1
|
Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, Yousefi AM, Ghaffari SH, Bashash D. The PI3K signaling pathway; from normal lymphopoiesis to lymphoid malignancies. Expert Rev Anticancer Ther 2024; 24:493-512. [PMID: 38690706 DOI: 10.1080/14737140.2024.2350629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION As a vital mechanism of survival, lymphopoiesis requires the collaboration of different signaling molecules to orchestrate each step of cell development and maturation. The PI3K pathway is considerably involved in the maturation of lymphatic cells and therefore, its dysregulation can immensely affect human well-being and cause some of the most prevalent malignancies. As a result, studies that investigate this pathway could pave the way for a better understanding of the lymphopoiesis mechanisms, the undesired changes that lead to cancer progression, and how to design drugs to solve this issue. AREAS COVERED The present review addresses the aforementioned aspects of the PI3K pathway and helps pave the way for future therapeutic approaches. In order to access the articles, databases such as Medicine Medline/PubMed, Scopus, Google Scholar, and Science Direct were utilized. The search formula was established by identifying main keywords including PI3K/Akt/mTOR pathway, Lymphopoiesis, Lymphoid malignancies, and inhibitors. EXPERT OPINION The PI3K pathway is crucial for lymphocyte development and differentiation, making it a potential target for therapeutic intervention in lymphoid cancers. Studies are focused on developing PI3K inhibitors to impede the progression of hematologic malignancies, highlighting the pathway's significance in lymphoma and lymphoid leukemia.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Dai S, Xu M, Pang Q, Sun J, Lin X, Chu X, Guo C, Xu J. Hypoxia macrophage-derived exosomal miR-26b-5p targeting PTEN promotes the development of keloids. BURNS & TRAUMA 2024; 12:tkad036. [PMID: 38434721 PMCID: PMC10905499 DOI: 10.1093/burnst/tkad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 03/05/2024]
Abstract
Background Hypoxia is the typical characteristic of keloids. The development of keloids is closely related to the abnormal phenotypic transition of macrophages. However, the role of exosomal microRNAs (miRNAs) derived from hypoxic macrophages in keloids remains unclear. This study aimed to explore the role of hypoxic macrophage-derived exosomes (HMDE) in the occurrence and development of keloids and identify the critical miRNA. Methods The expression of CD206+ M2 macrophage in keloids and normal skin tissues was examined through immunofluorescence. The polarization of macrophages under a hypoxia environment was detected through flow cytometry. The internalization of macrophage-derived exosomes in human keloid fibroblasts (HKFs) was detected using a confocal microscope. miRNA sequencing was used to explore the differentially expressed miRNAs in exosomes derived from the normoxic and hypoxic macrophage. Subsequently, the dual-luciferase reporter assay verified that phosphatase and tension homolog (PTEN) was miR-26b-5p's target. The biological function of macrophage-derived exosomes, miR-26b-5p and PTEN were detected using the CCK-8, wound-healing and Transwell assays. Western blot assay was used to confirm the miR-26b-5p's underlying mechanisms and PTEN-PI3K/AKT pathway. Results We demonstrated that M2-type macrophages were enriched in keloids and that hypoxia treatment could polarize macrophages toward M2-type. Compared with normoxic macrophages-derived exosomes (NMDE), HMDE promote the proliferation, migration and invasion of HKFs. A total of 38 differential miRNAs (18 upregulated and 20 downregulated) were found between the NMDE and HMDE. miR-26b-5p was enriched in HMDE, which could be transmitted to HKFs. According to the results of the functional assay, exosomal miR-26b-5p produced by macrophages facilitated HKFs' migration, invasion and proliferation via the PTEN-PI3K/AKT pathway. Conclusions The highly expressed miR-26b-5p in HMDE promotes the development of keloids via the PTEN-PI3K/AKT pathway.
Collapse
Affiliation(s)
- Siya Dai
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Mingyuan Xu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Qianqian Pang
- Department of Plastic Surgery, Ningbo Second Hospital, 41 Xibei Street, Ningbo, China
| | - Jiaqi Sun
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Xiaohu Lin
- Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Gongshu District, Hangzhou, China
| | - Xi Chu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Chunyi Guo
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Jinghong Xu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| |
Collapse
|
3
|
Mondal D, Shinde S, Paul S, Thakur S, Velu GSK, Tiwari AK, Dixit V, Amit A, Vishvakarma NK, Shukla D. Diagnostic significance of dysregulated miRNAs in T-cell malignancies and their metabolic roles. Front Oncol 2023; 13:1230273. [PMID: 37637043 PMCID: PMC10448964 DOI: 10.3389/fonc.2023.1230273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
T-cell malignancy is a broad term used for a diverse group of disease subtypes representing dysfunctional malignant T cells transformed at various stages of their clonal evolution. Despite having similar clinical manifestations, these disease groups have different disease progressions and diagnostic parameters. The effective diagnosis and prognosis of such a diverse disease group demands testing of molecular entities that capture footprints of the disease physiology in its entirety. MicroRNAs (miRNAs) are a group of noncoding RNA molecules that regulate the expression of genes and, while doing so, leave behind specific miRNA signatures corresponding to cellular expression status in an altered stage of a disease. Using miRNAs as a diagnostic tool is justified, as they can effectively distinguish expressional diversity between various tumors and within subtypes of T-cell malignancies. As global attention for cancer diagnosis shifts toward liquid biopsy, diagnosis using miRNAs is more relevant in blood cancers than in solid tumors. We also lay forward the diagnostic significance of miRNAs that are indicative of subtype, progression, severity, therapy response, and relapse. This review discusses the potential use and the role of miRNAs, miRNA signatures, or classifiers in the diagnosis of major groups of T-cell malignancies like T-cell acute lymphoblastic lymphoma (T-ALL), peripheral T-cell lymphoma (PTCL), extranodal NK/T-cell lymphoma (ENKTCL), and cutaneous T-cell lymphoma (CTCL). The review also briefly discusses major diagnostic miRNAs having prominent metabolic roles in these malignancies to highlight their importance among other dysregulated miRNAs.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Suresh Thakur
- Centre for Excellence in Genomics, Trivitron Healthcare Pvt. Ltd., Chennai, India
| | - GSK Velu
- Centre for Excellence in Genomics, Trivitron Healthcare Pvt. Ltd., Chennai, India
| | - Atul Kumar Tiwari
- Department of Zoology, Dr. Bhawan Singh Porte Government College, Pendra, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Satguru Jagjit Singh Namdhari College, Gharwa, Jharkhand, India
| | - Ajay Amit
- Department of Forensic Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
4
|
Ehm P, Rietow R, Wegner W, Bußmann L, Kriegs M, Dierck K, Horn S, Streichert T, Horstmann M, Jücker M. SHIP1 Is Present but Strongly Downregulated in T-ALL, and after Restoration Suppresses Leukemia Growth in a T-ALL Xenotransplantation Mouse Model. Cells 2023; 12:1798. [PMID: 37443832 PMCID: PMC10341211 DOI: 10.3390/cells12131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cause of cancer-related death in children. Despite significantly increased chances of cure, especially for high-risk ALL patients, it still represents a poor prognosis for a substantial fraction of patients. Misregulated proteins in central switching points of the cellular signaling pathways represent potentially important therapeutic targets. Recently, the inositol phosphatase SHIP1 (SH2-containing inositol 5-phosphatase) has been considered as a tumor suppressor in leukemia. SHIP1 serves as an important negative regulator of the PI3K/AKT signaling pathway, which is frequently constitutively activated in primary T-ALL. In contrast to other reports, we show for the first time that SHIP1 has not been lost in T-ALL cells, but is strongly downregulated. Reduced expression of SHIP1 leads to an increased activation of the PI3K/AKT signaling pathway. SHIP1-mRNA expression is frequently reduced in primary T-ALL samples, which is recapitulated by the decrease in SHIP1 expression at the protein level in seven out of eight available T-ALL patient samples. In addition, we investigated the change in the activity profile of tyrosine and serine/threonine kinases after the restoration of SHIP1 expression in Jurkat T-ALL cells. The tyrosine kinase receptor subfamilies of NTRK and PDGFR, which are upregulated in T-ALL subgroups with low SHIP1 expression, are significantly disabled after SHIP1 reconstitution. Lentiviral-mediated reconstitution of SHIP1 expression in Jurkat cells points to a decreased cellular proliferation upon transplantation into NSG mice in comparison to the control cohort. Together, our findings will help to elucidate the complex network of cell signaling proteins, further support a functional role for SHIP1 as tumor suppressor in T-ALL and, much more importantly, show that full-length SHIP1 is expressed in T-ALL samples.
Collapse
Affiliation(s)
- Patrick Ehm
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Ruth Rietow
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Wiebke Wegner
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Lara Bußmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- UCCH Kinomics Core Facility, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Malte Kriegs
- UCCH Kinomics Core Facility, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Oncology, Clinic for Radiation Therapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kevin Dierck
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Streichert
- Institute for Clinical Chemistry, University Hospital Köln, 50937 Cologne, Germany
| | - Martin Horstmann
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Modvig S, Jeyakumar J, Marquart HV, Christensen C. Integrins and the Metastasis-like Dissemination of Acute Lymphoblastic Leukemia to the Central Nervous System. Cancers (Basel) 2023; 15:cancers15092504. [PMID: 37173970 PMCID: PMC10177281 DOI: 10.3390/cancers15092504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) disseminates with high prevalence to the central nervous system (CNS) in a process resembling aspects of the CNS surveillance of normal immune cells as well as aspects of brain metastasis from solid cancers. Importantly, inside the CNS, the ALL blasts are typically confined within the cerebrospinal fluid (CSF)-filled cavities of the subarachnoid space, which they use as a sanctuary protected from both chemotherapy and immune cells. At present, high cumulative doses of intrathecal chemotherapy are administered to patients, but this is associated with neurotoxicity and CNS relapse still occurs. Thus, it is imperative to identify markers and novel therapy targets specific to CNS ALL. Integrins represent a family of adhesion molecules involved in cell-cell and cell-matrix interactions, implicated in the adhesion and migration of metastatic cancer cells, normal immune cells, and leukemic blasts. The ability of integrins to also facilitate cell-adhesion mediated drug resistance, combined with recent discoveries of integrin-dependent routes of leukemic cells into the CNS, have sparked a renewed interest in integrins as markers and therapeutic targets in CNS leukemia. Here, we review the roles of integrins in CNS surveillance by normal lymphocytes, dissemination to the CNS by ALL cells, and brain metastasis from solid cancers. Furthermore, we discuss whether ALL dissemination to the CNS abides by known hallmarks of metastasis, and the potential roles of integrins in this context.
