prognostic biomarker. SMURF2 was upregulated in oral cancer, as confirmed by public databases and qRT-PCR analysis. Importantly, our results indicate a close association between SMURF2 expression and the immune microenvironment. CONCLUSION The 8-TRG signature prognosis model that we constructed has the ability to predict the survival rate and immune activity of oral cancer patients. SMURF2 could be effective in recognizing prognosis and evaluating immune efficacy for oral cancer.
Collapse
Affiliation(s)
- Lu Deng
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 332000, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi Province, 332000, China
| | - Zhihong Wu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Jiujiang University, Jiujiang, Jiangxi Province, 332000, China
| | - Chuanxi Sun
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 332000, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi Province, 332000, China
| | - Zhe Liu
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 332000, China.
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, Jiangxi Province, 332000, China.
| |
Collapse
|
9
|
Pellon-Cardenas O, Rout P, Hassan S, Fokas E, Ping H, Patel I, Patel J, Plotsker O, Wu A, Kumar R, Akther M, Logerfo A, Wu S, Wagner DE, Boffelli D, Walton KD, Manieri E, Tong K, Spence JR, Bessman NJ, Shivdasani RA, Verzi MP. Dynamic Reprogramming of Stromal Pdgfra-expressing cells during WNT-Mediated Transformation of the Intestinal Epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634326. [PMID: 39896606 PMCID: PMC11785226 DOI: 10.1101/2025.01.22.634326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Stromal fibroblasts regulate critical signaling gradients along the intestinal crypt-villus axis1 and provide a niche that supports adjacent epithelial stem cells. Here we report that Pdgfra-expressing fibroblasts secrete ligands that promote a regenerative-like state in the intestinal mucosa during early WNT-mediated tumorigenesis. Using a mouse model of WNT-driven oncogenesis and single-cell RNA sequencing (RNA-seq) of mesenchyme cell populations, we revealed a dynamic reprogramming of Pdgfra+ fibroblasts that facilitates WNT-mediated tissue transformation. Functional assays of potential mediators of cell-to-cell communication between these fibroblasts and the oncogenic epithelium revealed that TGFB signaling is notably induced in Pdgfra+ fibroblasts in the presence of oncogenic epithelium, and TGFB was essential to sustain regenerative-like growth of organoids ex vivo. Genetic reduction of Cdx2 in the β-catenin mutant epithelium elevated the fetal-like/regenerative transcriptome and accelerated WNT-dependent onset of oncogenic transformation of the tissue in vivo. These results demonstrate that Pdgfra+ fibroblasts are activated during WNT-driven oncogenesis to promote a regenerative state in the epithelium that precedes and facilitates formation of tumors.
Collapse
Affiliation(s)
| | - P Rout
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - S Hassan
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - E Fokas
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - He Ping
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - I Patel
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - J Patel
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - O Plotsker
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - A Wu
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - R Kumar
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - M Akther
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - A Logerfo
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - S Wu
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - D E Wagner
- Department of Obstetrics, University of California, San Francisco, San Francisco, CA, USA
| | - D Boffelli
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - K D Walton
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - E Manieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - K Tong
- Department of Medical Sciences, Hackensack Meridian Health School of Medicine, Nutley, NJ, USA
| | - J R Spence
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - N J Bessman
- Department of Medicine, New Jersey Medical School, Rutgers, Newark, NJ, USA
| | - R A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - M P Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick NJ, USA
- Human Genetics Institute of New Jersey, Rutgers University, New Brunswick NJ, USA
- Lead contact
| |
Collapse
|
10
|
Tauriello DVF, Sancho E, Byrom D, Sanchez-Zarzalejo C, Salvany M, Henriques A, Palomo-Ponce S, Sevillano M, Hernando-Momblona X, Matarin JA, Ramos I, Ruano I, Prats N, Batlle E, Riera A. New Potent Inhibitor of Transforming Growth Factor-Beta (TGFβ) Signaling that is Efficacious against Microsatellite Stable Colorectal Cancer Metastasis in Combination with Immune Checkpoint Therapy in Mice. ACS Pharmacol Transl Sci 2025; 8:97-112. [PMID: 39816803 PMCID: PMC11729428 DOI: 10.1021/acsptsci.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 01/18/2025]
Abstract
Blockade of the TGFβ signaling pathway has emerged from preclinical studies as a potential treatment to enhance the efficacy of immune checkpoint inhibition in advanced colorectal cancer (CRC) and several other types of cancer. However, clinical translation of first-generation inhibitors has shown little success. Here, we report the synthesis and characterization of HYL001, a potent inhibitor of TGFβ receptor 1 (ALK5), that is approximately 9 times more efficacious than the structurally related compound galunisertib, while maintaining a favorable safety profile. HYL001 in combination with immune checkpoint blockade (anti-PD1) eradicates liver metastases generated in mice by microsatellite stable, aggressive colorectal cancer tumors at doses where galunisertib is ineffective.
Collapse
Affiliation(s)
- Daniele V. F. Tauriello
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Elena Sancho
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
| | - Daniel Byrom
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Carolina Sanchez-Zarzalejo
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Maria Salvany
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
- Universitat
de Barcelona, Barcelona 08028, Spain
| | - Ana Henriques
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Sergio Palomo-Ponce
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
| | - Marta Sevillano
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
| | - Xavier Hernando-Momblona
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
| | - Joan A. Matarin
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Israel Ramos
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Irene Ruano
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Neus Prats
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
| | - Eduard Batlle
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Centro
de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona 08028, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), the Barcelona Institute
of Science and Technology (BIST), Baldiri i Reixac 10, Barcelona 08028, Spain
- Department
Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028, Spain
| |
Collapse
|
11
|
Imai M, Nakamura Y, Shin S, Okamoto W, Kato T, Esaki T, Kato K, Komatsu Y, Yuki S, Masuishi T, Nishina T, Sawada K, Sato A, Kuwata T, Yamashita R, Fujisawa T, Bando H, Ock CY, Fujii S, Yoshino T. Artificial Intelligence-Powered Human Epidermal Growth Factor Receptor 2 and Tumor Microenvironment Analysis in Human Epidermal Growth Factor Receptor 2-Amplified Metastatic Colorectal Cancer: Exploratory Analysis of Phase II TRIUMPH Trial. JCO Precis Oncol 2025; 9:e2400385. [PMID: 39823559 PMCID: PMC11753463 DOI: 10.1200/po-24-00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025] Open
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating HER2-amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with HER2-amplified mCRC from the phase II TRIUMPH trial. MATERIALS AND METHODS AI-powered HER2 quantification continuous score (QCS) and tumor microenvironment (TME) analysis were applied to the prescreening cohort (n = 143) and the TRIUMPH cohort (n = 30). AI analyzers determined the proportions of tumor cells (TCs) with HER2 staining intensity and the densities of various cells in TME, examining their associations with clinical outcomes of TP. RESULTS The AI-powered HER2 QCS for HER2 immunohistochemistry (IHC) achieved an accuracy of 86.7% against pathologist evaluations, with a 100% accuracy for HER2 IHC 3+ patients. Patients with ≥50% of TCs showing HER2 3+ staining intensity (AI-H3-high) exhibited significantly prolonged progression-free survival (PFS; median PFS, 4.4 v 1.4 months; hazard ratio [HR], 0.12 [95% CI, 0.04 to 0.38]) and overall survival (OS; median OS, 16.5 v 4.1 months; HR, 0.13 [95% CI, 0.05 to 0.38]) compared with the AI-H3-low (<50% group). Stratification among patients with AI-H3-high included TME-high (all lymphocyte, fibroblast, and macrophage densities in the cancer stroma above the median) and TME-low (anything below the median), showing a median PFS of 1.3 and 5.6 months for TME-high and TME-low respectively, with an HR of 0.04 (95% CI, 0.01 to 0.19) for AI-H3-high with TME-low compared with AI-H3-low. CONCLUSION AI-powered HER2 QCS and TME analysis demonstrated potential in enhancing treatment response predictions in patients with HER2-amplified mCRC undergoing TP therapy.
Collapse
Affiliation(s)
- Mitsuho Imai
- Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Chiba, Japan
| | - Yoshiaki Nakamura
- Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | | | - Wataru Okamoto
- Department of Clinical Oncology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takeshi Kato
- Department of Surgery, NHO Osaka National Hospital, Osaka, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, NHO Kyushu Cancer Center, Fukuoka, Japan
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshito Komatsu
- Department of Cancer Center, Hokkaido University Hospital, Hokkaido, Japan
| | - Satoshi Yuki
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Hokkaido, Japan
| | - Toshiki Masuishi
- Department of Clinical Oncology, Aichi Cancer Center, Nagoya, Japan
| | - Tomohiro Nishina
- Gastrointestinal Medical Oncology, NHO Shikoku Cancer Center, Ehime, Japan
| | - Kentaro Sawada
- Department of Medical Oncology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Akihiro Sato
- Clinical Research Support Office, National Cancer Center Hospital East, Chiba, Japan
| | - Takeshi Kuwata
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Chiba, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Takao Fujisawa
- Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan
- Department of Head and Neck Medical Oncology/Translational Research Support Office, National Cancer Center East Hospital, Chiba, Japan
| | - Hideaki Bando
- Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Chiba, Japan
| | | | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takayuki Yoshino
- Translational Research Support Office, National Cancer Center Hospital East, Chiba, Japan
- Department for the Promotion of Drug and Diagnostic Development, National Cancer Center Hospital East, Chiba, Japan
| |
Collapse
|
12
|
Evans ST, Jani Y, Jansen CS, Yildirim A, Kalemoglu E, Bilen MA. Understanding and overcoming resistance to immunotherapy in genitourinary cancers. Cancer Biol Ther 2024; 25:2342599. [PMID: 38629578 PMCID: PMC11028033 DOI: 10.1080/15384047.2024.2342599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The introduction of novel immunotherapies has significantly transformed the treatment landscape of genitourinary (GU) cancers, even becoming the standard of care in some settings. One such type of immunotherapy, immune checkpoint inhibitors (ICIs) like nivolumab, ipilimumab, pembrolizumab, and atezolizumab play a pivotal role by disturbing signaling pathways that limit the immune system's ability to fight tumor cells. Despite the profound impact of these treatments, not all tumors are responsive. Recent research efforts have been focused on understanding how cancer cells manage to evade the immune response and identifying the possible mechanisms behind resistance to immunotherapy. In response, ICIs are being combined with other treatments to reduce resistance and attack cancer cells through multiple cellular pathways. Additionally, novel, targeted strategies are currently being investigated to develop innovative methods of overcoming resistance and treatment failure. This article presents a comprehensive overview of the mechanisms of immunotherapy resistance in GU cancers as currently described in the literature. It explores studies that have identified genetic markers, cytokines, and proteins that may predict resistance or response to immunotherapy. Additionally, we review current efforts to overcome this resistance, which include combination ICIs and sequential therapies, novel insights into the host immune profile, and new targeted therapies. Various approaches that combine immunotherapy with chemotherapy, targeted therapy, vaccines, and radiation have been studied in an effort to more effectively overcome resistance to immunotherapy. While each of these combination therapies has shown some efficacy in clinical trials, a deeper understanding of the immune system's role underscores the potential of novel targeted therapies as a particularly promising area of current research. Currently, several targeted agents are in development, along with the identification of key immune mediators involved in immunotherapy resistance. Further research is necessary to identify predictors of response.
