1
|
López Riquelme I, Martínez García S, Serrano Ordónez A, Martínez Pilar L. Germline mutations predisposing to melanoma and associated malignancies and syndromes: a narrative review. Int J Dermatol 2025; 64:1027-1041. [PMID: 39651613 DOI: 10.1111/ijd.17602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
The pathogenesis of melanoma is influenced by a complex combination of environmental factors and individual genetic susceptibility. Familial melanoma refers to cases where there are two first-degree relatives with a melanoma diagnosis. Less strict definitions include second-degree relatives or even three or more of any degree from the same family, although this is not clearly defined in the literature. The term hereditary melanoma is reserved for sporadic or familial melanomas linked to high-risk genes with high penetrance. The first genes related to melanoma were CDKN2A and CDK4, but recently, other genes, mostly tumor suppressor genes, have been described. Internal malignancies, particularly pancreatic cancer, have also been associated with melanoma. Recent studies suggest that there could be a link between melanoma and other neoplasms and tumor predisposition syndromes. This review presents an updated overview of familial melanoma criteria and genes involved in melanoma pathogenesis, emphasizing their clinicopathological aspects and other associated malignancies.
Collapse
Affiliation(s)
- Irene López Riquelme
- Dermatology Department, Hospital Regional Universitario de Málaga, Malaga, Spain
| | | | - Ana Serrano Ordónez
- Dermatology Department, Hospital Regional Universitario de Málaga, Malaga, Spain
| | | |
Collapse
|
2
|
Pellegrini S, Potjer TP, Del Bianco P, Vecchiato A, Fabozzi A, Piccin L, Tonello D, van der Stoep N, Tinsley E, Landi MT, Iles MM, Menin C. Polygenic Risk Score Improves Melanoma Risk Assessment in a Patient Cohort from the Veneto Region of Italy. BIOLOGY 2024; 13:954. [PMID: 39596909 PMCID: PMC11592222 DOI: 10.3390/biology13110954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Recent genome-wide association studies (GWASs) have identified many single nucleotide polymorphisms (SNPs) that alone weakly affect melanoma risk, but their combined effect on a polygenic risk score (PRS) can have a far bigger impact on estimating risk. However, the PRS is not yet at the stage of being utilized in clinical practice, and further evidence is needed. In this study, 270 melanoma patients fulfilling the criteria for a suspected genetic predisposition but with a negative genetic test for high/medium-penetrance genes were genotyped for 57 SNPs selected in previous GWASs to construct a PRS model. We found a significantly higher mean PRS57 in all melanoma cases than in controls (0.58 vs. 0.00, p < 0.001), and the mean PRS57 in multiple primary melanoma cases was twice that in single melanoma cases (0.689 vs. 0.362, p = 0.025). Interestingly, our results confirm the association of the PRS57 not only with other melanoma risk factors but also with a younger age at diagnosis. This evidence supports the potentially powerful discriminative role of PRS in the selection of high-risk patients who should undergo stricter surveillance protocols.
Collapse
Affiliation(s)
- Stefania Pellegrini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (D.T.); (C.M.)
| | - Thomas P. Potjer
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (T.P.P.); (N.v.d.S.)
| | - Paola Del Bianco
- Clinical Trials and Biostatistics Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Antonella Vecchiato
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Alessio Fabozzi
- Oncology 3 Unit, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Luisa Piccin
- Oncology 2 Unit, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Debora Tonello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (D.T.); (C.M.)
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands; (T.P.P.); (N.v.d.S.)
| | - Emily Tinsley
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS2 9NL, UK; (E.T.); (M.M.I.)
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892-8322, USA;
| | - Mark M. Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS2 9NL, UK; (E.T.); (M.M.I.)