Collapse
Affiliation(s)
- Signe Modvig
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jenani Jeyakumar
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Claus Christensen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Wang X, Fang A, Peng Y, Yu J, Yu C, Xie J, Zheng Y, Song L, Li P, Li J, Kang X, Lin Y, Li W. PHF6 promotes the progression of endometrial carcinoma by increasing cancer cells growth and decreasing T-cell infiltration. J Cell Mol Med 2023; 27:609-621. [PMID: 36756714 PMCID: PMC9983320 DOI: 10.1111/jcmm.17638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 02/10/2023] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is the most common cancer of the female reproductive tract. The overall survival of advanced and recurrent UCEC patients is still unfavourable nowadays. It is urgent to find a predictive biomarker and block tumorgenesis at an early stage. Plant homeodomain finger protein 6 (PHF6) is a key player in epigenetic regulation, and its alterations lead to various diseases, including tumours. Here, we found that PHF6 expression was upregulated in UCEC tissues compared with normal tissues. The UCEC patients with high PHF6 expression had poor survival than UCEC patients with low PHF6 expression. PHF6 mutation occurred in 12% of UCEC patients, and PHF6 mutation predicted favourable clinical outcome in UCEC patients. Depletion of PHF6 effectively inhibited HEC-1-A and KLE cell proliferation in vitro and decreased HEC-1-A cell growth in vivo. Furthermore, high PHF6 level indicated a subtype of UCECs characterized by low immune infiltration, such as CD3+ T-cell infiltration. While knockdown of PHF6 in endometrial carcinoma cells increased T-cell migration by promoting IL32 production and secretion. Taken together, our findings suggested that PHF6 might play an oncogenic role in UCEC patients. Thus, PHF6 could be a potential biomarker in predicting the prognosis of UCEC patients. Depletion of PHF6 may be a novel therapeutic strategy for UCEC patients.
Collapse
Affiliation(s)
- Xiaomin Wang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Aizhong Fang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department of Epidemiology and Health Statistics, School of Public HealthCapital Medical UniversityBeijingChina
| | - Yichen Peng
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jianyu Yu
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chunna Yu
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jinxuan Xie
- Department of Epidemiology and Health Statistics, School of Public HealthCapital Medical UniversityBeijingChina
| | - Yi Zheng
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lairong Song
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Parker Li
- Clinical MedicineShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jia Li
- Department of Pathology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xun Kang
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yi Lin
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenbin Li
- Cancer Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Toribio ML, González-García S. Notch Partners in the Long Journey of T-ALL Pathogenesis. Int J Mol Sci 2023; 24:1383. [PMID: 36674902 PMCID: PMC9866461 DOI: 10.3390/ijms24021383] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH1 in this oncogenic process, and different therapeutic strategies have been developed to specifically target NOTCH1-dependent T-ALLs. Here, we comprehensively analyze the molecular bases of the cross-talk between NOTCH1 and cooperating partners critically involved in the generation and/or maintenance and progression of T-ALL and discuss novel opportunities and therapeutic approaches that current knowledge may open for future treatment of T-ALL patients.
Collapse
Affiliation(s)
- María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | |
Collapse
|
8
|
Colangelo T, Panelli P, Mazzarelli F, Tamiro F, Melocchi V, De Santis E, Cuttano R, Palumbo O, Rossi G, Bianchi F, Giambra V. Extracellular vesicle microRNAs contribute to Notch signaling pathway in T-cell acute lymphoblastic leukemia. Mol Cancer 2022; 21:226. [PMID: 36550553 PMCID: PMC9773489 DOI: 10.1186/s12943-022-01698-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive T-cell malignancy characterized by genotypically-defined and phenotypically divergent cell populations, governed by adaptive landscapes. Clonal expansions are associated to genetic and epigenetic events, and modulation of external stimuli that affect the hierarchical structure of subclones and support the dynamics of leukemic subsets. Recently, small extracellular vesicles (sEV) such as exosomes were also shown to play a role in leukemia. Here, by coupling miRNome, bulk and single cell transcriptome profiling, we found that T-ALL-secreted sEV contain NOTCH1-dependent microRNAs (EV-miRs), which control oncogenic pathways acting as autocrine stimuli and ultimately promoting the expansion/survival of highly proliferative cell subsets of human T-cell leukemias. Of interest, we found that NOTCH1-dependent EV-miRs mostly comprised members of miR-17-92a cluster and paralogues, which rescued in vitro the proliferation of T-ALL cells blocked by γ-secretase inhibitors (GSI) an regulated a network of genes characterizing patients with relapsed/refractory early T-cell progenitor (ETP) ALLs. All these findings suggest that NOTCH1 dependent EV-miRs may sustain the growth/survival of immunophenotypically defined cell populations, altering the cell heterogeneity and the dynamics of T-cell leukemias in response to conventional therapies.
Collapse
Affiliation(s)
- Tommaso Colangelo
- grid.413503.00000 0004 1757 9135Unit of Cancer Biomarker, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Padre Pio 7, 71013 San Giovanni Rotondo, FG Italy
| | - Patrizio Panelli
- grid.413503.00000 0004 1757 9135Unit of Hematopathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Padre Pio 7, 71013 San Giovanni Rotondo, FG Italy
| | - Francesco Mazzarelli
- grid.413503.00000 0004 1757 9135Unit of Cancer Biomarker, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Padre Pio 7, 71013 San Giovanni Rotondo, FG Italy
| | - Francesco Tamiro
- grid.413503.00000 0004 1757 9135Unit of Hematopathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Padre Pio 7, 71013 San Giovanni Rotondo, FG Italy
| | - Valentina Melocchi
- grid.413503.00000 0004 1757 9135Unit of Cancer Biomarker, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Padre Pio 7, 71013 San Giovanni Rotondo, FG Italy
| | - Elisabetta De Santis
- grid.413503.00000 0004 1757 9135Unit of Hematopathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Padre Pio 7, 71013 San Giovanni Rotondo, FG Italy
| | - Roberto Cuttano
- grid.413503.00000 0004 1757 9135Unit of Cancer Biomarker, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Padre Pio 7, 71013 San Giovanni Rotondo, FG Italy
| | - Orazio Palumbo
- grid.413503.00000 0004 1757 9135Division of Medical Genetics, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013 San Giovanni Rotondo, FG Italy
| | - Giovanni Rossi
- grid.413503.00000 0004 1757 9135Department of Hematology and Stem Cell Transplant Unit, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013 San Giovanni Rotondo, FG Italy
| | - Fabrizio Bianchi
- grid.413503.00000 0004 1757 9135Unit of Cancer Biomarker, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Padre Pio 7, 71013 San Giovanni Rotondo, FG Italy
| | - Vincenzo Giambra
- grid.413503.00000 0004 1757 9135Unit of Hematopathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, Viale Padre Pio 7, 71013 San Giovanni Rotondo, FG Italy
| |
Collapse
|
9
|
MicroRNAs and the Diagnosis of Childhood Acute Lymphoblastic Leukemia: Systematic Review, Meta-Analysis and Re-Analysis with Novel Small RNA-Seq Tools. Cancers (Basel) 2022; 14:cancers14163976. [PMID: 36010971 PMCID: PMC9406077 DOI: 10.3390/cancers14163976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary MicroRNAs (miRNAs) have been under the spotlight for the last three decades. These non-coding RNAs seem to be dynamic regulators of mRNA stability and translation, in addition to interfering with transcription. Circulating miRNAs play a critical role in cell-to-cell interplay; therefore, they can serve as disease biomarkers. Meta-analysis of published data revealed that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against acute lymphoblastic leukemia (ALL) in children. Reanalysis of small RNA-seq data with novel tools identified significantly overexpressed members of the miR-128, miR-181, miR-130 and miR-17 families and significantly lower expression of miR-30, miR-24-2 and miR143~145 clusters, miR-574 and miR-618 in pediatric T-ALL cases compared with controls. Inconsistencies in methodology and study designs in most published material preclude reproducibility, and further cohort studies need to be conducted in order to empower novel tools, such as ALLSorts and RNAseqCNV. Abstract MicroRNAs (miRNAs) have been implicated in childhood acute lymphoblastic leukemia (ALL) pathogenesis. We performed a systematic review and meta-analysis of miRNA single-nucleotide polymorphisms (SNPs) in childhood ALL compared with healthy children, which revealed (i) that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against ALL occurrence in children; (ii) no significant association between rs2910164 genotypes in miR-146a and childhood ALL; and (iii) SNPs in DROSHA, miR-449b, miR-938, miR-3117 and miR-3689d-2 genes seem to be associated with susceptibility to B-ALL in childhood. A review of published literature on differential expression of miRNAs in children with ALL compared with controls revealed a significant upregulation of the miR-128 family, miR-130b, miR-155, miR-181 family, miR-210, miR-222, miR-363 and miR-708, along with significant downregulation of miR-143 and miR-148a, seem to have a definite role in childhood ALL development. MicroRNA signatures among childhood ALL subtypes, along with differential miRNA expression patterns between B-ALL and T-ALL cases, were scrutinized. With respect to T-ALL pediatric cases, we reanalyzed RNA-seq datasets with a robust and sensitive pipeline and confirmed the significant differential expression of hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-2-5p, hsa-miR-128-3p (ranked first), hsa-miR-130b-3p and -5p, hsa-miR-181a-5p, -2-3p and -3p, hsa-miR-181b-5p and -3p, hsa-miR-145-5p and hsa-miR-574-3p, as described in the literature, along with novel identified miRNAs.
Collapse
|
10
|
Ramadan F, Saab R, Hussein N, Clézardin P, Cohen PA, Ghayad SE. Non-coding RNA in rhabdomyosarcoma progression and metastasis. Front Oncol 2022; 12:971174. [PMID: 36033507 PMCID: PMC9403786 DOI: 10.3389/fonc.2022.971174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma of skeletal muscle differentiation, with a predominant occurrence in children and adolescents. One of the major challenges facing treatment success is the presence of metastatic disease at the time of diagnosis, commonly associated with the more aggressive fusion-positive subtype. Non-coding RNA (ncRNA) can regulate gene transcription and translation, and their dysregulation has been associated with cancer development and progression. MicroRNA (miRNA) are short non-coding nucleic acid sequences involved in the regulation of gene expression that act by targeting messenger RNA (mRNA), and their aberrant expression has been associated with both RMS initiation and progression. Other ncRNA including long non-coding RNA (lncRNA), circular RNA (circRNA) and ribosomal RNA (rRNA) have also been associated with RMS revealing important mechanistic roles in RMS biology, but these studies are still limited and require further investigation. In this review, we discuss the established roles of ncRNA in RMS differentiation, growth and progression, highlighting their potential use in RMS prognosis, as therapeutic agents or as targets of treatment.
Collapse
Affiliation(s)
- Farah Ramadan
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Raya Saab
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nader Hussein
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Philippe Clézardin
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Pascale A. Cohen
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| |
Collapse
|
11
|
Hutter K, Lindner SE, Kurschat C, Rülicke T, Villunger A, Herzog S. The miR-26 family regulates early B cell development and transformation. Life Sci Alliance 2022; 5:5/8/e202101303. [PMID: 35459737 PMCID: PMC9034462 DOI: 10.26508/lsa.202101303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
MiRNAs are small noncoding RNAs that promote the sequence-specific repression of their respective target genes, thereby regulating diverse physiological as well as pathological processes. Here, we identify a novel role of the miR-26 family in early B cell development. We show that enhanced expression of miR-26 family members potently blocks the pre-B to immature B cell transition, promotes pre-B cell expansion and eventually enables growth factor independency. Mechanistically, this is at least partially mediated by direct repression of the tumor-suppressor Pten, which consequently enhances PI3K-AKT signaling. Conversely, limiting miR-26 activity in a more physiological loss-of-function approach counteracts proliferation and enhances pre-B cell differentiation in vitro as well as in vivo. We therefore postulate a rheostat-like role for the miR-26 family in progenitor B cells, with an increase in mature miR-26 levels signaling cell expansion, and facilitating pre-B to the immature B cell progression when reduced.