Collapse
Affiliation(s)
- Sean T Evans
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yash Jani
- Undergraduate studies, Mercer University, Macon, GA, USA
| | - Caroline S Jansen
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ahmet Yildirim
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ecem Kalemoglu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Mehmet Asim Bilen
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Shan H, Tian G, Zhang Y, Qiu Z. Exploring the molecular mechanisms and therapeutic potential of SMAD4 in colorectal cancer. Cancer Biol Ther 2024; 25:2392341. [PMID: 39164192 PMCID: PMC11340766 DOI: 10.1080/15384047.2024.2392341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
Colorectal Cancer (CRC) is the third most common cancer worldwide, and the occurrence and development of CRC are influenced by the molecular biology characteristics of CRC, especially alterations in key signaling pathways. The transforming growth factor-β (TGF-β) plays a crucial role in cellular growth, differentiation, migration, and apoptosis, with SMAD4 protein serving as a key transcription factor in the TGF-β signaling pathway, thus playing a significant role in the onset and progression of CRC. CRC is one of the malignancies with a high mortality rate worldwide. Despite significant research progress in recent years, especially regarding the role of SMAD4, its dual role in the early and late stages of tumor progression has promoted further discussion on its complexity as a therapeutic target, highlighting the urgent need for a deeper analysis of its role in CRC. This review aims to explore the function of SMAD4 protein in CRC and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hui Shan
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guangyu Tian
- Department of Oncology, Jiangdu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yeqing Zhang
- Department of Vascular Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhiyuan Qiu
- Department of Oncology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
14
|
Teodoro L, Carreira ACO, Sogayar MC. Exploring the Complexity of Pan-Cancer: Gene Convergences and in silico Analyses. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:913-934. [PMID: 39691553 PMCID: PMC11651076 DOI: 10.2147/bctt.s489246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
Cancer is a complex and multifaceted group of diseases characterized by highly intricate mechanisms of tumorigenesis and tumor progression, which complicates diagnosis, prognosis, and treatment. In recent years, targeted therapies have gained prominence by focusing on specific mutations and molecular features unique to each tumor type, offering more effective and personalized treatment options. However, it is equally critical to explore the genetic commonalities across different types of cancer, which has led to the rise of pan-cancer studies. These approaches help identify shared therapeutic targets across various tumor types, enabling the development of broader and potentially more widely applicable treatment strategies. This review aims to provide a comprehensive overview of key concepts related to tumors, including tumorigenesis processes, the tumor microenvironment, and the role of extracellular vesicles in tumor biology. Additionally, we explore the molecular interactions and mechanisms driving tumor progression, with a particular focus on the pan-cancer perspective. To achieve this, we conducted an in silico analysis using publicly available datasets, which facilitated the identification of both common and divergent genetic and molecular patterns across different tumor types. By integrating these diverse areas, this review offers a clearer and deeper understanding of the factors influencing tumorigenesis and highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Leandro Teodoro
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| | - Ana Claudia O Carreira
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Center of Human and Natural Sciences, Federal University of ABC, Santo André, São Paulo, 09280-560, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy NUCEL Group, School of Medicine, University of São Paulo, São Paulo, São Paulo, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, São Paulo, 05508-900, Brazil
| |
Collapse
|
15
|
Zhou Y, Huang S, Yang B, Tan J, Zhang Z, Liu W. Role of anoikis-related gene RAC3 in prognosis, immune microenvironment, and contribution to malignant behavior in vitro and in vivo of bladder urothelial carcinoma. Front Pharmacol 2024; 15:1503623. [PMID: 39659999 PMCID: PMC11628291 DOI: 10.3389/fphar.2024.1503623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Background Anoikis disrupts the normal apoptotic process in cells, leading to abnormal proliferation and migration, thereby promoting tumor formation and development. However, the role of anoikis in bladder urothelial carcinoma (BLCA) still requires further exploration. Methods Anoikis-related genes (ARGs) were retrieved from the GeneCards and Harmonizome databases to distinguish various subtypes of BLCA and develop a predictive model for BLCA. The immune microenvironment and enrichment pathways between various subtypes were also analyzed using consensus clustering. Potential medications were screened by utilizing drug sensitivity analysis. In vitro and vivo, the character of the independent prognostic gene in BLCA was confirmed through cell studies and mouse xenograft models. Results One hundred thirty differentially expressed genes (DEGs) were identified, and nine of them were chosen to construct predictive models that can accurately forecast the prognosis of BLCA patients. K = 2 was correctly identified as the optimal clustering type for BLCA, showing prominent differences in survival rates between the two subgroups. The immune-related functional studies manifested that the two subtypes' immune cell expressions differed. It was verified that RAC3 is an independent prognostic gene for BLCA. RAC3 shows high expression levels in BLCA, as indicated by its consistent mRNA and protein levels across different gene expressions. The functional verification results of RAC3 in BLCA showed that silencing RAC3 can significantly inhibit BLCA cell proliferation, colony formation, and migration. RAC3 knockdown inhibited the growth and migration of BLCA in vivo. SB505124 exhibited a significant inhibitory effect on the proliferation of BLCA cells. Conclusion Based on the predictive model developed in this study, BLCA patients' prognoses can be accurately predicted. SB505124 could become an important drug in the treatment of BLCA patients. RAC3 is essential in prognosis, immune microenvironment, and malignant behavior of BLCA in vitro and in vivo. It will also offer the potential for personalized treatment for BLCA patients and generate new research avenues for clinical investigators.
Collapse
Affiliation(s)
- Yusong Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shiwei Huang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bing Yang
- Department of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jing Tan
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhun Zhang
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Fowler H, Clifford RE, Bowden D, Sutton PA, Govindarajah N, Fok M, Glenn M, Wall M, Rubbi C, Buczacki SJA, Mandal A, Francies H, Hughes J, Parsons JL, Vimalachandran D. Myoferlin: A Potential Marker of Response to Radiation Therapy and Survival in Locally Advanced Rectal Cancer. Int J Radiat Oncol Biol Phys 2024; 120:1111-1123. [PMID: 38866213 DOI: 10.1016/j.ijrobp.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Patients with locally advanced rectal cancer often require neoadjuvant chemoradiation therapy to downstage the disease, but the response is variable with no predictive biomarkers. We have previously revealed through proteomic profiling that myoferlin is associated with response to radiation therapy. The aims of this study were to further validate this finding and explore the potential for myoferlin to act as a prognostic and/or therapeutic target. METHODS AND MATERIALS Immunohistochemical analysis of a tissue microarray (TMA) for 111 patients was used to validate the initial proteomic findings. Manipulation of myoferlin was achieved using small interfering RNA, a small molecular inhibitor (wj460), and a CRISPR-Cas9 knockout cell line. Radiosensitization after treatment was assessed using 2-dimensional clonogenic assays, 3-dimensional spheroid models, and patient-derived organoids. Underlying mechanisms were investigated using electrophoresis, immunofluorescence, and immunoblotting. RESULTS Analysis of both the diagnostic biopsy and tumor resection samples confirmed that low myoferlin expression correlated with a good response to neoadjuvant long-course chemoradiation therapy. High myoferlin expression was associated with spread to local lymph nodes and worse 5-year survival (P = .01; hazard ratio, 3.5; 95% CI, 1.27-10.04). This was externally validated using the Stratification in Colorectal Cancer database. Quantification of myoferlin using immunoblotting in immortalized colorectal cancer cell lines and organoids demonstrated that high myoferlin expression was associated with increased radioresistance. Biological and pharmacologic manipulation of myoferlin resulted in significantly increased radiosensitivity across all cell lines in 2-dimensional and 3-dimensional models. After irradiation, myoferlin knockdown cells had a significantly impaired ability to repair DNA double-strand breaks. This appeared to be mediated via nonhomologous end-joining. CONCLUSIONS We have confirmed that high expression of myoferlin in rectal cancer is associated with poor response to neoadjuvant therapy and worse long-term survival. Furthermore, the manipulation of myoferlin led to increased radiosensitivity in vitro. This suggests that myoferlin could be targeted to enhance the sensitivity of patients with rectal cancer to radiation therapy, and further work is required.
Collapse
Affiliation(s)
- Hayley Fowler
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom; Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom.
| | - Rachael E Clifford
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - David Bowden
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom
| | - Paul A Sutton
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Naren Govindarajah
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Matthew Fok
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom; Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Mark Glenn
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| | - Michael Wall
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom
| | - Carlos Rubbi
- Faculty of Health, Social Care & Medicine, Edge Hill University, St Helens Road, Ormskirk, Lancashire, L39 4QP
| | - Simon J A Buczacki
- Nuffield Department of Surgical Sciences (NDS), University of Oxford, Oxford, United Kingdom
| | - Amit Mandal
- Nuffield Department of Surgical Sciences (NDS), University of Oxford, Oxford, United Kingdom
| | - Hayley Francies
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Hughes
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jason L Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dale Vimalachandran
- Department of Colorectal Surgery, Countess of Chester National Health Service Foundation Trust, Chester, United Kingdom; Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, William Henry Duncan Building, Liverpool, United Kingdom
| |
Collapse
|
17
|
Sweeney MD, Torre-Healy LA, Ma VL, Hall MA, Chrastecka L, Yurovsky A, Moffitt RA. FaStaNMF: A Fast and Stable Non-Negative Matrix Factorization for Gene Expression. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1633-1644. [PMID: 37467096 DOI: 10.1109/tcbb.2023.3296979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Gene expression analysis of samples with mixed cell types only provides limited insight to the characteristics of specific tissues. In silico deconvolution can be applied to extract cell type specific expression, thus avoiding prohibitively expensive techniques such as cell sorting or single-cell sequencing. Non-negative matrix factorization (NMF) is a deconvolution method shown to be useful for gene expression data, in part due to its constraint of non-negativity. Unlike other methods, NMF provides the capability to deconvolve without prior knowledge of the components of the model. However, NMF is not guaranteed to provide a globally unique solution. In this work, we present FaStaNMF, a method that balances achieving global stability of the NMF results, which is essential for inter-experiment and inter-lab reproducibility, with accuracy and speed. Results: FaStaNMF was applied to four datasets with known ground truth, created based on publicly available data or by using our simulation infrastructure, RNAGinesis. We assessed FaStaNMF on three criteria - speed, accuracy, and stability, and it favorably compared to the standard approach of achieving reproduceable results with NMF. We expect that FaStaNMF can be applied successfully to a wide array of biological data, such as different tumor/immune and other disease microenvironments.
