1
|
Liebig S, Neumann M, Silva P, Ortiz-Tanchez J, Schulze V, Isaakidis K, Schlee C, Schroeder MP, Beder T, Morris LGT, Chan TA, Bastian L, Burmeister T, Schwartz S, Gökbuget N, Mochmann LH, Baldus CD. FAT1 expression in T-cell acute lymphoblastic leukemia (T-ALL) modulates proliferation and WNT signaling. Sci Rep 2023; 13:972. [PMID: 36653435 PMCID: PMC9849452 DOI: 10.1038/s41598-023-27792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
FAT atypical cadherin 1 (FAT1), a transmembrane protein, is frequently mutated in various cancer types and has been described as context-dependent tumor suppressor or oncogene. The FAT1 gene is mutated in 12-16% of T-cell acute leukemia (T-ALL) and aberrantly expressed in about 54% of T-ALL cases contrasted with absent expression in normal T-cells. Here, we characterized FAT1 expression and profiled the methylation status from T-ALL patients. In our T-ALL cohort, 53% of patient samples were FAT1 positive (FAT1pos) compared to only 16% FAT1 positivity in early T-ALL patient samples. Aberrant expression of FAT1 was strongly associated with FAT1 promotor hypomethylation, yet a subset, mainly consisting of TLX1-driven T-ALL patient samples showed methylation-independent high FAT1 expression. Genes correlating with FAT1 expression revealed enrichment in WNT signaling genes representing the most enriched single pathway. FAT1 knockdown or knockout led to impaired proliferation and downregulation of WNT pathway target genes (CCND1, MYC, LEF1), while FAT1 overexpressing conveyed a proliferative advantage. To conclude, we characterized a subtype pattern of FAT1 gene expression in adult T-ALL patients correlating with promotor methylation status. FAT1 dependent proliferation and WNT signaling discloses an impact on deeper understanding of T-ALL leukemogenesis as a fundament for prospective therapeutic strategies.
Collapse
Affiliation(s)
- Sven Liebig
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Martin Neumann
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- University Hospital Schleswig-Holstein, Campus Kiel, Department of Hematology and Oncology, Kiel, Germany
| | - Patricia Silva
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Jutta Ortiz-Tanchez
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Veronika Schulze
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Konstandina Isaakidis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Cornelia Schlee
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany
| | - Michael P Schroeder
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Thomas Beder
- University Hospital Schleswig-Holstein, Campus Kiel, Department of Hematology and Oncology, Kiel, Germany
| | - Luc G T Morris
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, 44195, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, 10064, USA
| | - Lorenz Bastian
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- University Hospital Schleswig-Holstein, Campus Kiel, Department of Hematology and Oncology, Kiel, Germany
| | - Thomas Burmeister
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Stefan Schwartz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Cancer Immunology, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Nicola Gökbuget
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Medicine II, Hematology/Oncology, Goethe University Hospital, Frankfurt/Main, Germany
| | - Liliana H Mochmann
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Claudia D Baldus
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- University Hospital Schleswig-Holstein, Campus Kiel, Department of Hematology and Oncology, Kiel, Germany
| |
Collapse
|