Collapse
Affiliation(s)
- Katharina Hutter
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Silke E Lindner
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Constanze Kurschat
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences and Ludwig Boltzmann Institute for Hematology and Oncology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Villunger
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sebastian Herzog
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria,Correspondence:
| |
Collapse
|
12
|
Sbirkov Y, Vergov B, Mehterov N, Sarafian V. miRNAs in Lymphocytic Leukaemias-The miRror of Drug Resistance. Int J Mol Sci 2022; 23:ijms23094657. [PMID: 35563051 PMCID: PMC9103677 DOI: 10.3390/ijms23094657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Refractory disease and relapse remain the main causes of cancer therapy failure. Refined risk stratification, treatment regimens and improved early diagnosis and detection of minimal residual disease have increased cure rates in malignancies like childhood acute lymphoblastic leukaemia (ALL) to 90%. Nevertheless, overall survival in the context of drug resistance remains poor. The regulatory role of micro RNAs (miRNAs) in cell differentiation, homeostasis and tumorigenesis has been under extensive investigation in different cancers. There is accumulating data demonstrating the significance of miRNAs for therapy outcomes in lymphoid malignancies and some direct demonstrations of the interplay between these small molecules and drug response. Here, we summarise miRNAs' impact on chemotherapy resistance in adult and paediatric ALL and chronic lymphocytic leukaemia (CLL). The main focus of this review is on the modulation of particular signaling pathways like PI3K-AKT, transcription factors such as NF-κB, and apoptotic mediators, all of which are bona fide and pivotal elements orchestrating the survival of malignant lymphocytic cells. Finally, we discuss the attractive strategy of using mimics, antimiRs and other molecular approaches pointing at miRNAs as promising therapeutic targets. Such novel strategies to circumvent ALL and CLL resistance networks may potentially improve patients' responses and survival rates.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: (Y.S.); (V.S.)
| | - Bozhidar Vergov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.V.); (N.M.)
- Division of Molecular and Regenerative Medicine, Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Correspondence: (Y.S.); (V.S.)
| |
Collapse
|
13
|
Bagheri M, Sarabi PZ, Mondanizadeh M. The role of miRNAs as a big master regulator of signaling pathways involved in lymphoblastic leukemia. J Cell Physiol 2022; 237:2128-2139. [PMID: 35315068 DOI: 10.1002/jcp.30720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) belong to small noncoding RNAs, which have long attracted researchers' attention because of their potency in acting either as oncogenes or tumor-suppressors in cancers. acute lymphocytic leukemia (ALL) and chronic lymphocytic leukemia (CLL) are two known types of leukemia with high mortality rates in adults and children. On a molecular basis, various signaling pathways are active in both types, making researchers consider the potential role of miRNAs in activating or suppressing these pathways to further hinder cancer development. In this review, we summarized the potential miRNAs, especially circulating ones, involved in essential signaling pathways in the ALL and CLL patients which serve as biomarkers and valuable targets in the treatment fields.
Collapse
Affiliation(s)
- Malihe Bagheri
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Parisa Zia Sarabi
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
14
|
Relevance of miR-223 as Potential Diagnostic and Prognostic Markers in Cancer. BIOLOGY 2022; 11:biology11020249. [PMID: 35205115 PMCID: PMC8869096 DOI: 10.3390/biology11020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
In 1993, the discovery of microRNAs in Caenorhabditis elegans (C. elegans) altered the paradigmatic view of RNA biology and post-transcriptional gene regulation. Further study revealed the role of microRNAs in disease development and progression. In particular, this review highlights microRNA-223 (miR-223 or miRNA-223) expression in malignant neoplastic disorders. miR-223 expression controls aspects of hematopoiesis and apoptosis, and cell proliferation, migration, and invasion. miR-223 regulates a number of gene targets, including cytoplasmic activation/proliferation-associated protein-1 (Caprin-1), insulin-like growth factor-1 receptor (IGF-1R), and other cell proliferation- and cell cycle-associated genes. Several studies have proposed miR-223 as a novel biomarker for early cancer diagnosis. Here, we emphasize miR-223′s role in the development and progression of cancer.
Collapse
|
15
|
Small Non-Coding RNAs in Leukemia. Cancers (Basel) 2022; 14:cancers14030509. [PMID: 35158777 PMCID: PMC8833386 DOI: 10.3390/cancers14030509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
In 2020, more than 60,500 people were diagnosed with leukemia in the USA, and more than 23,000 died. The incidence of leukemia is still rising, and drug resistance development is a serious concern for patients' wellbeing and survival. In the past two decades, small non-coding RNAs have been studied to evaluate their functions and possible role in cancer pathogenesis. Small non-coding RNAs are short RNA molecules involved in several cellular processes by regulating the expression of genes. An increasing body of evidence collected by many independent studies shows that the expression of these molecules is tissue specific, and that their dysregulation alters the expression of genes involved in tumor development, progression and drug response. Indeed, small non-coding RNAs play a pivotal role in the onset, staging, relapse and drug response of hematological malignancies and cancers in general. These findings strongly suggest that small non-coding RNAs could function as biomarkers and possible targets for therapy. Thus, in this review, we summarize the regulatory mechanisms of small non-coding RNA expression in different types of leukemia and assess their potential clinical implications.
Collapse
|
16
|
Del Gaizo M, Sergio I, Lazzari S, Cialfi S, Pelullo M, Screpanti I, Felli MP. MicroRNAs as Modulators of the Immune Response in T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:829. [PMID: 35055013 PMCID: PMC8776227 DOI: 10.3390/ijms23020829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is an aggressive haematological tumour driven by the malignant transformation and expansion of B-cell (B-ALL) or T-cell (T-ALL) progenitors. The evolution of T-ALL pathogenesis encompasses different master developmental pathways, including the main role played by Notch in cell fate choices during tissue differentiation. Recently, a growing body of evidence has highlighted epigenetic changes, particularly the altered expression of microRNAs (miRNAs), as a critical molecular mechanism to sustain T-ALL. The immune response is emerging as key factor in the complex multistep process of cancer but the role of miRNAs in anti-leukaemia response remains elusive. In this review we analyse the available literature on miRNAs as tuners of the immune response in T-ALL, focusing on their role in Natural Killer, T, T-regulatory and Myeloid-derived suppressor cells. A better understanding of this molecular crosstalk may provide the basis for the development of potential immunotherapeutic strategies in the leukemia field.
Collapse
Affiliation(s)
- Martina Del Gaizo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Samantha Cialfi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Maria Pelullo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy;
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy; (M.D.G.); (S.L.); (S.C.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Roma, Italy;
| |
Collapse
|
17
|
Wani N, Barh D, Raza K. Modular network inference between miRNA-mRNA expression profiles using weighted co-expression network analysis. J Integr Bioinform 2021; 18:jib-2021-0029. [PMID: 34800012 PMCID: PMC8709739 DOI: 10.1515/jib-2021-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Connecting transcriptional and post-transcriptional regulatory networks solves an important puzzle in the elucidation of gene regulatory mechanisms. To decipher the complexity of these connections, we build co-expression network modules for mRNA as well as miRNA expression profiles of breast cancer data. We construct gene and miRNA co-expression modules using the weighted gene co-expression network analysis (WGCNA) method and establish the significance of these modules (Genes/miRNAs) for cancer phenotype. This work also infers an interaction network between the genes of the turquoise module from mRNA expression data and hubs of the turquoise module from miRNA expression data. A pathway enrichment analysis using a miRsystem web tool for miRNA hubs and some of their targets, reveal their enrichment in several important pathways associated with the progression of cancer.
Collapse
Affiliation(s)
- Nisar Wani
- Computer Science and Engineering Department, Govt. College of Engineering and Technology Safapora, Ganderbal Kashmir, J&K, India
| | - Debmalya Barh
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, WB, India.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
18
|
Yang X, Toyofuku WM, Scott MD. Differential Leukocyte MicroRNA Responses Following Pan T Cell, Allorecognition and Allosecretome-Based Therapeutic Activation. Arch Immunol Ther Exp (Warsz) 2021; 69:30. [PMID: 34677693 PMCID: PMC8536625 DOI: 10.1007/s00005-021-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
Effective immunomodulation of T-cell responses is critical in treating both autoimmune diseases and cancer. Our previous studies have demonstrated that secretomes derived from control or methoxypolyethylene glycol mixed lymphocyte alloactivation assays exerted potent immunomodulatory activity that was mediated by microRNAs (miRNA). The immunomodulatory effects of biomanufactured miRNA-based allo-secretome therapeutics (SYN, TA1, IA1 and IA2) were compared to Pan T-cell activators (PHA and anti-CD3/CD28) and lymphocyte alloactivation. The differential effects of these activation strategies on resting peripheral blood mononuclear cells (PBMC) were assessed via T-cell proliferation, subset analysis and miRNA expression profiles. Mitogen-induced PBMC proliferation (> 85%) significantly exceeded that arising from either allostimulation (~ 30%) or the pro-inflammatory IA1 secretome product (~ 12%). Consequent to stimulation, the ratio of CD4 to CD8 cells of the resting PBMC (CD4:CD8; 1.7 ± 0.1) decreased in the Pan T cell, allrecognition and IA1 activated cells (averages of 1.1 ± 0.2; 1.2 ± 0.1 and 1.0 ± 0.1). These changes arose consequent to the expansion of both CD4+CD8+ and CD4–CD8– populations as well as the shrinkage of the CD4 subset and the expansion of the CD8 T cells. Importantly, these activation strategies induced vastly different miRNA expression profiles which were associated with significant differences in cellular differentiation and biological function. These findings support the concept that the “differential patterns of miRNA expression” regulate the biologic immune response in a “lock and key” manner. The biomanufacturing of miRNA-enriched secretome biotherapeutics may be a successful therapeutic approach for the systemic treatment of autoimmune diseases (TA1) and cancer (IA1).
Collapse
Affiliation(s)
- Xining Yang
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Wendy M Toyofuku
- University of British Columbia Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada.,Canadian Blood Services and the Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mark D Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,University of British Columbia Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada. .,Canadian Blood Services and the Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
19
|
Combination therapy with miR-34a and doxorubicin synergistically induced apoptosis in T-cell acute lymphoblastic leukemia cell line. Med Oncol 2021; 38:142. [PMID: 34655330 DOI: 10.1007/s12032-021-01578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023]
Abstract
MicroRNAs are identified to take actively part in the development of different cancers. Reduced expression of tumor suppressor miRNAs leads to cancer cell development, so restoring the expression of these miRNAs can be an appropriate treatment option for cancer. Due to the heterogeneity of cancer cells, single-drug therapy often results in drug resistance. Therefore, the combination of chemotherapy with miRNA can be a powerful strategy for cancer treatment. In the current investigation, miR-34a mimic, and negative control were purchased and transfected using jetPEI reagents. Then the synergic effects of miR-34a in combination with doxorubicin were investigated on cell death of acute T-cell lymphoblastic leukemia Jurkat cell line, as well as the expression of some genes including Caspase-3, Bcl-2, and p53 which are involved in apoptosis. Our outcomes showed that this combination remarkably reduced the expression of the Bcl-2 gene, the target gene of miR-34a. According to the results of the MTT assay, the survival rate was significantly decreased compared to the untreated cells. Results of the flow cytometry assay and DAPI staining demonstrated an increased apoptosis rate of Jurkat cells in combination therapy. Moreover, cell cycle arrest was observed at the G2/M phase in cells that were treated with miR-34a/doxorubicin. Most importantly, we showed that the transfection of the Jurkat cells with miR-34a increased the sensitivity of these cells to doxorubicin. Furthermore, the combination of miR-34a and doxorubicin drug effectively increased apoptosis of treated cells. Therefore, this method can be used as an impressive treatment for T-ALL.