Collapse
|
18
|
Mancarella S, Gigante I, Pizzuto E, Serino G, Terzi A, Dituri F, Maiorano E, Vincenti L, De Bellis M, Ardito F, Calvisi DF, Giannelli G. Targeting cancer-associated fibroblasts/tumor cells cross-talk inhibits intrahepatic cholangiocarcinoma progression via cell-cycle arrest. J Exp Clin Cancer Res 2024; 43:286. [PMID: 39415286 PMCID: PMC11484308 DOI: 10.1186/s13046-024-03210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), mainly responsible for the desmoplastic reaction hallmark of intrahepatic Cholangiocarcinoma (iCCA), likely have a role in tumor aggressiveness and resistance to therapy, although the molecular mechanisms involved are unknown. Aim of the study is to investigate how targeting hCAF/iCCA cross-talk with a Notch1 inhibitor, namely Crenigacestat, may affect cancer progression. METHODS We used different in vitro models in 2D and established new 3D hetero-spheroids with iCCA cells and human (h)CAFs. The results were confirmed in a xenograft model, and explanted tumoral tissues underwent transcriptomic and bioinformatic analysis. RESULTS hCAFs/iCCA cross-talk sustains increased migration of both KKU-M213 and KKU-M156 cells, while Crenigacestat significantly inhibits only the cross-talk stimulated migration. Hetero-spheroids grew larger than homo-spheroids, formed by only iCCA cells. Crenigacestat significantly reduced the invasion and growth of hetero- but not of homo-spheroids. In xenograft models, hCAFs/KKU-M213 tumors grew significantly larger than KKU-M213 tumors, but were significantly reduced in volume by Crenigacestat treatment, which also significantly decreased the fibrotic reaction. Ingenuity pathway analysis revealed that genes of hCAFs/KKU-M213 but not of KKU-M213 tumors increased tumor lesions, and that Crenigacestat treatment inhibited the modulated canonical pathways. Cell cycle checkpoints were the most notably modulated pathway and Crenigacestat reduced CCNE2 gene expression, consequently inducing cell cycle arrest. In hetero-spheroids, the number of cells increased in the G2/M cell cycle phase, while Crenigacestat significantly decreased cell numbers in the G2/M phase in hetero but not in homo-spheroids. CONCLUSIONS The hCAFs/iCCA cross-talk is a new target for reducing cancer progression with drugs such as Crenigacestat.
Collapse
Affiliation(s)
- Serena Mancarella
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Elena Pizzuto
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Grazia Serino
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Alberta Terzi
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Francesco Dituri
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Eugenio Maiorano
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Leonardo Vincenti
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Mario De Bellis
- Division of General and Hepatobiliary Surgery, Department of Surgery, Dentistry, Gynecology and Pediatrics, University of Verona, G.B. Rossi University Hospital, P.le L.A. Scuro 10, Verona, 37134, Italy
| | - Francesco Ardito
- Hepatobiliary Surgery Unit, Foundation "Policlinico Universitario A. Gemelli", IRCCS, Catholic University, Rome, Italy
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, 93053, Regensburg, Germany
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, Via Turi 27, Castellana Grotte, BA, 70013, Italy.
| |
Collapse
|
19
|
Abikar A, Mustafa MMS, Athalye RR, Nadig N, Tamboli N, Babu V, Keshavamurthy R, Ranganathan P. Comparative transcriptome of normal and cancer-associated fibroblasts. BMC Cancer 2024; 24:1231. [PMID: 39369238 PMCID: PMC11456241 DOI: 10.1186/s12885-024-13006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND The characteristics of a tumor are largely determined by its interaction with the surrounding micro-environment (TME). TME consists of both cellular and non-cellular components. Cancer-associated fibroblasts (CAFs) are a major component of the TME. They are a source of many secreted factors that influence the survival and progression of tumors as well as their response to drugs. Identification of markers either overexpressed in CAFs or unique to CAFs would pave the way for novel therapeutic strategies that in combination with conventional chemotherapy are likely to have better patient outcome. METHODS Fibroblasts have been derived from Benign Prostatic Hyperplasia (BPH) and prostate cancer. RNA from these has been used to perform a transcriptome analysis in order to get a comparative profile of normal and cancer-associated fibroblasts. RESULTS The study has identified 818 differentially expressed mRNAs and 17 lincRNAs between normal and cancer-associated fibroblasts. Also, 15 potential lincRNA-miRNA-mRNA combinations have been identified which may be potential biomarkers. CONCLUSIONS This study identified differentially expressed markers between normal and cancer-associated fibroblasts that would help in targeted therapy against CAFs/derived factors, in combination with conventional therapy. However, this would in future need more experimental validation.
Collapse
Affiliation(s)
- Apoorva Abikar
- Centre for Human Genetics, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | | | | | | | | | - Vinod Babu
- Institute of Nephro-Urology, Bengaluru, India
| | | | - Prathibha Ranganathan
- Centre for Human Genetics, Bengaluru, India.
- Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
20
|
Takagi K, Takagi M, Hiyama G, Goda K. A deep-learning model for characterizing tumor heterogeneity using patient-derived organoids. Sci Rep 2024; 14:22769. [PMID: 39354045 PMCID: PMC11445485 DOI: 10.1038/s41598-024-73725-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Genotypic and phenotypic diversity, which generates heterogeneity during disease evolution, is common in cancer. The identification of features specific to each patient and tumor is central to the development of precision medicine and preclinical studies for cancer treatment. However, the complexity of the disease due to inter- and intratumor heterogeneity increases the difficulty of effective analysis. Here, we introduce a sequential deep learning model, preprocessing to organize the complexity due to heterogeneity, which contrasts with general approaches that apply a single model directly. We characterized morphological heterogeneity using microscopy images of patient-derived organoids (PDOs) and identified gene subsets relevant to distinguishing differences among original tumors. PDOs, which reflect the features of their origins, can be reproduced in large quantities and varieties, contributing to increasing the variation by enhancing their common characteristics, in contrast to those from different origins. This resulted in increased efficiency in the extraction of organoid morphological features sharing the same origin. Linking these tumor-specific morphological features to PDO gene expression data enables the extraction of genes strongly correlated with intertumor differences. The relevance of the selected genes was assessed, and the results suggest potential applications in preclinical studies and personalized clinical care.
Collapse
Affiliation(s)
- Kosuke Takagi
- Research and Development, Advanced Core Technology Japan Unit 2, Evident Corp. Hachioji, 192-0033, Tokyo, Japan
| | - Motoki Takagi
- Translational Research Center, Fukushima Medical University, 960-1295, Fukushima, Japan.
- JeiserBio Inc, 220-0004, Yokohama, Japan.
| | - Gen Hiyama
- Translational Research Center, Fukushima Medical University, 960-1295, Fukushima, Japan
| | - Kazuhito Goda
- Research and Development, Advanced Biological Engineering Japan, Evident Corp., 192-0033, Hachioji, Japan
| |
Collapse
|
21
|
Afshar-Sterle S, Carli ALE, O'Keefe R, Tse J, Fischer S, Azimpour AI, Baloyan D, Elias L, Thilakasiri P, Patel O, Ferguson FM, Eissmann MF, Chand AL, Gray NS, Busuttil R, Boussioutas A, Lucet IS, Ernst M, Buchert M. DCLK1 induces a pro-tumorigenic phenotype to drive gastric cancer progression. Sci Signal 2024; 17:eabq4888. [PMID: 39288218 DOI: 10.1126/scisignal.abq4888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 03/22/2023] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Doublecortin-like kinase 1 (DCLK1) is a proposed driver of gastric cancer (GC) that phosphorylates serine and threonine residues. Here, we showed that the kinase activity of DCLK1 orchestrated cancer cell-intrinsic and-extrinsic processes that led to pro-invasive and pro-metastatic reprogramming of GC cells. Inhibition of the kinase activity of DCLK1 reduced the growth of subcutaneous xenograft tumors formed from MKN1 human gastric carcinoma cells in mice and decreased the abundance of the stromal markers α-Sma, vimentin, and collagen. Similar effects were seen in mice with xenograft tumors formed from MKN1 cells expressing a kinase-inactive DCLK1 mutant (MKN1D511N). MKN1D511N cells also had reduced in vitro migratory potential and stemness compared with control cells. Mice orthotopically grafted with MKN1 cells overexpressing DCLK1 (MKN1DCLK1) showed increased invasiveness and had a greater incidence of lung metastases compared with those grafted with control MKN1 cells. Mechanistically, we showed that the chemokine CXCL12 acted downstream of DCLK1 in cultured MKN1 cells and in mice subcutaneously implanted with gastric tumors formed by MKN1DCLK1 cells. Moreover, inhibition of the kinase activity of DCLK1 or the expression of DCLK1D511N reversed the pro-tumorigenic and pro-metastatic phenotype. Together, this study establishes DCLK1 as a broadly acting and potentially targetable promoter of GC.
Collapse
Affiliation(s)
- Shoukat Afshar-Sterle
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Annalisa L E Carli
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Ryan O'Keefe
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Janson Tse
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Stefanie Fischer
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Alexander I Azimpour
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - David Baloyan
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Lena Elias
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Pathum Thilakasiri
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Onisha Patel
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Fleur M Ferguson
- Department of Chemistry and Biochemistry and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Moritz F Eissmann
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Ashwini L Chand
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Rita Busuttil
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Gastroenterology, Alfred Hospital, Melbourne, VIC, Australia
| | - Alex Boussioutas
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Gastroenterology, Alfred Hospital, Melbourne, VIC, Australia
| | - Isabelle S Lucet
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthias Ernst
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Michael Buchert
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
22
|
Benboubker V, Ramzy GM, Jacobs S, Nowak-Sliwinska P. Challenges in validation of combination treatment strategies for CRC using patient-derived organoids. J Exp Clin Cancer Res 2024; 43:259. [PMID: 39261955 PMCID: PMC11389238 DOI: 10.1186/s13046-024-03173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Patient-derived organoids (PDOs) established from tissues from various tumor types gave the foundation of ex vivo models to screen and/or validate the activity of many cancer drug candidates. Due to their phenotypic and genotypic similarity to the tumor of which they were derived, PDOs offer results that effectively complement those obtained from more complex models. Yet, their potential for predicting sensitivity to combination therapy remains underexplored. In this review, we discuss the use of PDOs in both validation and optimization of multi-drug combinations for personalized treatment strategies in CRC. Moreover, we present recent advancements in enriching PDOs with diverse cell types, enhancing their ability to mimic the complexity of in vivo environments. Finally, we debate how such sophisticated models are narrowing the gap in personalized medicine, particularly through immunotherapy strategies and discuss the challenges and future direction in this promising field.