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (D.T.); (C.M.)
| |
Collapse
|
3
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
4
|
Bekenova N, Sibagatova A, Aitkaliyev A, Vochshenkova T, Kassiyeva B, Benberin V. Genetic markers of cardiac autonomic neuropathy in the Kazakh population. BMC Cardiovasc Disord 2024; 24:242. [PMID: 38724937 PMCID: PMC11080244 DOI: 10.1186/s12872-024-03912-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Cardiac autonomic neuropathy (CAN) is a complication of diabetes mellitus (DM) that increases the risk of morbidity and mortality by disrupting cardiac innervation. Recent evidence suggests that CAN may manifest even before the onset of DM, with prediabetes and metabolic syndrome potentially serving as precursors. This study aims to identify genetic markers associated with CAN development in the Kazakh population by investigating the SNPs of specific genes. MATERIALS AND METHODS A case-control study involved 82 patients with CAN (cases) and 100 patients without CAN (controls). A total of 182 individuals of Kazakh nationality were enrolled from a hospital affiliated with the RSE "Medical Center Hospital of the President's Affairs Administration of the Republic of Kazakhstan". 7 SNPs of genes FTO, PPARG, SNCA, XRCC1, FLACC1/CASP8 were studied. Statistical analysis was performed using Chi-square methods, calculation of odds ratios (OR) with 95% confidence intervals (CI), and logistic regression in SPSS 26.0. RESULTS Among the SNCA gene polymorphisms, rs2737029 was significantly associated with CAN, almost doubling the risk of CAN (OR 2.03(1.09-3.77), p = 0.03). However, no statistically significant association with CAN was detected with the rs2736990 of the SNCA gene (OR 1.00 CI (0.63-1.59), p = 0.99). rs12149832 of the FTO gene increased the risk of CAN threefold (OR 3.22(1.04-9.95), p = 0.04), while rs1801282 of the PPARG gene and rs13016963 of the FLACC1 gene increased the risk twofold (OR 2.56(1.19-5.49), p = 0.02) and (OR 2.34(1.00-5.46), p = 0.05) respectively. rs1108775 and rs1799782 of the XRCC1 gene were associated with reduced chances of developing CAN both before and after adjustment (OR 0.24, CI (0.09-0.68), p = 0.007, and OR 0.43, CI (0.22-0.84), p = 0.02, respectively). CONCLUSION The study suggests that rs2737029 (SNCA gene), rs12149832 (FTO gene), rs1801282 (PPARG gene), and rs13016963 (FLACC1 gene) may be predisposing factors for CAN development. Additionally, SNPs rs1108775 and rs1799782 (XRCC1 gene) may confer resistance to CAN. Only one polymorphism rs2736990 of the SNCA gene was not associated with CAN.
Collapse
Affiliation(s)
- Nazira Bekenova
- Gerontology Center, Medical Centre Hospital of President's Affairs Administration of the Republic of Kazakhstan, Mangilik El 80, Astana City, 010000, Kazakhstan.
| | - Ainur Sibagatova
- Gerontology Center, Medical Centre Hospital of President's Affairs Administration of the Republic of Kazakhstan, Mangilik El 80, Astana City, 010000, Kazakhstan
| | - Alisher Aitkaliyev
- Gerontology Center, Medical Centre Hospital of President's Affairs Administration of the Republic of Kazakhstan, Mangilik El 80, Astana City, 010000, Kazakhstan
| | - Tamara Vochshenkova
- Gerontology Center, Medical Centre Hospital of President's Affairs Administration of the Republic of Kazakhstan, Mangilik El 80, Astana City, 010000, Kazakhstan
| | - Balzhan Kassiyeva
- Gerontology Center, Medical Centre Hospital of President's Affairs Administration of the Republic of Kazakhstan, Mangilik El 80, Astana City, 010000, Kazakhstan
| | - Valeriy Benberin
- Gerontology Center, Medical Centre Hospital of President's Affairs Administration of the Republic of Kazakhstan, Mangilik El 80, Astana City, 010000, Kazakhstan
| |
Collapse
|
5
|
Atkinson C, McInerney-Leo AM, Proctor M, Lanagan C, Stevenson AJ, Dehkhoda F, Caole M, Maas E, Ainger S, Pritchard AL, Johansson PA, Leo P, Hayward NK, Sturm RA, Duncan EL, Gabrielli B. The ATM Ser49Cys Variant Effects ATM Function as a Regulator of Oncogene-Induced Senescence. Int J Mol Sci 2024; 25:1664. [PMID: 38338943 PMCID: PMC10855307 DOI: 10.3390/ijms25031664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
An apical component of the cell cycle checkpoint and DNA damage repair response is the ataxia-telangiectasia mutated (ATM) Ser/Thr protein kinase. A variant of ATM, Ser49Cys (rs1800054; minor allele frequency = 0.011), has been associated with an elevated risk of melanoma development; however, the functional consequence of this variant is not defined. ATM-dependent signalling in response to DNA damage has been assessed in a panel of patient-derived lymphoblastoid lines and primary human melanocytic cell strains heterozygous for the ATM Ser49Cys variant allele. The ATM Ser49Cys allele appears functional for acute p53-dependent signalling in response to DNA damage. Expression of the variant allele did reduce the efficacy of oncogene expression in inducing senescence. These findings demonstrate that the ATM 146C>G Ser49Cys allele has little discernible effect on the acute response to DNA damage but has reduced function observed in the chronic response to oncogene over-expression. Analysis of melanoma, naevus and skin colour genomics and GWAS analyses have demonstrated no association of this variant with any of these outcomes. The modest loss of function detected suggest that the variant may act as a modifier of other variants of ATM/p53-dependent signalling.