Collapse
|
20
|
Zhang M, Zhao Z, Pritykin Y, Hannum M, Scott AC, Kuo F, Sanghvi V, Chan TA, Seshan V, Wendel HG, Schietinger A, Sadelain M, Huse M. Ectopic activation of the miR-200c-EpCAM axis enhances antitumor T cell responses in models of adoptive cell therapy. Sci Transl Med 2021; 13:eabg4328. [PMID: 34524864 PMCID: PMC9374309 DOI: 10.1126/scitranslmed.abg4328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Adoptive T cell therapy (ACT) is a promising strategy for treating cancer, but it often fails because of cell intrinsic regulatory programs that limit the degree or duration of T cell function. In this study, we found that ectopic expression of microRNA-200c (miR-200c) markedly enhanced the antitumor activity of CD8+ cytotoxic T lymphocytes (CTLs) during ACT in multiple mouse models. CTLs transduced with miR-200c exhibited reduced apoptosis during engraftment and enhanced in vivo persistence, accompanied by up-regulation of the transcriptional regulator T cell factor 1 (TCF1) and the inflammatory cytokine tumor necrosis factor (TNF). miR-200c elicited these changes by suppressing the transcription factor Zeb1 and thereby inducing genes characteristic of epithelial cells. Overexpression of one of these genes, Epcam, was sufficient to augment therapeutic T cell responses against both solid and liquid tumors. These results identify the miR-200c–EpCAM axis as an avenue for improving ACT and demonstrate that select genetic perturbations can produce phenotypically distinct T cells with advantageous therapeutic properties.
Collapse
Affiliation(s)
- Minggang Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zeguo Zhao
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuri Pritykin
- Lewis-Sigler Institute for Integrative Genomics and Computer Science Department, Princeton University, Princeton, NJ 08540, USA
| | - Margaret Hannum
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew C Scott
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fengshen Kuo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Viraj Sanghvi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
21
|
Li Y, Fan C, Wang L, Lan T, Gao R, Wang W, Yu SY. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies. J Clin Invest 2021; 131:e148853. [PMID: 34228643 DOI: 10.1172/jci148853] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Depression is a neuropsychiatric disease associated with neuronal anomalies within specific brain regions. In the present study, we screened microRNA (miRNA) expression profiles in the dentate gyrus (DG) of the hippocampus and found that miR-26a-3p was markedly downregulated in a rat model of depression, whereas upregulation of miR-26a-3p within DG regions rescued the neuronal deterioration and depression-like phenotypes resulting from stress exposure, effects that appear to be mediated by the PTEN pathway. The knockdown of miR-26a-3p in DG regions of normal control rats induced depression-like behaviors, effects that were accompanied by activation of the PTEN/PI3K/Akt signaling pathway and neuronal deterioration via suppression of autophagy, impairments in synaptic plasticity, and promotion of neuronal apoptosis. In conclusion, these results suggest that miR-26a-3p deficits within the hippocampal DG mediated the neuronal anomalies contributing to the display of depression-like behaviors. This miRNA may serve as a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Ye Li
- Department of Physiology and
| | | | - Liyan Wang
- Morphological Experimental Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | | | - Rui Gao
- Department of Microorganism, Jinan Nursing Vocational College, Lvyoulu Road, Jinan, Shandong Province, China
| | | | - Shu Yan Yu
- Department of Physiology and.,Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
22
|
T-ALL can evolve to oncogene independence. Leukemia 2021; 35:2205-2219. [PMID: 33483615 DOI: 10.1038/s41375-021-01120-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/09/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
Abstract
The majority of cases of T-cell acute lymphoblastic leukemia (T-ALL) contain chromosomal abnormalities that drive overexpression of oncogenic transcription factors. However, whether these initiating oncogenes are required for leukemia maintenance is poorly understood. To address this, we developed a tetracycline-regulated mouse model of T-ALL driven by the oncogenic transcription factor Lmo2. This revealed that whilst thymus-resident pre-Leukemic Stem Cells (pre-LSCs) required continuous Lmo2 expression, the majority of leukemias relapsed despite Lmo2 withdrawal. Relapse was associated with a mature phenotype and frequent mutation or loss of tumor suppressor genes including Ikzf1 (Ikaros), with targeted deletion Ikzf1 being sufficient to transform Lmo2-dependent leukemias to Lmo2-independence. Moreover, we found that the related transcription factor TAL1 was dispensable in several human T-ALL cell lines that contain SIL-TAL1 chromosomal deletions driving its overexpression, indicating that evolution to oncogene independence can also occur in human T-ALL. Together these results indicate an evolution of oncogene addiction in murine and human T-ALL and show that loss of Ikaros is a mechanism that can promote self-renewal of T-ALL lymphoblasts in the absence of an initiating oncogenic transcription factor.
Collapse
|
23
|
Kurzer JH, Weinberg OK. PHF6 Mutations in Hematologic Malignancies. Front Oncol 2021; 11:704471. [PMID: 34381727 PMCID: PMC8350393 DOI: 10.3389/fonc.2021.704471] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
Next generation sequencing has uncovered several genes with associated mutations in hematologic malignancies that can serve as potential biomarkers of disease. Keeping abreast of these genes is therefore of paramount importance in the field of hematology. This review focuses on PHF6, a highly conserved epigenetic transcriptional regulator that is important for neurodevelopment and hematopoiesis. PHF6 serves as a tumor suppressor protein, with PHF6 mutations and deletions often implicated in the development of T-lymphoblastic leukemia and less frequently in acute myeloid leukemia and other myeloid neoplasms. PHF6 inactivation appears to be an early event in T-lymphoblastic leukemogenesis, requiring cooperating events, including NOTCH1 mutations or overexpression of TLX1 and TLX3 for full disease development. In contrast, PHF6 mutations tend to occur later in myeloid malignancies, are frequently accompanied by RUNX1 mutations, and are often associated with disease progression. Moreover, PHF6 appears to play a role in lineage plasticity within hematopoietic malignancies, with PHF6 mutations commonly present in mixed phenotype acute leukemias with a predilection for T-lineage marker expression. Due to conflicting data, the prognostic significance of PHF6 mutations remains unclear, with a subset of studies showing no significant difference in outcomes compared to malignancies with wild-type PHF6, and other studies showing inferior outcomes in certain patients with mutated PHF6. Future studies are necessary to elucidate the role PHF6 plays in development of T-lymphoblastic leukemia, progression of myeloid malignancies, and its overall prognostic significance in hematopoietic neoplasms.
Collapse
Affiliation(s)
- Jason H. Kurzer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Olga K. Weinberg
- Department of Pathology, UT Southwestern, Dallas, TX, United States
| |
Collapse
|
24
|
Kim S, Bai Y, Fan Z, Diergaarde B, Tseng GC, Park HJ. The microRNA target site landscape is a novel molecular feature associating alternative polyadenylation with immune evasion activity in breast cancer. Brief Bioinform 2021; 22:bbaa191. [PMID: 32844230 PMCID: PMC8138879 DOI: 10.1093/bib/bbaa191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative polyadenylation (APA) in breast tumor samples results in the removal/addition of cis-regulatory elements such as microRNA (miRNA) target sites in the 3'-untranslated region (3'-UTRs) of genes. Although previous computational APA studies focused on a subset of genes strongly affected by APA (APA genes), we identify miRNAs of which widespread APA events collectively increase or decrease the number of target sites [probabilistic inference of microRNA target site modification through APA (PRIMATA-APA)]. Using PRIMATA-APA on the cancer genome atlas (TCGA) breast cancer data, we found that the global APA events change the number of the target sites of particular microRNAs [target sites modified miRNA (tamoMiRNA)] enriched for cancer development and treatments. We also found that when knockdown (KD) of NUDT21 in HeLa cells induces a different set of widespread 3'-UTR shortening than TCGA breast cancer data, it changes the target sites of the common tamoMiRNAs. Since the NUDT21 KD experiment previously demonstrated the tumorigenic role of APA events in a miRNA dependent fashion, this result suggests that the APA-initiated tumorigenesis is attributable to the miRNA target site changes, not the APA events themselves. Further, we found that the miRNA target site changes identify tumor cell proliferation and immune cell infiltration to the tumor microenvironment better than the miRNA expression levels or the APA events themselves. Altogether, our computational analyses provide a proof-of-concept demonstration that the miRNA target site information indicates the effect of global APA events with a potential as predictive biomarker.
Collapse
Affiliation(s)
- Soyeon Kim
- Department of Pediatrics, University of Pittsburgh Medical Center and in Division of Pulmonary Medicine, Children’s Hospital of Pittsburgh of UPMC
| | - YuLong Bai
- Department of Human Genetics in the Graduate School of Public Health, University of Pittsburgh
| | - Zhenjiang Fan
- Department of Computer Science, University of Pittsburgh
| | - Brenda Diergaarde
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh
| | - George C Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh
| | - Hyun Jung Park
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh
| |
Collapse
|
25
|
Baghbani E, Noorolyai S, Duijf PHG, Silvestris N, Kolahian S, Hashemzadeh S, Baghbanzadeh Kojabad A, FallahVazirabad A, Baradaran B. The impact of microRNAs on myeloid-derived suppressor cells in cancer. Hum Immunol 2021; 82:668-678. [PMID: 34020831 DOI: 10.1016/j.humimm.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/08/2023]
Abstract
Inflammation promotes cancer development. To a large extent, this can be attributed to the recruitment of myeloid-derived suppressor cells (MDSCs) to tumors. These cells are known for establishing an immunosuppressive tumor microenvironment by suppressing T cell activities. However, MDSCs also promote metastasis and angiogenesis. Critically, as small non-coding RNAs that regulate gene expression, microRNAs (miRNAs) control MDSC activities. In this review, we discuss how miRNA networks regulate key MDSC signaling pathways, how they shape MDSC development, differentiation and activation, and how this impacts tumor development. By targeting the expression of miRNAs in MDSCs, we can alter their main signaling pathways. In turn, this can compromise their ability to promote multiple hallmarks of cancer. Therefore, this may represent a new powerful strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Noorolyai
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Nicola Silvestris
- IRCCS Bari, Italy. Medical Oncology Unit-IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy, Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, Tübingen, Germany; Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany; Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Shahryar Hashemzadeh
- General and Vascular Surgery Department, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Du T, Wang D, Wan X, Xu J, Xiao Q, Liu B. Regulatory effect of microRNA-223-3p on breast cancer cell processes via the Hippo/Yap signaling pathway. Oncol Lett 2021; 22:516. [PMID: 33986876 PMCID: PMC8114478 DOI: 10.3892/ol.2021.12777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
According to the 2018 global cancer statistics, the incidence and mortality rates of breast cancer are increasing gradually, which seriously threatens the health of women. MicroRNA-223-3p (miR-223-3p) can promote the proliferation and invasion of breast cancer cells. Hippo/Yes-related protein (Yap) signaling pathway activation has been found in a variety of tumors. The present study aimed to investigate the potential mechanism of miR-223-3p in breast cancer. The Cell Counting Kit-8 assay was used to detect cell viability and flow cytometry was used to detect apoptosis. The abilities of cell migration and invasion were detected using scratch and Transwell assays, as well as reverse transcription-quantitative PCR and western blotting to detect gene and protein expression, respectively. The current results demonstrated that miR-223-3p transcription levels were increased in breast cancer cells, and inhibition of miR-223-3p gene expression decreased cell proliferation, migration and invasion. Additionally, inhibition of miR-223-3p expression inhibited epithelial-mesenchymal transition (EMT) in breast cancer cells. miR-223-3p promoted cell proliferation, migration, invasion and EMT, and the western blotting results demonstrated that miR-223-3p inhibition increased the phosphorylation of Yap1 and the protein expression levels of large tumor suppressor kinase 1. In conclusion, results from the present results suggested that miR-223-3p may promote cell proliferation, migration, invasion and EMT through the Hippo/Yap signaling pathway. Therefore, miR-223-3p may be a potential biomarker for breast cancer.