Collapse
Affiliation(s)
- Valentin Benboubker
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - George M Ramzy
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Sacha Jacobs
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland.
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland.
| |
Collapse
|
23
|
de Back TR, van Hooff SR, Sommeijer DW, Vermeulen L. Transcriptomic subtyping of gastrointestinal malignancies. Trends Cancer 2024; 10:842-856. [PMID: 39019673 DOI: 10.1016/j.trecan.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Gastrointestinal (GI) cancers are highly heterogeneous at multiple levels. Tumor heterogeneity can be captured by molecular profiling, such as genetic, epigenetic, proteomic, and transcriptomic classification. Transcriptomic subtyping has the advantage of combining genetic and epigenetic information, cancer cell-intrinsic properties, and the tumor microenvironment (TME). Unsupervised transcriptomic subtyping systems of different GI malignancies have gained interest because they reveal shared biological features across cancers and bear prognostic and predictive value. Importantly, transcriptomic subtypes accurately reflect complex phenotypic states varying not only per tumor region, but also throughout disease progression, with consequences for clinical management. Here, we discuss methodologies of transcriptomic subtyping, proposed taxonomies for GI malignancies, and the challenges posed to clinical implementation, highlighting opportunities for future transcriptomic profiling efforts to optimize clinical impact.
Collapse
Affiliation(s)
- Tim R de Back
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sander R van Hooff
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Dirkje W Sommeijer
- Flevohospital, Department of Internal Medicine, Hospitaalweg 1, 1315 RA, Almere, The Netherlands
| | - Louis Vermeulen
- Cancer Center Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Nakano S, Yamaji T, Hidaka A, Shimazu T, Shiraishi K, Kuchiba A, Saito M, Kunishima F, Nakaza R, Kohno T, Sawada N, Inoue M, Tsugane S, Iwasaki M. Dietary vitamin D intake and risk of colorectal cancer according to vitamin D receptor expression in tumors and their surrounding stroma. J Gastroenterol 2024; 59:825-835. [PMID: 38900300 DOI: 10.1007/s00535-024-02129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Colorectal Cancer (CRC) has been molecularly classified into several subtypes according to tumor, stromal, and immune components. Here, we investigated whether the preventive effect of vitamin D on CRC varies with subtypes defined by Vitamin D receptor (VDR) expression in tumors and their surrounding stroma, along with the association of somatic mutations in CRC. METHODS In a population-based prospective study of 22,743 Japanese participants, VDR expression levels in tumors and their surrounding stroma were defined in 507 cases of newly diagnosed CRC using immunohistochemistry. Hazard ratios of CRC and its subtypes according to dietary vitamin D intake were estimated using multivariable Cox proportional hazards models. RESULTS Dietary vitamin D intake was not associated with CRC or its subtypes defined by VDR expression in tumors. However, an inverse association was observed for CRC with high VDR expression in the stroma (the highest tertile vs the lowest tertile: 0.46 [0.23-0.94], Ptrend = 0.03), but not for CRC with low VDR expression in the stroma (Pheterogeneity = 0.02). Furthermore, CRC with high VDR expression in the stroma had more somatic TP53 and BRAF mutations and fewer APC mutations than those with low VDR expression in the stroma. CONCLUSIONS This study provides the first evidence that the preventive effect of vitamin D on CRC depends on VDR expression in the stroma rather than in the tumors. CRC with high VDR expression in the stroma is likely to develop through a part of the serrated polyp pathway, which tends to occur with BRAF but not with APC mutations.
Collapse
Affiliation(s)
- Shiori Nakano
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1, Tsukiji, Chou-ku, Tokyo, 104-0045, Japan
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1, Tsukiji, Chou-ku, Tokyo, 104-0045, Japan.
| | - Akihisa Hidaka
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1, Tsukiji, Chou-ku, Tokyo, 104-0045, Japan
- Department of Diabetes and Endocrinology, JCHO Tokyo Yamate Medical Centre, Tokyo, Japan
| | - Taichi Shimazu
- Division of Behavioral Sciences, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Aya Kuchiba
- Graduate School of Health Innovation, Kanagawa University of Human Services, Kanagawa, Japan
- Division of Biostatistical Research, Institute for Cancer Control/Biostatistics Division, Center for Research Administration and Support, National Cancer Center, Tokyo, Japan
| | - Masahiro Saito
- Department of Diagnostic Pathology, Hiraka General Hospital, Yokote, Akita, Japan
| | - Fumihito Kunishima
- Department of Diagnostic Pathology, Okinawa Prefecture Chubu Hospital, Okinawa, Japan
| | - Ryouji Nakaza
- Department of Clinical Laboratory, Nakagami Hospital, Okinawa, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Manami Inoue
- Division of Prevention, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- International University of Health and Welfare Graduate School of Public Health, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1, Tsukiji, Chou-ku, Tokyo, 104-0045, Japan
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| |
Collapse
|
25
|
Grellier N, Severino A, Archilei S, Kim J, Gasbarrini A, Cammarota G, Porcari S, Benech N. Gut microbiota in inflammation and colorectal cancer: A potential Toolbox for Clinicians. Best Pract Res Clin Gastroenterol 2024; 72:101942. [PMID: 39645280 DOI: 10.1016/j.bpg.2024.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) is a worldwide public health issue specifically in patients with chronic diseases associated with a western lifestyle, such as metabolic diseases and inflammatory bowel diseases (IBD). Interestingly, both metabolic disorders and IBD are characterized by a chronic state of inflammation that contributes to the carcinogenesis with specific alteration of the gut microbiota composition and function. Evidence now shows that this altered gut microbiota contributes fueling a chronic pro-inflammatory state in a vicious circle that can favor CRC development. In this review article, we present the current knowledge concerning the involvement of the gut microbiota as a procarcinogenic factor shared by IBD and cardiometabolic diseases, and provide clues as to how it may be used to prevent or diagnose CRC.
Collapse
Affiliation(s)
- Nathan Grellier
- Department of Hepato-Gastroenterology, Poitiers University Hospital, Poitiers, France
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Sebastiano Archilei
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Jumin Kim
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Nicolas Benech
- Hospices Civils de Lyon, Hepato-gastroenterology Department, Hôpital de La Croix-Rousse, 69000, Lyon, France; Lyon GEM Microbiota Study Group, Lyon, France; Université Claude Bernard Lyon 1, Tumor Escape Resistance and Immunity Department, Cancer Research Center of Lyon (CRCL), Inserm U1052, CNRS UMR 5286, Lyon, France.
| |
Collapse
|
26
|
Cañellas-Socias A, Sancho E, Batlle E. Mechanisms of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol 2024; 21:609-625. [PMID: 38806657 DOI: 10.1038/s41575-024-00934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/30/2024]
Abstract
Despite extensive research and improvements in understanding colorectal cancer (CRC), its metastatic form continues to pose a substantial challenge, primarily owing to limited therapeutic options and a poor prognosis. This Review addresses the emerging focus on metastatic CRC (mCRC), which has historically been under-studied compared with primary CRC despite its lethality. We delve into two crucial aspects: the molecular and cellular determinants facilitating CRC metastasis and the principles guiding the evolution of metastatic disease. Initially, we examine the genetic alterations integral to CRC metastasis, connecting them to clinically marked characteristics of advanced CRC. Subsequently, we scrutinize the role of cellular heterogeneity and plasticity in metastatic spread and therapy resistance. Finally, we explore how the tumour microenvironment influences metastatic disease, emphasizing the effect of stromal gene programmes and the immune context. The ongoing research in these fields holds immense importance, as its future implications are projected to revolutionize the treatment of patients with mCRC, hopefully offering a promising outlook for their survival.
Collapse
Affiliation(s)
- Adrià Cañellas-Socias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
27
|
Xu Y, Wang S, Feng Q, Xia J, Li Y, Li HD, Wang J. scCAD: Cluster decomposition-based anomaly detection for rare cell identification in single-cell expression data. Nat Commun 2024; 15:7561. [PMID: 39215003 PMCID: PMC11364754 DOI: 10.1038/s41467-024-51891-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies have become essential tools for characterizing cellular landscapes within complex tissues. Large-scale single-cell transcriptomics holds great potential for identifying rare cell types critical to the pathogenesis of diseases and biological processes. Existing methods for identifying rare cell types often rely on one-time clustering using partial or global gene expression. However, these rare cell types may be overlooked during the clustering phase, posing challenges for their accurate identification. In this paper, we propose a Cluster decomposition-based Anomaly Detection method (scCAD), which iteratively decomposes clusters based on the most differential signals in each cluster to effectively separate rare cell types and achieve accurate identification. We benchmark scCAD on 25 real-world scRNA-seq datasets, demonstrating its superior performance compared to 10 state-of-the-art methods. In-depth case studies across diverse datasets, including mouse airway, brain, intestine, human pancreas, immunology data, and clear cell renal cell carcinoma, showcase scCAD's efficiency in identifying rare cell types in complex biological scenarios. Furthermore, scCAD can correct the annotation of rare cell types and identify immune cell subtypes associated with disease, thereby offering valuable insights into disease progression.
Collapse
Affiliation(s)
- Yunpei Xu
- School of Computer Science and Engineering, Central South University, Changsha, China
- Xiangjiang Laboratory, Changsha, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, China
| | - Shaokai Wang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Qilong Feng
- School of Computer Science and Engineering, Central South University, Changsha, China
- Xiangjiang Laboratory, Changsha, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, China
| | - Jiazhi Xia
- School of Computer Science and Engineering, Central South University, Changsha, China
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, China
| | - Yaohang Li
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Hong-Dong Li
- School of Computer Science and Engineering, Central South University, Changsha, China.
- Xiangjiang Laboratory, Changsha, China.
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, China.
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, China.
- Xiangjiang Laboratory, Changsha, China.
- Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, China.
| |
Collapse
|
28
|
Ding C, Xu X, Zhang X, Zhang E, Li S, Fan X, Ma J, Yang X, Zang L. Investigating the role of senescence biomarkers in colorectal cancer heterogeneity by bulk and single-cell RNA sequencing. Sci Rep 2024; 14:20083. [PMID: 39209895 PMCID: PMC11362543 DOI: 10.1038/s41598-024-70300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Colorectal cancer (CRC) is one of most common tumors worldwide, causing a prominent global health burden. Cell senescence is a complex physiological state, characterized by proliferation arrest. Here, we investigated the role of cellular senescence in the heterogeneity of CRC. Based on senescence-associated genes, CRC samples were classified into different senescence patterns with different survival, cancer-related biological processes and immune cell infiltrations. A senescence-related model was then developed to calculate the senescence-related score to comprehensively explore the heterogeneity of each CRC sample such as stromal activities, immunoreactivities and drug sensitivity. Single-cell analysis revealed there were different immune cell infiltrations between low and high senescence-related model genes enrichment groups, which was confirmed by multiplex immunofluorescence staining. Pseudotime analysis indicated model genes play a pivotal role in the evolution of B cells. Besides, intercellular communication modeled by NicheNet showed tumor cells with higher enrichment of senescence-related model genes highly expressed CXCL2/3 and CCL3/4, which attracted immunosuppressive cell infiltration and promoted tumor metastasis. Finally, top 6 hub genes were identified from senescence-related model genes by PPI analysis. And RT-qPCR revealed the expression differences of hub genes between normal and CRC cell lines, indicating to some extent the clinical practicability of senescence-related model. To sum up, our study explores the impact of cellular senescence on the prognosis, TME and treatment of CRC based on senescence patterns. This provides a new perspective for CRC treatment.
Collapse
Affiliation(s)
- Chengsheng Ding
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Ximo Xu
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xian Zhang
- Department of General Practice, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Shuchun Li
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaodong Fan
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Junjun Ma
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Xiao Yang
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Department of General Surgery and Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China.
| | - Lu Zang
- Department of General Surgery, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Minimally Invasive Surgery Center, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
29
|
Leto SM, Grassi E, Avolio M, Vurchio V, Cottino F, Ferri M, Zanella ER, Borgato S, Corti G, di Blasio L, Somale D, Vara-Messler M, Galimi F, Sassi F, Lupo B, Catalano I, Pinnelli M, Viviani M, Sperti L, Mellano A, Ferrero A, Zingaretti CC, Puliafito A, Primo L, Bertotti A, Trusolino L. XENTURION is a population-level multidimensional resource of xenografts and tumoroids from metastatic colorectal cancer patients. Nat Commun 2024; 15:7495. [PMID: 39209908 PMCID: PMC11362617 DOI: 10.1038/s41467-024-51909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The breadth and depth at which cancer models are interrogated contribute to the successful clinical translation of drug discovery efforts. In colorectal cancer (CRC), model availability is limited by a dearth of large-scale collections of patient-derived xenografts (PDXs) and paired tumoroids from metastatic disease, where experimental therapies are typically tested. Here we introduce XENTURION, an open-science resource offering a platform of 128 PDX models from patients with metastatic CRC, along with matched PDX-derived tumoroids. Multidimensional omics analyses indicate that tumoroids retain extensive molecular fidelity with parental PDXs. A tumoroid-based trial with the anti-EGFR antibody cetuximab reveals variable sensitivities that are consistent with clinical response biomarkers, mirror tumor growth changes in matched PDXs, and recapitulate EGFR genetic deletion outcomes. Inhibition of adaptive signals upregulated by EGFR blockade increases the magnitude of cetuximab response. These findings illustrate the potential of large living biobanks, providing avenues for molecularly informed preclinical research in oncology.
Collapse
Affiliation(s)
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Avolio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Valentina Vurchio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Martina Ferri
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Sofia Borgato
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giorgio Corti
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Laura di Blasio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Desiana Somale
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Aptuit, an Evotec Company, Verona, Italy
| | - Marianela Vara-Messler
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Sanofi Belgium, Zwijnaarde, Belgium
| | - Francesco Galimi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Francesco Sassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Barbara Lupo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Irene Catalano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Marika Pinnelli
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Viviani
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Luca Sperti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Alfredo Mellano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | | | | | - Alberto Puliafito
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Luca Primo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| |
Collapse
|
30
|
Negri F, Gnetti L, Aschele C. Editorial: Advances in molecular biology knowledge of rectal cancer and forthcoming role of liquid biopsy. Front Oncol 2024; 14:1476174. [PMID: 39267833 PMCID: PMC11390347 DOI: 10.3389/fonc.2024.1476174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Affiliation(s)
- Francesca Negri
- Gastroenterology and Endoscopy Unit, University Hospital of Parma, Parma, Italy
| | - Letizia Gnetti
- Department of Pathology, University Hospital of Parma, Parma, Italy
| | - Carlo Aschele
- Medical Oncology Unit, Department of Oncology, Ospedale Sant'Andrea, La Spezia, Italy
| |
Collapse
|
31
|
Xu C, Xia P, Li J, Lewis KB, Ciombor KK, Wang L, Smith JJ, Beauchamp RD, Chen XS. Discovery and validation of a 10-gene predictive signature for response to adjuvant chemotherapy in stage II and III colon cancer. Cell Rep Med 2024; 5:101661. [PMID: 39059386 PMCID: PMC11384724 DOI: 10.1016/j.xcrm.2024.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/30/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Identifying patients with stage II and III colon cancer who will benefit from 5-fluorouracil (5-FU)-based adjuvant chemotherapy is crucial for the advancement of personalized cancer therapy. We employ a semi-supervised machine learning approach to analyze a large dataset with 933 stage II and III colon cancer samples. Our analysis leverages gene regulatory networks to discover an 18-gene prognostic signature and to explore a 10-gene signature that potentially predicts chemotherapy benefits. The 10-gene signature demonstrates strong prognostic power and shows promising potential to predict chemotherapy benefits. We establish a robust clinical assay on the NanoString nCounter platform, validated in a retrospective formalin-fixed paraffin-embedded (FFPE) cohort, which represents an important step toward clinical application. Our study lays the groundwork for improving adjuvant chemotherapy and potentially expanding into immunotherapy decision-making in colon cancer. Future prospective studies are needed to validate and establish the clinical utility of the 10-gene signature in clinical settings.
Collapse
Affiliation(s)
- Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Peng Xia
- School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jie Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - Keeli B Lewis
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristen K Ciombor
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lily Wang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - J Joshua Smith
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - R Daniel Beauchamp
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - X Steven Chen
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
32
|
Reitsam NG, Grosser B, Steiner DF, Grozdanov V, Wulczyn E, L'Imperio V, Plass M, Müller H, Zatloukal K, Muti HS, Kather JN, Märkl B. Converging deep learning and human-observed tumor-adipocyte interaction as a biomarker in colorectal cancer. COMMUNICATIONS MEDICINE 2024; 4:163. [PMID: 39147895 PMCID: PMC11327259 DOI: 10.1038/s43856-024-00589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Tumor-Adipose-Feature (TAF) as well as SARIFA (Stroma AReactive Invasion Front Areas) are two histologic features/biomarkers linking tumor-associated adipocytes to poor outcomes in colorectal cancer (CRC) patients. Whereas TAF was identified by deep learning (DL) algorithms, SARIFA was established as a human-observed histopathologic biomarker. METHODS To study the overlap between TAF and SARIFA, we performed a systematic pathological review of TAF based on all published image tiles. Additionally, we analyzed the presence/absence of TAF in SARIFA-negative CRC cases to elucidate the biologic and prognostic role of a direct tumor-adipocyte contact. TCGA-CRC gene expression data is investigated to assess the association of FABP4 (fatty-acid binding protein 4) and CD36 (fatty-acid translocase) with both TAF and CRC prognosis. RESULTS By investigating the TAF/SARIFA overlap, we show that many TAF patches correspond to the recently described SARIFA-phenomenon. Even though there is a pronounced morphological and biological overlap, there are differences in the concepts. The presence of TAF in SARIFA-negative CRCs is not associated with poor outcomes in this cohort, potentially highlighting the importance of a direct tumor-adipocyte interaction. Upregulation of FABP4 and CD36 gene expression seem both linked to a poor prognosis in CRC. CONCLUSIONS By proving the substantial overlap between human-observed SARIFA and DL-based TAF as morphologic biomarkers, we demonstrate that linking DL-based image features to independently developed histopathologic biomarkers is a promising tool in the identification of clinically and biologically meaningful biomarkers. Adipocyte-tumor-cell interactions seem to be crucial in CRC, which should be considered as biomarkers for further investigations.
Collapse
Affiliation(s)
- Nic G Reitsam
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany.
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany.
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany.
| | - Bianca Grosser
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | | | | | - Ellery Wulczyn
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| | - Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, University of Milano-Bicocca, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Markus Plass
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria
| | - Heimo Müller
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria
| | - Kurt Zatloukal
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria
| | - Hannah S Muti
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Jakob N Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom
- Department of Medicine I, University Hospital Dresden, Dresden, Germany
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Bruno Märkl
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| |
Collapse
|
33
|
Fu Y, Guo X, Sun L, Cui T, Wu C, Wang J, Liu Y, Liu L. Exploring the role of the immune microenvironment in hepatocellular carcinoma: Implications for immunotherapy and drug resistance. eLife 2024; 13:e95009. [PMID: 39146202 PMCID: PMC11326777 DOI: 10.7554/elife.95009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.
Collapse
Affiliation(s)
- Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Xinyu Guo
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| |
Collapse
|
34
|
Chen CY, Yang SH, Chang PY, Chen SF, Nieh S, Huang WY, Lin YC, Lee OKS. Cancer-Associated-Fibroblast-Mediated Paracrine and Autocrine SDF-1/CXCR4 Signaling Promotes Stemness and Aggressiveness of Colorectal Cancers. Cells 2024; 13:1334. [PMID: 39195225 PMCID: PMC11352219 DOI: 10.3390/cells13161334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide, and cancer-associated fibroblasts (CAFs) play a major role in the tumor microenvironment (TME), which facilitates the progression of CRC. It is critical to understand how CAFs promote the progression of CRC for the development of novel therapeutic approaches. The purpose of this study was to understand how CAF-derived stromal-derived factor-1 (SDF-1) and its interactions with the corresponding C-X-C motif chemokine receptor 4 (CXCR4) promote CRC progression. Our study focused on their roles in promoting tumor cell migration and invasion and their effects on the characteristics of cancer stem cells (CSCs), which ultimately impact patient outcomes. Here, using in vivo approaches and clinical histological samples, we analyzed the influence of secreted SDF-1 on CRC progression, especially in terms of tumor cell behavior and stemness. We demonstrated that CAF-secreted SDF-1 significantly enhanced CRC cell migration and invasion through paracrine signaling. In addition, the overexpression of SDF-1 in CRC cell lines HT29 and HCT-116 triggered these cells to generate autocrine SDF-1 signaling, which further enhanced their CSC characteristics, including those of migration, invasion, and spheroid formation. An immunohistochemical study showed a close relationship between SDF-1 and CXCR4 expression in CRC tissue, and this significantly affected patient outcomes. The administration of AMD3100, an inhibitor of CXCR4, reversed the entire phenomenon. Our results strongly suggest that targeting this signaling axis in CRC is a feasible approach to attenuating tumor progression, and it may, therefore, serve as an alternative treatment method to improve the prognosis of patients with CRC, especially those with advanced, recurrent, or metastatic CRC following standard therapy.