Collapse
Affiliation(s)
- Caroline Atkinson
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Aideen M. McInerney-Leo
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Martina Proctor
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Catherine Lanagan
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | | | - Farhad Dehkhoda
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Mary Caole
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Ellie Maas
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Stephen Ainger
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Antonia L. Pritchard
- Queensland Institute for Medical Research Berghofer, Brisbane, QLD 4006, Australia
| | - Peter A. Johansson
- Queensland Institute for Medical Research Berghofer, Brisbane, QLD 4006, Australia
| | - Paul Leo
- Centre of Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Nicholas K. Hayward
- Queensland Institute for Medical Research Berghofer, Brisbane, QLD 4006, Australia
| | - Richard A. Sturm
- Dermatology Research Centre, Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Emma L. Duncan
- Department of Twin Research and Genetic Epidemiology, School of Life Course & Population Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK
| | - Brian Gabrielli
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
6
|
Lendinez-Sanchez G, Diaz-Redondo T, Campos MI, Porta Pelayo J, Porta Pelayo JM, Muriel-López C. ATM Variant as a Cause of Hereditary Cutaneous Melanoma in a Spanish Family: Case Report. Case Rep Oncol 2024; 17:386-391. [PMID: 38415270 PMCID: PMC10898853 DOI: 10.1159/000536105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/30/2023] [Indexed: 02/29/2024] Open
Abstract
Introduction Ataxia-Telangiectasia Mutated (ATM) is a cancer predisposition gene; carriers of germline pathogenic variants have an increased risk of developing malignancies, including breast, prostate, pancreatic, and ovarian cancer. Most ATM variants are of uncertain significance. Findings from genome-wide association studies (GWAS) suggest that ATM may be a low-risk melanoma susceptibility locus. Case Report We report the case of a Hispanic family whose members who have presented cutaneous melanoma have been found to be carriers for the ATM pathogenic variant c.3747-1G>C (rs730881364), one of whom was diagnosed at 24 years old. Discussion We describe for the first time the possible clinical association between ATM (c.3747-1G>C) and familial melanoma. In silico splice site analysis predicts that this alteration will weaken the native splice acceptor site and will result in the creation or strengthening of a novel splice acceptor site, assuming a variant that entails loss of functionality that is probably pathogenic and related to oncogenesis. However, we cannot exclude that cutaneous melanoma in both members and at an early age is the result of chance, environmental interaction, other uncontrolled external factors, or the interaction of other genetic alterations other than the ATM variant described in this study.
Collapse
Affiliation(s)
- Gonzalo Lendinez-Sanchez
- Department of Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Tamara Diaz-Redondo
- Department of Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | - Marcos Iglesias Campos
- Department of Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| | | | | | - Carolina Muriel-López
- Department of Medical Oncology, Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain
| |
Collapse
|
7
|
Lu M, Zhang X, Chu Q, Chen Y, Zhang P. Susceptibility Genes Associated with Multiple Primary Cancers. Cancers (Basel) 2023; 15:5788. [PMID: 38136334 PMCID: PMC10741435 DOI: 10.3390/cancers15245788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
With advancements in treatment and screening techniques, we have been witnessing an era where more cancer survivors harbor multiple primary cancers (MPCs), affecting approximately one in six patients. Identifying MPCs is crucial for tumor staging and subsequent treatment choices. However, the current clinicopathological criteria for clinical application are limited and insufficient, making it challenging to differentiate them from recurrences or metastases. The emergence of next-generation sequencing (NGS) technology has provided a genetic perspective for defining multiple primary cancers. Researchers have found that, when considering multiple tumor pairs, it is crucial not only to examine well-known essential mutations like MLH1/MSH2, EGFR, PTEN, BRCA1/2, CHEK2, and TP53 mutations but also to explore certain pleiotropic loci. Moreover, specific deleterious mutations may serve as regulatory factors in second cancer development following treatment. This review aims to discuss these susceptibility genes and provide an explanation of their functions based on the signaling pathway background. Additionally, the association network between genetic signatures and different tumor pairs will be summarized.