Collapse
Affiliation(s)
- Tonghua Du
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Dan Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiaoyu Wan
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jingwei Xu
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Qi Xiao
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Bin Liu
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
27
|
Favero A, Segatto I, Perin T, Belletti B. The many facets of miR-223 in cancer: Oncosuppressor, oncogenic driver, therapeutic target, and biomarker of response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1659. [PMID: 33951281 PMCID: PMC8518860 DOI: 10.1002/wrna.1659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
Given their intrinsic pleiotropism, microRNAs (miR) play complex biological roles, in both normal and pathological conditions. Often the same miR can act as oncogene or oncosuppressor, depending on the biological process dysregulated in each specific tissue. miR‐223 does not represent an exception to this rule and its functions greatly differ in different contexts. miR‐223 has been widely studied in the hematopoietic compartment, where it plays a central role in innate immune response, regulating myeloid differentiation and granulocytes function. Accordingly, dysregulated expression of miR‐223 has been associated to different inflammatory disorders and tumors arising from the immune compartment. Most carcinomas, breast cancer being the most studied, display loss of miR‐223. However, in gastro‐esophageal cancers miR‐223 is frequently overexpressed and correlates with worse prognosis. A link between miR‐223 and response to CDK4/6‐inhibitors has been recently proposed, suggesting a role as biomarker of therapeutic response. The notion that one of the most commonly mutated protein in cancer, mutant p53, binds the promoter of miR‐223 and suppresses its transcription, adds a further level of complexity to the full understanding of miR‐223 in cancer. In this review, we will summarize the current knowledge on the molecular networks that alter or are altered by miR‐223, in different cancer types. We will discuss if the times are ready for the exploitation of miR‐223 as predictive biomarker of treatment response or, even, as therapeutic target, in specific settings. Finally, we will suggest which could be the next steps to be taken for a realistic clinical application of miR‐223. This article is categorized under:RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Andrea Favero
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Tiziana Perin
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| |
Collapse
|
28
|
miRNAs and Biomarkers in Testicular Germ Cell Tumors: An Update. Int J Mol Sci 2021; 22:ijms22031380. [PMID: 33573132 PMCID: PMC7866514 DOI: 10.3390/ijms22031380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are the leading form of solid cancer and death affecting males between the ages of 20 and 40. Today, their surgical resection and chemotherapy are the treatments of first choice, even if sometimes this is not enough to save the lives of patients with TGCT. As seen for several tumors, the deregulation of microRNAs (miRNAs) is also a key feature in TGCTs. miRNAs are small molecules of RNA with biological activity that are released into biological fluids by testicular cancer cells. Their presence, therefore, can be detected and monitored by considering miRNAs as diagnostic and prognostic markers for TGCTs. The purpose of this review is to collect all the studies executed on miRNAs that have a potential role as biomarkers for testicular tumors.
Collapse
|
29
|
Rodrigues GOL, Cramer SD, Winer HY, Hixon JA, Li W, Yunes JA, Durum SK. Mutations that collaborate with IL-7Ra signaling pathways to drive ALL. Adv Biol Regul 2021; 80:100788. [PMID: 33578108 DOI: 10.1016/j.jbior.2021.100788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022]
Abstract
The IL-7 pathway is required for normal T cell development and survival. In recent years the pathway has been shown to be a major driver of acute lymphoblastic leukemia (ALL), the most common cancer in children. Gain-of-function mutations in the alpha chain of the IL-7 receptor found in ALL patients clearly demonstrated that this pathway was a driver. However mutant IL-7R alone was insufficient to transform primary T cell progenitors, indicating that cooperating mutations were required. Here we review evidence for additional oncogenic mutations in the IL-7 pathway. We discuss several oncogenes, loss of tumor suppressor genes and epigenetic effects that can cooperate with mutant IL-7 receptor. These include NRas, HOXA, TLX3, Notch 1, Arf, PHF6, WT1, PRC, PTPN2 and CK2. As new therapeutics targeting the IL-7 pathway are developed, combination with agents directed to cooperating pathways offer hope for novel therapies for ALL.
Collapse
Affiliation(s)
- Gisele O L Rodrigues
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA; Molecular Biology Laboratory, Boldrini Children's Center, Campinas, Brazil; Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Sarah D Cramer
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA; Comparative Biomedical Scientist Training Program, NIH, Bethesda, MD, USA; Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Hila Y Winer
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA
| | - Julie A Hixon
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA
| | - WenQing Li
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA
| | - José Andres Yunes
- Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Scott K Durum
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute, National Institutes of Health (NIH), Frederick, MD, USA.
| |
Collapse
|
30
|
Mao Y, Chen W, Wu H, Liu C, Zhang J, Chen S. Mechanisms and Functions of MiR-200 Family in Hepatocellular Carcinoma. Onco Targets Ther 2021; 13:13479-13490. [PMID: 33447052 PMCID: PMC7801920 DOI: 10.2147/ott.s288791] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common clinically malignant tumors of the digestive system. It ranks the sixth most common malignant tumor in the world and ranks fourth among cancer-related death worldwide. At present, early diagnosis and prognosis monitoring of hepatocellular carcinoma mainly use alpha-fetoprotein combined with ultrasonography, which leads to clinical frequently missed diagnosis or even misdiagnosis. Therefore, seeking specific diagnostic and monitoring molecules of hepatocellular carcinoma are still hot topics in contemporary medical practice. MicroRNA is an endogenous non-coding small RNA that regulates the expression of the target molecule and participates in various biological processes in vivo. The miR-200 family, the most common celebrity family of microRNAs, is commonly lower expression in a variety of cancers and is closely associated with tumorigenesis and outcome, especially hepatocellular carcinoma. This review mainly discusses the expression changes, specific molecular mechanisms, biological functions and clinical values of miR-200 family in hepatocellular carcinoma. Moreover, we highlighted utilization of miR-200 family as molecular biomarkers for early diagnosis, prognostic monitoring and appropriate therapy in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yinqi Mao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Han Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chenbin Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jingjun Zhang
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
31
|
El‐maadawy EA, Bakry RM, Moussa MM, El‐Naby S, Talaat RM. Alteration in miRNAs expression in paediatric acute lymphocyticleukaemia: Insight into patients' therapeutic response. Clin Exp Pharmacol Physiol 2021. [DOI: 10.1111/1440-1681.13386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Eman A. El‐maadawy
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City Sadat City Egypt
| | - Rania M. Bakry
- South Egypt Cancer Institute Assiut University Asyut Egypt
| | - Mohamed M. Moussa
- Clinical Hematology and Bone Marrow Transplantation Ain‐Shams University Cairo Egypt
| | - SobhyHasab El‐Naby
- Zoology Department Faculty of Science Menoufia University Menoufia Egypt
| | - Roba M. Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI) University of Sadat City Sadat City Egypt
| |
Collapse
|
32
|
Azar MRMH, Akbari M, Mohammed HN, Asadi M, Shanehbandi D, Rezai M, Zafari V, Niknam S, Tamjidifar R, Tarzi S, Mahdavi F. Dysregulation of miR-27a and SMAD2 can be a reliable indicator in the prognosis and diagnosis of CRC as well as in response to chemotherapy drugs. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Braun T, Glass M, Wahnschaffe L, Otte M, Mayer P, Franitza M, Altmüller J, Hallek M, Hüttelmaier S, Schrader A, Herling M. Micro-RNA networks in T-cell prolymphocytic leukemia reflect T-cell activation and shape DNA damage response and survival pathways. Haematologica 2020; 107:187-200. [PMID: 33543866 PMCID: PMC8719084 DOI: 10.3324/haematol.2020.267500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/18/2022] Open
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a poor-prognostic mature T-cell malignancy. It typically presents with exponentially rising lymphocyte counts, splenomegaly, and bone marrow infiltration. Effective treatment options are scarce and a better understanding of TPLL’s pathogenesis is desirable. Activation of the TCL1 proto-oncogene and loss-of-function perturbations of the tumor suppressor ATM are TPLL’s genomic hallmarks. The leukemic cell reveals a phenotype of active T-cell receptor (TCR) signaling and aberrant DNA damage responses. Regulatory networks based on the profile of microRNA (miR) have not been described for T-PLL. In a combined approach of small-RNA and transcriptome sequencing in 46 clinically and moleculary well-characterized T-PLL, we identified a global T-PLL-specific miR expression profile that involves 34 significantly deregulated miR species. This pattern strikingly resembled miR-ome signatures of TCR-activated T cells. By integrating these T-PLL miR profiles with transcriptome data, we uncovered regulatory networks associated with cell survival signaling and DNA damage response pathways. Despite a miR-ome that discerned leukemic from normal T cells, there were also robust subsets of T-PLL defined by a small set of specific miR. Most prominently, miR-141 and the miR- 200c-cluster separated cases into two major subgroups. Furthermore, increased expression of miR-223-3p as well as reduced expression of miR-21 and the miR-29 cluster were associated with more activated Tcell phenotypes and more aggressive disease presentations. Based on the implicated pathobiological role of these miR deregulations, targeting strategies around their effectors appear worth pursuing. We also established a combinatorial miR-based overall survival score for T-PLL (miROS-T-PLL), that might improve current clinical stratifications.
Collapse
Affiliation(s)
- Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicin Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Markus Glass
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, 06120 Halle
| | - Linus Wahnschaffe
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Moritz Otte
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Petra Mayer
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Marek Franitza
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne
| | - Janine Altmüller
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford protein center, 06120 Halle
| | - Alexandra Schrader
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), 50937 Cologne.
| |
Collapse
|
34
|
Wang L, Lv Y, Li C, Yang G, Fu B, Peng Q, Jian L, Hou D, Wang J, Zhao C, Yang P, Zhang K, Wang L, Wang Z, Wang H, Xu W. Transformable Dual-Inhibition System Effectively Suppresses Renal Cancer Metastasis through Blocking Endothelial Cells and Cancer Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004548. [PMID: 32881381 DOI: 10.1002/smll.202004548] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Tumor vasculature and cancer stem cells (CSCs) accelerate the development of metastatic renal cancer. Dual inhibition of vascular endothelium and CSCs is still a challenge due to their different pathological features. Herein, a transformable dual-inhibition system (TDS) based on a self-assembly peptide is proposed to construct nanofibrous barriers on the cell membrane in situ, which contributes to 1) reducing endothelial permeability and angiogenesis; and 2) inhibiting stemness and metastasis of CSCs in renal cancer. TDS specifically targets overexpressed receptor CD105 that provides the possibility to modulate both endothelial cells and CSCs for cancer therapy. Subsequently, owing to ligand-receptor interaction-induced transformation, the nanofibers form a barrier on the cell membrane. For vascular endothelium, TDS reduces the vascular permeability to 67.0% ± 4.7% and decreases angiogenesis to 62.0% ± 4.0%, thereby preventing the renal cancer metastasis. For human-derived CSCs, TDS inhibits stemness by reducing endogenic miR-19b and its transportation via CSCs-derived exosomes, which increases PTEN expression and consequently suppresses CSCs-mediated metastasis. In patient-derived xenograft mice, TDS significantly inhibits the tumorigenesis and angiogenesis. It also reduces the metastatic nodules in lung 5.0-fold compared with the control group. TDS opens up a promising avenue for suppressing the metastasis of cancer.