Collapse
Affiliation(s)
- Chao-Yang Chen
- Division of Colon and Rectal Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shih-Hsien Yang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Office of General Affairs and Occupational Safety, National Defense Medical Center, Taipei 11490, Taiwan
| | - Ping-Ying Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Su-Feng Chen
- Department of Dentistry, School of Dentistry, China Medical University, Taichung 40433, Taiwan;
| | - Shin Nieh
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yu-Chun Lin
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 11211, Taiwan
- Department of Orthopedics, China Medical University Hospital, Taichung 40402, Taiwan
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
35
|
Menche C, Schuhwerk H, Armstark I, Gupta P, Fuchs K, van Roey R, Mosa MH, Hartebrodt A, Hajjaj Y, Clavel Ezquerra A, Selvaraju MK, Geppert CI, Bärthel S, Saur D, Greten FR, Brabletz S, Blumenthal DB, Weigert A, Brabletz T, Farin HF, Stemmler MP. ZEB1-mediated fibroblast polarization controls inflammation and sensitivity to immunotherapy in colorectal cancer. EMBO Rep 2024; 25:3406-3431. [PMID: 38937629 PMCID: PMC11315988 DOI: 10.1038/s44319-024-00186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
The EMT-transcription factor ZEB1 is heterogeneously expressed in tumor cells and in cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC). While ZEB1 in tumor cells regulates metastasis and therapy resistance, its role in CAFs is largely unknown. Combining fibroblast-specific Zeb1 deletion with immunocompetent mouse models of CRC, we observe that inflammation-driven tumorigenesis is accelerated, whereas invasion and metastasis in sporadic cancers are reduced. Single-cell transcriptomics, histological characterization, and in vitro modeling reveal a crucial role of ZEB1 in CAF polarization, promoting myofibroblastic features by restricting inflammatory activation. Zeb1 deficiency impairs collagen deposition and CAF barrier function but increases NFκB-mediated cytokine production, jointly promoting lymphocyte recruitment and immune checkpoint activation. Strikingly, the Zeb1-deficient CAF repertoire sensitizes to immune checkpoint inhibition, offering a therapeutic opportunity of targeting ZEB1 in CAFs and its usage as a prognostic biomarker. Collectively, we demonstrate that ZEB1-dependent plasticity of CAFs suppresses anti-tumor immunity and promotes metastasis.
Collapse
Affiliation(s)
- Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Pooja Gupta
- Core Unit for Bioinformatics, Data Integration and Analysis, Center for Medical Information and Communication Technology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Fuchs
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Mohammed H Mosa
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Anne Hartebrodt
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Yussuf Hajjaj
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Clavel Ezquerra
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Manoj K Selvaraju
- Core Unit for Bioinformatics, Data Integration and Analysis, Center for Medical Information and Communication Technology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering (AIBE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Weigert
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
- Institute of Biochemistry I, Goethe University, Frankfurt am Main, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany.
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt/Main, Germany.
- German Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
36
|
Mirshahidi S, Yuan IJ, Chen Z, Simental A, Lee SC, Andrade Filho PA, Murry T, Zeng F, Duerksen-Hughes P, Wang C, Yuan X. Tumor Cell Stemness and Stromal Cell Features Contribute to Oral Cancer Outcome Disparity in Black Americans. Cancers (Basel) 2024; 16:2730. [PMID: 39123459 PMCID: PMC11311411 DOI: 10.3390/cancers16152730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Black Americans (BAs) with head and neck cancer (HNC) have worse survival outcomes compared to the White patients. While HNC disparities in patient outcomes for BAs have been well recognized, the specific drivers of the inferior outcomes remain poorly understood. Here, we investigated the biologic features of patient tumor specimens obtained during the surgical treatment of oral cancers and performed a follow-up study of the patients' post-surgery recurrences and metastases with the aim to explore whether tumor biologic features could be associated with the poorer outcomes among BA patients compared with White American (WA) patients. We examined the tumor stemness traits and stromal properties as well as the post-surgery recurrence and metastasis of oral cancers among BA and WA patients. It was found that high levels of tumor self-renewal, invasion, tumorigenesis, metastasis, and tumor-promoting stromal characteristics were linked to post-surgery recurrence and metastasis. There were more BA than WA patients demonstrating high stemness traits and strong tumor-promoting stromal features in association with post-surgery tumor recurrences and metastases, although the investigated cases displayed clinically comparable TNM stages and histological grades. These findings demonstrated that the differences in tumor stemness and stromal property among cancers with comparable clinical diagnoses contribute to the outcome disparity in HNCs. More research is needed to understand the genetic and molecular basis of the biologic characteristics underlying the inferior outcomes among BA patients, so that targeting strategies can be developed to reduce HNC disparity.
Collapse
Affiliation(s)
- Saied Mirshahidi
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center Biospecimen Laboratory, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Isabella J. Yuan
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Zhong Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Alfred Simental
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Steve C. Lee
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Pedro A. Andrade Filho
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Thomas Murry
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Feng Zeng
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Penelope Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Charles Wang
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Xiangpeng Yuan
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
37
|
Chang X, Zheng Y, Xu K. Single-Cell RNA Sequencing: Technological Progress and Biomedical Application in Cancer Research. Mol Biotechnol 2024; 66:1497-1519. [PMID: 37322261 PMCID: PMC11217094 DOI: 10.1007/s12033-023-00777-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Single-cell RNA-seq (scRNA-seq) is a revolutionary technology that allows for the genomic investigation of individual cells in a population, allowing for the discovery of unusual cells associated with cancer and metastasis. ScRNA-seq has been used to discover different types of cancers with poor prognosis and medication resistance such as lung cancer, breast cancer, ovarian cancer, and gastric cancer. Besides, scRNA-seq is a promising method that helps us comprehend the biological features and dynamics of cell development, as well as other disorders. This review gives a concise summary of current scRNA-seq technology. We also explain the main technological steps involved in implementing the technology. We highlight the present applications of scRNA-seq in cancer research, including tumor heterogeneity analysis in lung cancer, breast cancer, and ovarian cancer. In addition, this review elucidates potential applications of scRNA-seq in lineage tracing, personalized medicine, illness prediction, and disease diagnosis, which reveals that scRNA-seq facilitates these events by producing genetic variations on the single-cell level.
Collapse
Affiliation(s)
- Xu Chang
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yunxi Zheng
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
38
|
Jin T, Ji J, Xu X, Li X, Gong B. Identification and validation of a novel 17 coagulation-related genes signature for predicting prognostic risk in colorectal cancer. Heliyon 2024; 10:e32687. [PMID: 38988584 PMCID: PMC11233961 DOI: 10.1016/j.heliyon.2024.e32687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Background Patients with colorectal cancer commonly experience disturbances in coagulation homeostasis. Activation of the coagulation system contributes to cancer-associated thrombosis as the second risk factor for death in cancer patients. This study intended to discover coagulation-related genes and construct a risk model for colorectal cancer patients' prognosis. Methods Coagulation-related genes were identified by searching coagulation-related pathways in the Molecular Signatures Database. Transcriptomic data and clinical data were downloaded from the Cancer Genome Atlas and Gene Expression Omnibus datasets. Univariate Cox and backward stepwise regression were utilized to identify prognosis-related genes and construct a predictive risk model for the training cohort. Next, survival analysis determines the risk model's predictive power, correlation with clinicopathological characteristics, and nomogram. Additionally, we characterized the variances in immune cell infiltration, somatic mutations, immune checkpoint molecules, biological functions, and drug sensitivity between the high- and low-score patients. Result Eight hundred forty-five genes were obtained by searching the theme term "coagulation" after de-duplication. After univariate regression analysis, 69 genes correlated with prognosis were obtained from the Cancer Genome Atlas dataset. A signature consisting of 17 coagulation-related genes was established through backward stepwise regression. The Kaplan-Meier curve indicated a worse prognosis for high-score patients. Time-dependent receiver operating characteristic curve analysis demonstrated high accuracy in predicting overall survival. Further, the results were validated by two independent datasets (GSE39582 and GSE17536). Combined with clinicopathological characteristics, the risk model was proven to be an independent prognostic factor to predict poor pathological status and worse prognosis. Furthermore, high-score patients had significantly higher stromal cell infiltration. Low-score patients were associated with high infiltration of resting memory CD4+ T cells, activated CD4+ T cells, and T follicular helper cells. The low-score patients exhibited increased expression of immune checkpoint genes, and this might be relevant to their better prognosis. High-score patients exhibited lower IC50 values of Paclitaxel, Rapamycin, Temozolomide, Cyclophosphamide, etc. The differential signaling pathways mainly involve the calcium signaling pathway and the neuroactive ligand-receptor interaction. Lastly, a nomogram was constructed and showed a good prediction. Conclusion The prognostic signature of 17 coagulation-related genes had significant prognostic value for colorectal cancer patients. We expect to improve treatment modalities and benefit more patients through research on molecular features.
Collapse
Affiliation(s)
- Taojun Jin
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianmei Ji
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaowen Xu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinxing Li
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Biao Gong
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
39
|
Murata Y, Nosaka T, Akazawa Y, Tanaka T, Takahashi K, Naito T, Matsuda H, Ohtani M, Nakamoto Y. Serial Changes of Circulating Tumor Cells in Patients with Hepatocellular Carcinoma Treated with Atezolizumab Plus Bevacizumab. Cancers (Basel) 2024; 16:2410. [PMID: 39001472 PMCID: PMC11240647 DOI: 10.3390/cancers16132410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Immune checkpoint inhibitors have promising outcomes in patients with hepatocellular carcinoma (HCC); however, there is no reliable biomarker for predicting disease progression. Circulating tumor cells (CTCs) derived from peripheral blood have attracted attention in monitoring therapeutic efficacy. In this study, CTCs were serially collected from HCC patients undergoing atezolizumab plus bevacizumab (Atezo+Bev), and changes in molecular expression and CTC numbers were analyzed to identify effective biomarkers. Changes in CTC numbers during Atezo+Bev reflected the tumor volume. Targeted RNA sequencing with next-generation sequencing (NGS) revealed that patients with elevated transforming growth factor (TGF)-β signaling molecules had a poorer response, whereas those with elevated apoptosis signaling molecules had a favorable response. In addition, compared with changes in CTC counts, changes in TGF-β signaling molecule expression in CTCs accurately and promptly predicted treatment response. Overall, NGS analysis of CTC-derived RNA showed that changes in TGF-β signaling molecules predict treatment response earlier than changes in CTC counts. These findings suggest that changes in the expression of TGF-β molecules in CTCs could serve as novel biomarkers for the early prediction of therapeutic response in patients with unresectable HCC undergoing Atezo+Bev.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan; (Y.M.); (T.N.); (Y.A.); (T.T.); (K.T.); (T.N.); (H.M.); (M.O.)
| |
Collapse
|
40
|
Guo X, Zhang Y, Peng L, Wang Y, He CW, Li K, Hao K, Li K, Wang Z, Huang H, Miao X. Collagen synthase P4HA3 as a novel biomarker for colorectal cancer correlates with prognosis and immune infiltration. Heliyon 2024; 10:e31695. [PMID: 38832271 PMCID: PMC11145334 DOI: 10.1016/j.heliyon.2024.e31695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Objective In this study, we aimed to determine whether proly4-hydroxylase-III (P4HA3) could be used as a biomarker for the diagnosis of colorectal cancer (CRC) as well as for determining prognosis. Methods We used The Cancer Genome Atlas (TCGA) database to analyze P4HA3 expression in CRC and further investigated the association between P4HA3 and clinicopathological parameters, immune infiltration, and prognosis of patients with CRC. Enrichment analysis was conducted to investigate the potential biological role of P4HA3 in CRC. To verify the results of TCGA analysis, we performed immunohistochemical staining of 180 clinical CRC tissue samples to probe into the relationship of P4HA3 expression with lymphocyte infiltration and immune checkpoints expression. Results The expression of P4HA3 was significantly higher in CRC tissues and associated with a higher degree of malignancy and poorer prognosis in CRC. The results of enrichment analysis indicated that P4HA3 may be associated with the epithelial-mesenchymal transition process and the immune response. Immunohistochemical staining results showed that high P4HA3 expression was associated with high infiltration levels of CD8+ and Foxp3+ TILs and high PD-1/PD- L1 expression. Lastly, patients with CRC co-expressing P4HA3 and PD-1 had a significantly worse prognosis. Conclusion High expression of P4HA3 is associated with adverse clinical features and immune cell infiltration in CRC, and has the potential to serve as a biomarker for predicting CRC prognosis.
Collapse
Affiliation(s)
- Xiaohuan Guo
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Zhang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Lina Peng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yaling Wang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Cheng-Wen He
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Kaixuan Li
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ke Hao
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Kaiqiang Li
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Zhen Wang
- Laboratory Medicine Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Haishan Huang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaolin Miao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
41
|
Devarasou S, Kang M, Shin JH. Biophysical perspectives to understanding cancer-associated fibroblasts. APL Bioeng 2024; 8:021507. [PMID: 38855445 PMCID: PMC11161195 DOI: 10.1063/5.0199024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The understanding of cancer has evolved significantly, with the tumor microenvironment (TME) now recognized as a critical factor influencing the onset and progression of the disease. This broader perspective challenges the traditional view that cancer is primarily caused by mutations, instead emphasizing the dynamic interaction between different cell types and physicochemical factors within the TME. Among these factors, cancer-associated fibroblasts (CAFs) command attention for their profound influence on tumor behavior and patient prognoses. Despite their recognized importance, the biophysical and mechanical interactions of CAFs within the TME remain elusive. This review examines the distinctive physical characteristics of CAFs, their morphological attributes, and mechanical interactions within the TME. We discuss the impact of mechanotransduction on CAF function and highlight how these cells communicate mechanically with neighboring cancer cells, thereby shaping the path of tumor development and progression. By concentrating on the biomechanical regulation of CAFs, this review aims to deepen our understanding of their role in the TME and to illuminate new biomechanical-based therapeutic strategies.
Collapse
Affiliation(s)
- Somayadineshraj Devarasou
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Jennifer H. Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| |
Collapse
|
42
|
Reitsam NG, Grosser B, Enke JS, Mueller W, Westwood A, West NP, Quirke P, Märkl B, Grabsch HI. Stroma AReactive Invasion Front Areas (SARIFA): a novel histopathologic biomarker in colorectal cancer patients and its association with the luminal tumour proportion. Transl Oncol 2024; 44:101913. [PMID: 38593584 PMCID: PMC11024380 DOI: 10.1016/j.tranon.2024.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Stroma AReactive Invasion Front Areas (SARIFA) is a novel prognostic histopathologic biomarker measured at the invasive front in haematoxylin & eosin (H&E) stained colon and gastric cancer resection specimens. The aim of the current study was to validate the prognostic relevance of SARIFA-status in colorectal cancer (CRC) patients and investigate its association with the luminal proportion of tumour (PoT). METHODS We established the SARIFA-status in 164 CRC resection specimens. The relationship between SARIFA-status, clinicopathological characteristics, recurrence-free survival (RFS), cancer-specific survival (CSS), and PoT was investigated. RESULTS SARIFA-status was positive in 22.6% of all CRCs. SARIFA-positivity was related to higher pT, pN, pTNM stage and high grade of differentiation. SARIFA-positivity was associated with shorter RFS independent of known prognostic factors analysing all CRCs (RFS: hazard ratio (HR) 2.6, p = 0.032, CSS: HR 2.4, p = 0.05) and shorter RFS and CSS analysing only rectal cancers. SARIFA-positivity, which was measured at the invasive front, was associated with PoT-low (p = 0.009), e.g., higher stroma content, and lower vessel density (p = 0.0059) measured at the luminal tumour surface. CONCLUSION Here, we validated the relationship between SARIFA-status and prognosis in CRC patients and provided first evidence for a potential prognostic relevance in the subgroup of rectal cancer patients. Interestingly, CRCs with different SARIFA-status also showed histological differences measurable at the luminal tumour surface. Further studies to better understand the relationship between high luminal intratumoural stroma content and absence of a stroma reaction at the invasive front (SARIFA-positivity) are warranted and may inform future treatment decisions in CRC patients.
Collapse
Affiliation(s)
- N G Reitsam
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - B Grosser
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - J S Enke
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - W Mueller
- Gemeinschaftspraxis Pathologie, Starnberg, Germany
| | - A Westwood
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's University, University of Leeds, Leeds, UK
| | - N P West
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's University, University of Leeds, Leeds, UK
| | - P Quirke
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's University, University of Leeds, Leeds, UK
| | - B Märkl
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
| | - H I Grabsch
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's University, University of Leeds, Leeds, UK; Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
43
|
Dhungel N, Dragoi AM. Exploring the multifaceted role of direct interaction between cancer cells and fibroblasts in cancer progression. Front Mol Biosci 2024; 11:1379971. [PMID: 38863965 PMCID: PMC11165130 DOI: 10.3389/fmolb.2024.1379971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
The interaction between the tumor microenvironment (TME) and the cancer cells is a complex and mutually beneficial system that leads to rapid cancer cells proliferation, metastasis, and resistance to therapy. It is now recognized that cancer cells are not isolated, and tumor progression is governed among others, by many components of the TME. The reciprocal cross-talk between cancer cells and their microenvironment can be indirect through the secretion of extracellular matrix (ECM) proteins and paracrine signaling through exosomes, cytokines, and growth factors, or direct by cell-to-cell contact mediated by cell surface receptors and adhesion molecules. Among TME components, cancer-associated fibroblasts (CAFs) are of unique interest. As one of the most abundant components of the TME, CAFs play key roles in the reorganization of the extracellular matrix, facilitating metastasis and chemotherapy evasion. Both direct and indirect roles have been described for CAFs in modulating tumor progression. In this review, we focus on recent advances in understanding the role of direct contact between cancer cells and cancer-associated fibroblasts (CAFs) in driving tumor development and metastasis. We also summarize recent findings on the role of direct contact between cancer cells and CAFs in chemotherapy resistance.