Collapse
Affiliation(s)
- Lu Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Yulin Lv
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Cong Li
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Bo Fu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Qiang Peng
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Lingrui Jian
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Dayong Hou
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Jiaqi Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Changhao Zhao
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Peipei Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ziqi Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Hao Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
35
|
Rostami Yasuj S, Obeidi N, Khamisipou G, Gharehdaghi Z, Zangeneh Z. Overexpression of MiR-506 in Jurkat (Acute T Cell Leukemia) Cell Line. IRANIAN JOURNAL OF PATHOLOGY 2020; 15:282-291. [PMID: 32944040 PMCID: PMC7477680 DOI: 10.30699/ijp.2020.119627.2298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Background & Objective: Acute lymphoblastic leukemia (ALL) is a malignant disease that arises from various mutations in B or T-lymphoid progenitors. MicroRNAs (miRNAs) regulate gene expression by binding to the 3' untranslated region of protein-coding genes. Dysregulation of miRNA expression may result in the development of cancerous phenotypes. Therefore, for the first time in this field, the present study aims to investigate the effect of overexpression of miR-506 in Jurkat (acute T cell leukemia) cell line. Methods: In this study, Jurkat cell lines were cultured in RPMI-1640 medium. Next, miR-506 was transfected with concentrations of 50 and 100 nM with Lipofectamine 2000. The accuracy of the transfection was confirmed by the transfection of siRNA conjugated with FITC. 48 h after transfection, the cells were prepared for other tests (flow cytometry, MTT assay, and RNA extraction). The expression level of miR-506 in the cells was analyzed using the quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Finally, SPSS 21 software was used for the data analysis. Results: According to our results, the viability of cells in concentrations of 50 and 100 nM was significantly higher than the control group. By overexpression of miR-506, the expressions of pro-apoptotic genes (p53, p21) and anti-apoptotic gene B-cell lymphoma-2 (BCL-2) are decreased and increased, respectively. Conclusion: This study showed that miR-506 may function as an oncogenic miRNA in the T- ALL cell line. In conclusion, overexpression of miR-506 leads to an increase in viable cancer cells.
Collapse
Affiliation(s)
- Shaghayegh Rostami Yasuj
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Narges Obeidi
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gholamreza Khamisipou
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zeynab Gharehdaghi
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zivar Zangeneh
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
36
|
LncRNA-NEAT1 promotes proliferation of T-ALL cells via miR-146b-5p/NOTCH1 signaling pathway. Pathol Res Pract 2020; 216:153212. [PMID: 33010698 DOI: 10.1016/j.prp.2020.153212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is a malignant tumor of the hematopoietic system, which can develop at any age, with the symptoms of weakness, fatigue, enlarged lymph nodes, or weight loss. Nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in the process of T-ALL, but the regulatory mechanism is still not known clearly. METHODS The expression levels of NEAT1 and miR-146b-5p in T-ALL cells were performed by qRT-PCR and NOTCH1 protein level- wwWwas determined by western blot assay. Dual-luciferase reporter assay was used to detect the interaction between NEAT1 and miR-146b-5p, as well as miR-146b-5p and NOTCH1. The cell proliferation was measured by using MTT assay and colony formation assay. RESULTS The expression levels of NEAT1 were markedly increased, but miR-146b-5p levels were reduced in T-ALL cells. Knockdown of NEAT1 or overexpression of miR-146b-5p decreased NOTCH1 expression, inhibited the proliferation of T-ALL cells. MiR-146b-5p bound both NEAT1 and NOTCH1 3'-UTR directly. Finally, inhibition of miR-146b-5p could abrogate the effects of NEAT1 knockdown on the proliferation of T-ALL cells. CONCLUSION NEAT1 promotes the proliferation of T-ALL cells by sponging miR-146b-5p to upregulate the expression of NOTCH1. The results of this study provide new insight into the action mechanism of NEAT1 modulating T-ALL progression.
Collapse
|
37
|
miR-22-3p Negatively Affects Tumor Progression in T-Cell Acute Lymphoblastic Leukemia. Cells 2020; 9:cells9071726. [PMID: 32708470 PMCID: PMC7408026 DOI: 10.3390/cells9071726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/03/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.
Collapse
|
38
|
Valadão de Souza DR, Pessôa R, Nascimento A, Nukui Y, Pereira J, Casseb J, Penalva de Oliveira AC, da Silva Duarte AJ, Clissa PB, Sanabani SS. Small RNA profiles of HTLV-1 asymptomatic carriers with monoclonal and polyclonal rearrangement of the T-cell antigen receptor γ-chain using massively parallel sequencing: A pilot study. Oncol Lett 2020; 20:2311-2321. [PMID: 32782548 PMCID: PMC7400997 DOI: 10.3892/ol.2020.11803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
In the present pilot study, massively parallel sequencing (MPS) technology was used to investigate cellular small RNA (sRNA) levels in the peripheral blood mononuclear cells (PBMCs) of human T-lymphotropic virus type I (HTLV–I) infected asymptomatic carriers with monoclonal (ASM) and polyclonal (ASP) T cell receptor (TCR) γ gene. Blood samples from 15 HTLV–I asymptomatic carriers (seven ASM and eight ASP) were tested for the clonal TCR-γ gene and submitted for sRNA library construction together with blood samples of five healthy controls (HCs) using Illumina sequencing platform. The sRNA-sequencing reads were aligned, annotated and profiled using various bioinformatics tools. Based on these results, possible markers were validated in the study samples by performing reverse transcription-quantitative (RT-q)PCR analysis. A total of 76 known sRNAs and 52 putative novel sRNAs were identified. Among them, 44 known and 34 potential novel sRNAs were differentially expressed in the ASM and ASP libraries compared with HCs. In addition, 10 known sRNAs were exclusively dysregulated in the ASM group and one (transfer RNA 65) was significantly upregulated in the ASP group. Homo sapiens (hsa) microRNA (miRNA/mir)-23a-3p, −28-5p, hsa-let-7e-5p and hsa-mir-28-3p and −361-5p were the most abundantly upregulated mature miRNAs and hsa-mir-363-3p, −532-5p, −106a-5p, −25-3p and −30e-5p were significantly downregulated miRNAs (P<0.05) with a >2-fold difference between the ASM and ASP groups compared with HCs. Based on these results, hsa-mir-23a-3p and −363-3p were selected for additional validation. However, the quantification of these two miRNAs using RT-qPCR did not provide any significant differences. While the present study failed to identify predictive sRNA markers to distinguish between ASM and ASP, the MPS results revealed differential sRNA expression profiles in the PBMCs of HTLV-1 asymptomatic carriers (ASM and ASP) compared with HCs.
Collapse
Affiliation(s)
- Daniela Raguer Valadão de Souza
- Laboratory of Dermatology and Immunodeficiency, Department of Dermatology, Faculty of Medicine, University of São Paulo, São Paulo 05403 000, Brazil
| | - Rodrigo Pessôa
- Laboratory of Dermatology and Immunodeficiency, Department of Dermatology, Faculty of Medicine, University of São Paulo, São Paulo 05403 000, Brazil
| | - Andrezza Nascimento
- Laboratory of Dermatology and Immunodeficiency, Department of Dermatology, Faculty of Medicine, University of São Paulo, São Paulo 05403 000, Brazil
| | - Youko Nukui
- Department of Hematology, Faculty of Medicine, University of São Paulo, São Paulo 05403 000, Brazil
| | - Juliana Pereira
- Department of Hematology, Faculty of Medicine, University of São Paulo, São Paulo 05403 000, Brazil
| | - Jorge Casseb
- Laboratory of Dermatology and Immunodeficiency, Department of Dermatology, Faculty of Medicine, University of São Paulo, São Paulo 05403 000, Brazil
| | | | - Alberto José da Silva Duarte
- Laboratory of Dermatology and Immunodeficiency, Department of Dermatology, Faculty of Medicine, University of São Paulo, São Paulo 05403 000, Brazil
| | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation Unit 03,Clinics Hospital, Faculty of Medicine, University of São Paulo, São Paulo 05403 000, Brazil
| |
Collapse
|
39
|
Nie Y, Wang S, Yu Y, Zuo X, Xiong B. The effect of miR-223 on cellular behaviour in non-5q myelodysplastic syndromes through targeting RPS14. Pathology 2020; 52:552-560. [PMID: 32571542 DOI: 10.1016/j.pathol.2020.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Myelodysplastic syndromes (MDS) are characterised by impaired haematopoiesis and a high risk of leukaemic transformation. A decrease in RPS14 expression in non-5q MDS patients was confirmed by immunohistochemical analyses of MDS bone marrow biopsies. To determine the cause of RPS14 reduction in non-5q MDS, we analysed the 3'-UTR of RPS14 and demonstrated that miR-223 binds to the 3'-UTR of RPS14 by bioinformatics-based approach combined with the luciferase reporter assay. Using quantitative real-time polymerase chain reaction (qRT-PCR) analysis, we observed a significantly increased expression of miR-223 in CD34+ cells and SKM-1 cells derived from non-5q MDS patients in vitro and demonstrated a correlation between miR-223 levels and red blood cell counts. Exogenous miR-223 expression in SKM-1 cells could also inhibit RPS14 expression. In functional studies, overexpression of miR-223 was shown to promote cell proliferation and inhibit cell apoptosis in SKM-1 cells, and to impair erythroid differentiation in haemin-induced K562 cells. Taken together, our results revealed that the overexpression of miR-223 in MDS is closely associated with cell transformation and erythroid differentiation arrest, which is most likely mediated by targeting RPS14.
Collapse
Affiliation(s)
- Yanbo Nie
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China; Sino-us-diagnostics, Tianjin, China
| | - Shixuan Wang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yalan Yu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bei Xiong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
40
|
张 佳, 舒 逸, 张 虹, 蒋 婷, 宫 茂, 朱 丹, 王 皓, 邹 琳. [β-arrestin1 overexpression suppresses progression of human T-cell acute lymphatic leukemia Molt-4 cell xenograft in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:654-660. [PMID: 32897219 PMCID: PMC7277325 DOI: 10.12122/j.issn.1673-4254.2020.05.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of β-arrestin1 overexpression on tumor progression in a NCG mouse model bearing T-cell acute lymphocytic leukemia (T-ALL) Molt-4 cell xenograft. METHODS Molt-4 cells were tagged with firefly-luciferase (F-Luc) by lentiviral infection, and fluorescence intensity of the cells was detected using a luminescence detector. Molt-4 cell lines with β-arrestin1 overexpression or knockdown were constructed by lentivirus infection and injected via the tail vein in sub-lethal irradiated NCG mice. Body weight changes and survival time of the xenografted mice were observed, and the progression of T-ALL in the mice was evaluated using an in vivo fluorescence imaging system. Sixteen days after xenografting, the mice were euthanatized and tumor cell infiltration was observed in the slices of the liver and spleen. RESULTS We successfully tagged Molt-4 cells with F-Luc and overexpressed or knocked down β-arrestin1 in the tagged cells. Bioluminescent imaging showed obvious luminescence catalyzed by F-Luc in Molt-4 cells. After injection of Molt-4-Luc cells into irradiated NCG mice, a gradual enhancement of luminescence in the xenografted mice was observed over time, while the body weight of the mice decreased. Compared with the control mice, the mice xenografted with β-arrestin1-overexpressing Molt-4 cells had significantly prolonged survival time (P < 0.001), while the survival time of the mice xenografted with Molt-4 cells with β- arrestin1 knockdown was significantly shortened (P < 0.001). Histological examination revealed fewer infiltrating tumor cells in the liver and spleen of the mice xenografted with β-arrestin1-overexpressing Molt-4 cells in comparison with the mice bearing parental Molt-4 cell xenografts. CONCLUSIONS β-arrestin1 overexpression suppresses tumor progression in mice bearing Molt-4 cell xenograft.
Collapse
Affiliation(s)
- 佳 张
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 逸 舒
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 虹洋 张
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 婷婷 蒋
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 茂源 宫
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 丹 朱
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 皓飚 王
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| | - 琳 邹
- />重庆医科大学附属儿童医院临床分子医学中心//儿童发育疾病研究教育部重点实验室//国家儿童健康与疾病 临床医学研究中心//儿童发育重大疾病国家国际科技合作基地//重庆市干细胞治疗工程技术研究中心,重庆 400014Center for Clinical Molecular Medicine, Children's Hospital, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| |
Collapse
|
41
|
Slack FJ, Chinnaiyan AM. The Role of Non-coding RNAs in Oncology. Cell 2020; 179:1033-1055. [PMID: 31730848 DOI: 10.1016/j.cell.2019.10.017] [Citation(s) in RCA: 951] [Impact Index Per Article: 237.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
For decades, research into cancer biology focused on the involvement of protein-coding genes. Only recently was it discovered that an entire class of molecules, termed non-coding RNA (ncRNA), plays key regulatory roles in shaping cellular activity. An explosion of studies into ncRNA biology has since shown that they represent a diverse and prevalent group of RNAs, including both oncogenic molecules and those that work in a tumor suppressive manner. As a result, hundreds of cancer-focused clinical trials involving ncRNAs as novel biomarkers or therapies have begun and these are likely just the beginning.
Collapse
Affiliation(s)
- Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
Wei Y, Peng J, He S, Huang H, Lin L, Zhu Q, Ye L, Li T, Zhang X, Gao Y, Zheng X. miR-223-5p targeting ERG inhibits prostate cancer cell proliferation and migration. J Cancer 2020; 11:4453-4463. [PMID: 32489464 PMCID: PMC7255369 DOI: 10.7150/jca.44441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022] Open
Abstract
Ectopic expression of miR-223-5p, the lagging strand of miR-223 duplex, has been reported acting as anti-tumor miRNA in many cancers. How miR-223-5p influencing prostate cancer (PCa) remains obscure and worth of experimental investigation. In this study, the expressions of miR-223-5p and ERG in common PCa cell lines were detected and compared to RWPE-1, respectively. Then luciferase reporter assay was performed to verify whether miR-223-5p could specifically target and regulate ERG. Further discovery ERG's role in the PCa oncogenesis was also conducted by up or down regulating miR-223-3p expression. We found miR-223-5p was significantly down-regulated in DU145, while it was only up-regulated in LNCaP. Similarly, ERG expression remarkably decreased in both PC-3 and DU145 than that in RWPE-1, but significantly increasing in LNCaP. Luciferase assay demonstrated slightly decreased ERG expression after miR-223-5p-mimics but significantly increased ERG expression after miR-223-5p-inhibtor. Using gene interference, we further confirmed that both ERG mRNA and protein expressions were decreased in all PCa lines transfected ERG siRNA, but increasing in both DU145 and LNCaP cells with miR-223-5p antisense oligonucleotides. MTT assay, Transwell invasion and migration assay supported the function of ERG in PCa oncogenesis. We revealed tumor suppressive abilities of miR-223-5p in PCa by negatively targeting ERG gene. It could serve as a fundamental supplement and extension of our previous study about miR-223-3p in PCa, revealing the coordinative regulation between miR-223-5p and miR-223-3p in PCa cell biological behaviors. Exploration of miR-233-duplex orientated pathway networks may help us develop novel potential therapeutic options for PCa.
Collapse
Affiliation(s)
- Yongbao Wei
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China.,Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Junming Peng
- Department of Urology, Shenzhen People's Hospital, Second Clinic Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, P.R. China
| | - Shuyun He
- Department of Urology, the Second Xiangya Hospital, Central South University, No139. Renmin Road, Changsha 410011, China.,Department of Urology, The People's Hospital of Xiangtan Country, Xiangtan, China
| | - Haijian Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China.,Department of Pathology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Le Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China.,Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qingguo Zhu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China.,Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Liefu Ye
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China.,Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Tao Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China.,Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xing Zhang
- Department of Urology, the Traditional Chinese Medicine Hospital of Yangzhou, Yangzhou University of Traditional Chinese Medicine, Yangzhou, Jiangsu 225002, China
| | - Yunliang Gao
- Department of Urology, the Second Xiangya Hospital, Central South University, No139. Renmin Road, Changsha 410011, China
| | - Xiaochun Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China.,Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
43
|
Dolens A, Durinck K, Lavaert M, Van der Meulen J, Velghe I, De Medts J, Weening K, Roels J, De Mulder K, Volders P, De Preter K, Kerre T, Vandekerckhove B, Leclercq G, Vandesompele J, Mestdagh P, Van Vlierberghe P, Speleman F, Taghon T. Distinct Notch1 and BCL11B requirements mediate human γδ/αβ T cell development. EMBO Rep 2020; 21:e49006. [PMID: 32255245 PMCID: PMC7202205 DOI: 10.15252/embr.201949006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
γδ and αβ T cells have unique roles in immunity and both originate in the thymus from T-lineage committed precursors through distinct but unclear mechanisms. Here, we show that Notch1 activation is more stringently required for human γδ development compared to αβ-lineage differentiation and performed paired mRNA and miRNA profiling across 11 discrete developmental stages of human T cell development in an effort to identify the potential Notch1 downstream mechanism. Our data suggest that the miR-17-92 cluster is a Notch1 target in immature thymocytes and that miR-17 can restrict BCL11B expression in these Notch-dependent T cell precursors. We show that enforced miR-17 expression promotes human γδ T cell development and, consistently, that BCL11B is absolutely required for αβ but less for γδ T cell development. This study suggests that human γδ T cell development is mediated by a stage-specific Notch-driven negative feedback loop through which miR-17 temporally restricts BCL11B expression and provides functional insights into the developmental role of the disease-associated genes BCL11B and the miR-17-92 cluster in a human context.
Collapse
Affiliation(s)
| | - Kaat Durinck
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Marieke Lavaert
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | | | - Imke Velghe
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Jelle De Medts
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Karin Weening
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | - Juliette Roels
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | | | | | | | - Tessa Kerre
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| | | | | | - Jo Vandesompele
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Pieter Mestdagh
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | | | - Frank Speleman
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
| | - Tom Taghon
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
| |
Collapse
|
44
|
hsa-miR-20b-5p and hsa-miR-363-3p Affect Expression of PTEN and BIM Tumor Suppressor Genes and Modulate Survival of T-ALL Cells In Vitro. Cells 2020; 9:cells9051137. [PMID: 32380791 PMCID: PMC7290785 DOI: 10.3390/cells9051137] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy arising from T lymphocyte precursors. We have previously shown by miRNA-seq, that miRNAs from the mir-106a-363 cluster are overexpressed in pediatric T-ALL. In silico analysis indicated their potential involvement in the regulation of apoptosis. Here, we aimed to test the hypothesis on the pro-tumorigenic roles of these miRNAs in T-ALL cells in vitro. We demonstrate, for the first time, that hsa-miR-20b-5p and hsa-miR-363-3p from the mir-106a-363 cluster, when upregulated in T-ALL cells in vitro, protect leukemic cells from apoptosis, enhance proliferation, and contribute to growth advantage. We show, using dual luciferase reporter assays, Ago2-RNA immunoprecipitation, RT-qPCR, and Western blots, that the oncogenic effects of these upregulated miRNAs might, at least in part, be mediated by the downregulation of two important tumor suppressor genes, PTEN and BIM, targeted by both miRNAs. Additionally, we demonstrate the cooperative effects of these two miRNAs by simultaneous inhibition of both miRNAs as compared to the inhibition of single miRNAs. We postulate that hsa-miR-20b-5p and hsa-miR-363-3p from the mir-106a-363 cluster might serve as oncomiRs in T-ALL, by contributing to post-transcriptional repression of key tumor suppressors, PTEN and BIM.
Collapse
|
45
|
Xiao Y, Wang C, Zeng B, Tang X, Zhang Y, Xiang L, Mi L, Pan Y, Wang H, Yang Z. miR124-3p/FGFR2 axis inhibits human keratinocyte proliferation and migration and improve the inflammatory microenvironment in psoriasis. Mol Immunol 2020; 122:89-98. [PMID: 32330756 DOI: 10.1016/j.molimm.2020.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023]
Abstract
Keratinocyte hyperproliferation has been regarded as a central event in psoriasis pathogenesis. Investigating the mechanisms of keratinocyte hyperproliferation might provide novel strategies for psoriasis treatment. we demonstrated that fibroblast growth factor receptor 2 (FGFR2) expression was abnormally upregulated within psoriatic lesion tissues and HaCaT cells under rIL-22 stimulation. FGFR2 silence within HaCaT cells under rIL-22 stimulation significantly inhibited the capacity of cells to proliferate and to migrate, reduced IL-17A and TNFα mRNA expression, and decreased the protein levels of FGFR2, keratin 6, keratin 16, MMP1, MMP9, p-PI3K, p-AKT and p-ERK. In contrast to FGFR2, the expression of miR-124-3p showed to be remarkably downregulated within psoriasis lesion tissue samples and rIL-22-stimulated HaCaT cells. miR-124-3p inhibited the expression of FGFR2 via direct binding to its 3'UTR. Within HaCaT cells under rIL-22 stimulation, the overexpression of miR-124-3p also suppressed the capacity of cells to proliferate and to migrate, reduced IL-17A and TNFα mRNA expression, and decreased the protein levels of FGFR2, keratin 6, keratin 16, MMP1, MMP9 and p-PI3K, p-AKT and p-ERK. More importantly, when co-transfected to HaCaT cells, FGFR2-overexpressing vector significantly attenuated the effects of miR-124-3p mimics on HaCaT cells. In conclusion, we demonstrated an miR124-3p/FGFR2 axis that might inhibit human keratinocyte proliferation, migration, and improve the inflammatory microenvironment in psoriasis. miR124-3p/FGFR2 axis could be an underlying target for psoriasis therapy, which requires further in vivo and clinical investigation.