Collapse
Affiliation(s)
- Nilu Dhungel
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, United States
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, United States
- Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, United States
| |
Collapse
|
44
|
Chu D, Chen L, Li W, Zhang H. An exosomes-related lncRNA prognostic model correlates with the immune microenvironment and therapy response in lung adenocarcinoma. Clin Exp Med 2024; 24:104. [PMID: 38761234 PMCID: PMC11102376 DOI: 10.1007/s10238-024-01319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 05/20/2024]
Abstract
Recent research highlights the significance of exosomes and long noncoding RNAs (lncRNAs) in cancer progression and drug resistance, but their role in lung adenocarcinoma (LUAD) is not fully understood. We analyzed 121 exosome-related (ER) mRNAs from the ExoBCD database, along with mRNA and lncRNA expression profiles of TCGA-LUAD using "DESeq2", "survival," "ConsensusClusterPlus," "GSVA," "estimate," "glmnet," "clusterProfiler," "rms," and "pRRophetic" R packages. This comprehensive approach included univariate cox regression, unsupervised consensus clustering, GSEA, functional enrichment analysis, and prognostic model construction. Our study identified 134 differentially expressed ER-lncRNAs, with 19 linked to LUAD prognosis. These ER-lncRNAs delineated two patient subtypes, one with poorer outcomes. Additionally, 286 differentially expressed genes were related to these ER-lncRNAs, 261 of which also correlated with LUAD prognosis. We constructed an ER-lncRNA-related prognostic model and calculated an ER-lncRNA-related risk score (ERS), revealing that a higher ERS correlates with poor overall survival in both the Meta cohort and two validation cohorts. The ERS potentially serves as an independent prognostic factor, and the prognostic model demonstrates superior predictive power. Notably, significant differences in the immune landscape were observed between the high- and low-ERS groups. Drug sensitivity analysis indicated varying responses to common chemotherapy drugs based on ERS stratification, with the high-ERS group showing greater sensitivity, except to rapamycin and erlotinib. Experimental validation confirmed that thymidine kinase 1 enhances lung cancer invasion, metastasis, and cell cycle progression. Our study pioneers an ER-lncRNA-related prognostic model for LUAD, proposing that ERS-based risk stratification could inform personalized treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Daifang Chu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Liulin Chen
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Wangping Li
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Haitao Zhang
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Air Force Military Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
45
|
Sánchez-Ramírez D, Mendoza-Rodríguez MG, Alemán OR, Candanedo-González FA, Rodríguez-Sosa M, Montesinos-Montesinos JJ, Salcedo M, Brito-Toledo I, Vaca-Paniagua F, Terrazas LI. Impact of STAT-signaling pathway on cancer-associated fibroblasts in colorectal cancer and its role in immunosuppression. World J Gastrointest Oncol 2024; 16:1705-1724. [PMID: 38764833 PMCID: PMC11099434 DOI: 10.4251/wjgo.v16.i5.1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 05/09/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed and deadliest types of cancer worldwide. CRC displays a desmoplastic reaction (DR) that has been inversely associated with poor prognosis; less DR is associated with a better prognosis. This reaction generates excessive connective tissue, in which cancer-associated fibroblasts (CAFs) are critical cells that form a part of the tumor microenvironment. CAFs are directly involved in tumorigenesis through different mechanisms. However, their role in immunosuppression in CRC is not well understood, and the precise role of signal transducers and activators of transcription (STATs) in mediating CAF activity in CRC remains unclear. Among the myriad chemical and biological factors that affect CAFs, different cytokines mediate their function by activating STAT signaling pathways. Thus, the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors. Here, we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
Collapse
Affiliation(s)
- Damián Sánchez-Ramírez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Mónica G Mendoza-Rodríguez
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Omar R Alemán
- Department of Biology, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando A Candanedo-González
- Department of Pathology, National Medical Center Century XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Mauricio Salcedo
- Unidad de Investigacion en Biomedicina y Oncologia Genomica, Instituto Mexciano del Seguro Social, Mexico City 07300, Mexico
| | - Ismael Brito-Toledo
- Servicio de Colon y Recto, Hospital de Oncología Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Luis I Terrazas
- Unidad de Investigacion en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla 54090, Estado de Mexico, Mexico
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| |
Collapse
|
46
|
Rodriguez-Justo M. Outcome Prediction in Rectal Cancer Beyond the Current TNM System-An Unmet Need. Dis Colon Rectum 2024; 67:603-605. [PMID: 38147427 DOI: 10.1097/dcr.0000000000003127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Affiliation(s)
- Manuel Rodriguez-Justo
- Gastrointestinal Pathology, University College London Hospitals, London, United Kingdom
- Department of Oncopathology, Cancer Institute, University College London, United Kingdom
| |
Collapse
|
47
|
Tsumuraya H, Okayama H, Katagata M, Matsuishi A, Fukai S, Ito M, Sakamoto W, Saito M, Momma T, Nakajima S, Mimura K, Kono K. TGFβ-Responsive Stromal Activation Occurs Early in Serrated Colorectal Carcinogenesis. Int J Mol Sci 2024; 25:4626. [PMID: 38731846 PMCID: PMC11083568 DOI: 10.3390/ijms25094626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Activated TGFβ signaling in the tumor microenvironment, which occurs independently of epithelial cancer cells, has emerged as a key driver of tumor progression in late-stage colorectal cancer (CRC). This study aimed to elucidate the contribution of TGFβ-activated stroma to serrated carcinogenesis, representing approximately 25% of CRCs and often characterized by oncogenic BRAF mutations. We used a transcriptional signature developed based on TGFβ-responsive, stroma-specific genes to infer TGFβ-dependent stromal activation and conducted in silico analyses in 3 single-cell RNA-seq datasets from a total of 39 CRC samples and 12 bulk transcriptomic datasets consisting of 2014 CRC and 416 precursor samples, of which 33 were serrated lesions. Single-cell analyses validated that the signature was expressed specifically by stromal cells, effectively excluding transcriptional signals derived from epithelial cells. We found that the signature was upregulated during malignant transformation and cancer progression, and it was particularly enriched in CRCs with mutant BRAF compared to wild-type counterparts. Furthermore, across four independent precursor datasets, serrated lesions exhibited significantly higher levels of TGFβ-responsive stromal activation compared to conventional adenomas. This large-scale analysis suggests that TGFβ-dependent stromal activation occurs early in serrated carcinogenesis. Our study provides novel insights into the molecular mechanisms underlying CRC development via the serrated pathway.
Collapse
Affiliation(s)
- Hideaki Tsumuraya
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Masanori Katagata
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akira Matsuishi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Satoshi Fukai
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Misato Ito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
48
|
Røgenes H, Finne K, Winge I, Akslen LA, Östman A, Milosevic V. Development of 42 marker panel for in-depth study of cancer associated fibroblast niches in breast cancer using imaging mass cytometry. Front Immunol 2024; 15:1325191. [PMID: 38711512 PMCID: PMC11070582 DOI: 10.3389/fimmu.2024.1325191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Imaging Mass Cytometry (IMC) is a novel, and formidable high multiplexing imaging method emerging as a promising tool for in-depth studying of tissue architecture and intercellular communications. Several studies have reported various IMC antibody panels mainly focused on studying the immunological landscape of the tumor microenvironment (TME). With this paper, we wanted to address cancer associated fibroblasts (CAFs), a component of the TME very often underrepresented and not emphasized enough in present IMC studies. Therefore, we focused on the development of a comprehensive IMC panel that can be used for a thorough description of the CAF composition of breast cancer TME and for an in-depth study of different CAF niches in relation to both immune and breast cancer cell communication. We established and validated a 42 marker panel using a variety of control tissues and rigorous quantification methods. The final panel contained 6 CAF-associated markers (aSMA, FAP, PDGFRa, PDGFRb, YAP1, pSMAD2). Breast cancer tissues (4 cases of luminal, 5 cases of triple negative breast cancer) and a modified CELESTA pipeline were used to demonstrate the utility of our IMC panel for detailed profiling of different CAF, immune and cancer cell phenotypes.
Collapse
Affiliation(s)
- Hanna Røgenes
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Finne
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingeborg Winge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars A. Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Arne Östman
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| | - Vladan Milosevic
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
49
|
Zhu C, Teng L, Lai Y, Yao X, Fang Y, Wang Z, Lin S, Zhang H, Li Q, Li Y, Cai J, Zhang Y, Wu C, Huang B, Li A, Liu S, Lai Q. Adipose-derived stem cells promote glycolysis and peritoneal metastasis via TGF-β1/SMAD3/ANGPTL4 axis in colorectal cancer. Cell Mol Life Sci 2024; 81:189. [PMID: 38643448 PMCID: PMC11033247 DOI: 10.1007/s00018-024-05215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 04/22/2024]
Abstract
Peritoneal metastasis, the third most common metastasis in colorectal cancer (CRC), has a poor prognosis for the rapid progression and limited therapeutic strategy. However, the molecular characteristics and pathogenesis of CRC peritoneal metastasis are poorly understood. Here, we aimed to elucidate the action and mechanism of adipose-derived stem cells (ADSCs), a prominent component of the peritoneal microenvironment, in CRC peritoneal metastasis formation. Database analysis indicated that ADSCs infiltration was increased in CRC peritoneal metastases, and high expression levels of ADSCs marker genes predicted a poor prognosis. Then we investigated the effect of ADSCs on CRC cells in vitro and in vivo. The results revealed that CRC cells co-cultured with ADSCs exhibited stronger metastatic property and anoikis resistance, and ADSCs boosted the intraperitoneal seeding of CRC cells. Furthermore, RNA sequencing was carried out to identify the key target gene, angiopoietin like 4 (ANGPTL4), which was upregulated in CRC specimens, especially in peritoneal metastases. Mechanistically, TGF-β1 secreted by ADSCs activated SMAD3 in CRC cells, and chromatin immunoprecipitation assay showed that SMAD3 facilitated ANGPTL4 transcription by directly binding to ANGPTL4 promoter. The ANGPTL4 upregulation was essential for ADSCs to promote glycolysis and anoikis resistance in CRC. Importantly, simultaneously targeting TGF-β signaling and ANGPTL4 efficiently reduced intraperitoneal seeding in vivo. In conclusion, this study indicates that tumor-infiltrating ADSCs promote glycolysis and anoikis resistance in CRC cells and ultimately facilitate peritoneal metastasis via the TGF-β1/SMAD3/ANGPTL4 axis. The dual-targeting of TGF-β signaling and ANGPTL4 may be a feasible therapeutic strategy for CRC peritoneal metastasis.
Collapse
Affiliation(s)
- Chaojun Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Lan Teng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yihong Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xingxing Yao
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zihuan Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Simin Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Haonan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianqun Cai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Changjie Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Bing Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.
- Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China.
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
50
|
Wen S, Lin X, Luo W, Pan Y, Liao F, Wang Z, Zhan B, Feng J, Huang H. Metabolic difference between patient-derived xenograft model of pancreatic ductal adenocarcinoma and corresponding primary tumor. BMC Cancer 2024; 24:485. [PMID: 38632504 PMCID: PMC11022326 DOI: 10.1186/s12885-024-12193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Patients-derived xenograft (PDX) model have been widely used for tumor biological and pathological studies. However, the metabolic similarity of PDX tumor to the primary cancer (PC) is still unknown. METHODS In present study, we established PDX model by engrafting primary tumor of pancreatic ductal adenocarcinoma (PDAC), and then compared the tumor metabolomics of PC, the first generation of PDX tumor (PDXG1), and the third generation of PDX tumor (PDXG3) by using 1H NMR spectroscopy. Then, we assessed the differences in response to chemotherapy between PDXG1 and PDXG3 and corresponding metabolomic differences in drug-resistant tumor tissues. To evaluate the metabolomic similarity of PDX to PC, we also compared the metabolomic difference of cell-derived xenograft (CDX) vs. PC and PDX vs. PC. RESULTS After engraftment, PDXG1 tumor had a low level of lactate, pyruvate, citrate and multiple amino acids (AAs) compared with PC. Metabolite sets enrichment and metabolic pathway analyses implied that glycolysis metabolisms were suppressed in PDXG1 tumor, and tricarboxylic acid cycle (TCA)-associated anaplerosis pathways, such as amino acids metabolisms, were enhanced. Then, after multiple passages of PDX, the altered glycolysis and TCA-associated anaplerosis pathways were partially recovered. Although no significant difference was observed in the response of PDXG1 and PDXG3 to chemotherapy, the difference in glycolysis and amino acids metabolism between PDXG1 and PDXG3 could still be maintained. In addition, the metabolomic difference between PC and CDX models were much larger than that of PDX model and PC, indicating that PDX model still retain more metabolic characteristics of primary tumor which is more suitable for tumor-associated metabolism research. CONCLUSIONS Compared with primary tumor, PDX models have obvious difference in metabolomic level. These findings can help us design in vivo tumor metabolomics research legitimately and analyze the underlying mechanism of tumor metabolic biology thoughtfully.
Collapse
Affiliation(s)
- Shi Wen
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, 351001, Fuzhou, China
| | - Xianchao Lin
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, 351001, Fuzhou, China
| | - Wei Luo
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, 351001, Fuzhou, China
| | - Yu Pan
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, 351001, Fuzhou, China
| | - Fei Liao
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, 351001, Fuzhou, China
| | - Zhenzhao Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, No. 422, Siming South Road, Siming District, 361005, Xiamen, China
| | - Bohan Zhan
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, No. 422, Siming South Road, Siming District, 361005, Xiamen, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, No. 422, Siming South Road, Siming District, 361005, Xiamen, China.
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, 351001, Fuzhou, China.
| |
Collapse
|