Collapse
Affiliation(s)
- Yueyuan Xiao
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China; Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chang Wang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Bijun Zeng
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Xueyong Tang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Yujin Zhang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Liping Xiang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Lan Mi
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Yi Pan
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China
| | - Haizhen Wang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China.
| | - Zhibo Yang
- Department of Dermatology, The Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, Hunan 410005, China.
| |
Collapse
|
46
|
Kooshkaki O, Rezaei Z, Rahmati M, Vahedi P, Derakhshani A, Brunetti O, Baghbanzadeh A, Mansoori B, Silvestris N, Baradaran B. MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers. Int J Mol Sci 2020; 21:ijms21072578. [PMID: 32276343 PMCID: PMC7177921 DOI: 10.3390/ijms21072578] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and non-coding RNAs that display aberrant expression in the tissue and plasma of cancer patients when tested in comparison to healthy individuals. In past decades, research data proposed that miRNAs could be diagnostic and prognostic biomarkers in cancer patients. It has been confirmed that miRNAs can act either as oncogenes by silencing tumor inhibitors or as tumor suppressors by targeting oncoproteins. MiR-144s are located in the chromosomal region 17q11.2, which is subject to significant damage in many types of cancers. In this review, we assess the involvement of miR-144s in several cancer types by illustrating the possible target genes that are related to each cancer, and we also briefly describe the clinical applications of miR-144s as a diagnostic and prognostic tool in cancers.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Zohre Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Biology, University of Sistan and Baluchestan, Zahedan 9816745845, Iran
| | - Meysam Rahmati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran;
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh 5165665931, Iran;
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
| | - Behzad Mansoori
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology DIMO—University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +39-0805555419 (N.S.); +98-413-3371440 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +39-0805555419 (N.S.); +98-413-3371440 (B.B.)
| |
Collapse
|
47
|
Non-Coding microRNAs as Novel Potential Tumor Markers in Testicular Cancer. Cancers (Basel) 2020; 12:cancers12030749. [PMID: 32235691 PMCID: PMC7140096 DOI: 10.3390/cancers12030749] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Testicular cancer is an important disease with increasing incidence and a high burden of morbidity and mortality in young men worldwide. Histological examination of the testicular tissue after orchiectomy plays an important role alongside patient history, imaging, clinical presentation and laboratory parameters. Surgical procedures and chemotherapeutic treatment provide a high chance of cure in early stages, though some patients in advanced stages belonging to a poor risk group experience cancer-related death. Though conventional serum-based tumor markers, including α-fetoprotein (AFP), the β-subunit of human chorionic gonadotropin (β-hCG), and lactate dehydrogenase (LDH), are useful as prognostic and diagnostic biomarkers, unfortunately, these tumor markers only have a sensitivity of about 60%, and in pure seminoma even lower with about 20%. Therefore, the development of new tumor markers is an important and intensively ongoing issue. The analysis of epigenetic modification and non-coding RNA microRNAs (miRNAs) are carrying most promising potential as tumor markers in future. miRNAs are small RNAs secreted by testicular tumor cells and circulate and be measurable in body fluids. In recent years, miRNAs of the miR-371-373 cluster in particular have been identified as potentially superior tumor markers in testicular cancer patients. Studies showed that miR-371a-3p and miR-302/367 expression significantly differ between testicular tumors and healthy testicular tissue. Several studies including high prospective multi-center trials clearly demonstrated that these miRNAs significantly exceed the sensitivity and specificity of conventional tumor markers and may help to facilitate the diagnosis, follow-up, and early detection of recurrences in testicular cancer patients. In addition, other miRNAs such as miR-223-3p, miR-449, miR-383, miR-514a-3p, miR-199a-3p, and miR-214 will be discussed in this review. However, further studies are needed to identify the value of these novel markers in additional clinical scenarios, including the monitoring in active surveillance or after adjuvant chemotherapy, but also to show the limitations of these tumor markers. The aim of this review is to give an overview on the current knowledge regarding the relevance of non-coding miRNAs as biomarkers in testicular cancer.
Collapse
|
48
|
Tekcham DS, Chen D, Liu Y, Ling T, Zhang Y, Chen H, Wang W, Otkur W, Qi H, Xia T, Liu X, Piao HL, Liu H. F-box proteins and cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Am J Cancer Res 2020; 10:4150-4167. [PMID: 32226545 PMCID: PMC7086354 DOI: 10.7150/thno.42735] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
E3 ubiquitin ligases play a critical role in cellular mechanisms and cancer progression. F-box protein is the core component of the SKP1-cullin 1-F-box (SCF)-type E3 ubiquitin ligase and directly binds to substrates by various specific domains. According to the specific domains, F-box proteins are further classified into three sub-families: 1) F-box with leucine rich amino acid repeats (FBXL); 2) F-box with WD 40 amino acid repeats (FBXW); 3) F-box only with uncharacterized domains (FBXO). Here, we summarize the substrates of F-box proteins, discuss the important molecular mechanism and emerging role of F-box proteins especially from the perspective of cancer development and progression. These findings will shed new light on malignant tumor progression mechanisms, and suggest the potential role of F-box proteins as cancer biomarkers and therapeutic targets for future cancer treatment.
Collapse
|
49
|
Shu Y, Wang Y, Lv WQ, Peng DY, Li J, Zhang H, Jiang GJ, Yang BJ, Liu S, Zhang J, Chen YH, Tang S, Wan KX, Yuan JT, Guo W, Fu G, Qi XK, Liu ZD, Liu HY, Yang C, Zhang LH, Liu FJ, Yu J, Zhang PH, Qu B, Zhao H, He TC, Zou L. ARRB1-Promoted NOTCH1 Degradation Is Suppressed by OncomiR miR-223 in T-cell Acute Lymphoblastic Leukemia. Cancer Res 2020; 80:988-998. [PMID: 31822496 PMCID: PMC7056567 DOI: 10.1158/0008-5472.can-19-1471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/24/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a type of aggressive leukemia with inferior prognosis. Although activating mutations of NOTCH1 are observed in most T-ALL cases, these mutations alone are not sufficient to drive the full development of T-ALL. β-Arrestins (ARRB) are versatile and multifunctional adapter proteins that regulate diverse cellular functions, including promoting the development of cancer. However, the role of ARRBs in T-ALL has largely remained elusive. In this study, we showed that ARRB1 is expressed at low levels in assayed T-ALL clinical samples and cell lines. Exogenous ARRB1 expression inhibited T-ALL proliferation and improved the survival of T-ALL xenograft animals. ARRB1 facilitated NOTCH1 ubiquitination and degradation through interactions with NOTCH1 and DTX1. Mechanistically, the oncogenic miRNA (oncomiR) miR-223 targets the 3'-UTR of ARRB1 (BUTR) and inhibits its expression in T-ALL. Furthermore, overexpression of the ARRB1-derived miR-223 sponge suppressed T-ALL cell proliferation and induced apoptosis. Collectively, these results demonstrate that ARRB1 acts as a tumor suppressor in T-ALL by promoting NOTCH1 degradation, which is inhibited by elevated miR-223, suggesting that ARRB1 may serve as a valid drug target in the development of novel T-ALL therapeutics.Significance: These findings highlight a novel tumor suppressive function of the adaptor protein β-arrestin1 in T-ALL.
Collapse
Affiliation(s)
- Yi Shu
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
- Molecular Oncology Laboratory, Departments of Surgery and Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois
| | - Yi Wang
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Wen-Qiong Lv
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Dan-Yi Peng
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Juan Li
- Institute of Biochemistry and Cell Biochemistry, Shanghai Institute of Biomedical Sciences, Shanghai, China
| | - Hang Zhang
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Guang-Jie Jiang
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Bi-Jie Yang
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Shan Liu
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Jia Zhang
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Yan-Hua Chen
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Shi Tang
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Ke-Xing Wan
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Jun-Tao Yuan
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Wei Guo
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Guo Fu
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Xin-Kun Qi
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Zhi-Dai Liu
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Hai-Yan Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
- Department of Hematology, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
- Molecular Oncology Laboratory, Departments of Surgery and Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois
| | - Ling-Huan Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
- Molecular Oncology Laboratory, Departments of Surgery and Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois
| | - Fang-Jie Liu
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| | - Jie Yu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
- Department of Hematology, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Peng-Hui Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
- Clinical Laboratory Center, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Qu
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Departments of Surgery and Orthopaedic Surgery, The University of Chicago Medical Center, Chicago, Illinois.
| | - Lin Zou
- Center for Clinical Molecular Medicine, The Children's Hospital of Chongqing Medical University, Chongqing, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
- Key Laboratory of Pediatrics in Chongqing, Chongqing Stem Cell Therapy Engineering Center, Chongqing, China
| |
Collapse
|
50
|
Sabarimurugan S, Kumarasamy C, Royam Madhav M, Samiappan S, Jayaraj R. The Significance of miRNAs as a Prognostic Biomarker for Survival Outcome in T Cell - Acute Lymphoblastic Leukemia Patients: A Systematic Review and Meta-Analysis. Cancer Manag Res 2020; 12:819-839. [PMID: 32104065 PMCID: PMC7008181 DOI: 10.2147/cmar.s200687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose T-cell acute lymphoblastic leukemia (T-ALL) affects lymphoid cells. Previous studies have reported that miRNAs play a significant role in T-ALL prognosis and have the potential to function as biomarkers in T-ALL. Therefore, this systematic review and meta-analysis study was designed to evaluate the overall prognostic impact of miRNAs in T-ALL patients. Methods Eligible studies published between Jan 2010 and April 2018 were retrieved from online bibliographic databases based on multiple keywords to generate search strings. Meta-analysis was performed using the outcome measure, Hazard Ratio (HR). A survival analysis of all studies was conducted and a subsequent forest plot was generated to evaluate the pooled effect size, across all T-ALL patients. Subgroup analysis was conducted based on demographic characteristics and commonly represented miRNAs among the included studies. Results A total of 17 studies were included for systematic review, among which 16 studies were eligible for meta-analysis, which, in total discussed 32 different miRNAs. The mean effect size of HR value was 0.929 (CI 0.878–0984), which indicates a decrease in risk of death by 7.1%. The analysis was based on the random effects model with the heterogeneity measure index (I2) being 84.92%. The pooled effect size (HR) of upregulated and downregulated miRNA expressions on survival outcome in the T-ALL patient was 0.787 (CI 0.732–0.845) and 1.225 (CI 1.110–1.344) respectively. The subgroup analysis was performed based on demographic characteristics (age, gender, lactate dehydrogenase, WBC count) and expression of miR221 and miR46a. Conclusion Our systematic review and meta-analysis findings suggest that the overall miRNA expression is potentially associated with a decreased likelihood of death in T-ALL patients. Although our findings are inconclusive, the results point toward miRNA expression allowing for prognostic evaluation of T-ALL patients.
Collapse
Affiliation(s)
| | - Chellan Kumarasamy
- University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Madurantakam Royam Madhav
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India 632014
| | - Suja Samiappan
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Rama Jayaraj
- Clinical Sciences, College of Health and Human Sciences, Charles Darwin University, Darwin, Northern Territory 0909, Australia
| |
Collapse
|