Collapse
Affiliation(s)
| | | | | | | | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.L.)
| |
Collapse
|
8
|
Sato G, Shirai Y, Namba S, Edahiro R, Sonehara K, Hata T, Uemura M, Matsuda K, Doki Y, Eguchi H, Okada Y. Pan-cancer and cross-population genome-wide association studies dissect shared genetic backgrounds underlying carcinogenesis. Nat Commun 2023; 14:3671. [PMID: 37340002 DOI: 10.1038/s41467-023-39136-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
Integrating genomic data of multiple cancers allows de novo cancer grouping and elucidating the shared genetic basis across cancers. Here, we conduct the pan-cancer and cross-population genome-wide association study (GWAS) meta-analysis and replication studies on 13 cancers including 250,015 East Asians (Biobank Japan) and 377,441 Europeans (UK Biobank). We identify ten cancer risk variants including five pleiotropic associations (e.g., rs2076295 at DSP on 6p24 associated with lung cancer and rs2525548 at TRIM4 on 7q22 nominally associated with six cancers). Quantifying shared heritability among the cancers detects positive genetic correlations between breast and prostate cancer across populations. Common genetic components increase the statistical power, and the large-scale meta-analysis of 277,896 breast/prostate cancer cases and 901,858 controls identifies 91 newly genome-wide significant loci. Enrichment analysis of pathways and cell types reveals shared genetic backgrounds across said cancers. Focusing on genetically correlated cancers can contribute to enhancing our insights into carcinogenesis.
Collapse
Affiliation(s)
- Go Sato
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Kontogianni G, Voutetakis K, Piroti G, Kypreou K, Stefanaki I, Vlachavas EI, Pilalis E, Stratigos A, Chatziioannou A, Papadodima O. A Comprehensive Analysis of Cutaneous Melanoma Patients in Greece Based on Multi-Omic Data. Cancers (Basel) 2023; 15:cancers15030815. [PMID: 36765773 PMCID: PMC9913631 DOI: 10.3390/cancers15030815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma (CM) is the most aggressive type of skin cancer, and it is characterised by high mutational load and heterogeneity. In this study, we aimed to analyse the genomic and transcriptomic profile of primary melanomas from forty-six Formalin-Fixed, Paraffin-Embedded (FFPE) tissues from Greek patients. Molecular analysis for both germline and somatic variations was performed in genomic DNA from peripheral blood and melanoma samples, respectively, exploiting whole exome and targeted sequencing, and transcriptomic analysis. Detailed clinicopathological data were also included in our analyses and previously reported associations with specific mutations were recognised. Most analysed samples (43/46) were found to harbour at least one clinically actionable somatic variant. A subset of samples was profiled at the transcriptomic level, and it was shown that specific melanoma phenotypic states could be inferred from bulk RNA isolated from FFPE primary melanoma tissue. Integrative bioinformatics analyses, including variant prioritisation, differential gene expression analysis, and functional and gene set enrichment analysis by group and per sample, were conducted and molecular circuits that are implicated in melanoma cell programmes were highlighted. Integration of mutational and transcriptomic data in CM characterisation could shed light on genes and pathways that support the maintenance of phenotypic states encrypted into heterogeneous primary tumours.
Collapse
Affiliation(s)
- Georgia Kontogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Georgia Piroti
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Katerina Kypreou
- 1st Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Irene Stefanaki
- 1st Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | | | | | - Alexander Stratigos
- 1st Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Aristotelis Chatziioannou
- Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- e-NIOS Applications Private Company, 17671 Kallithea, Greece
- Correspondence: (A.C.); (O.P.); Tel.: +30-210-727-3721 (A.C. & O.P.)
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Correspondence: (A.C.); (O.P.); Tel.: +30-210-727-3721 (A.C. & O.P.)
| |
Collapse
|
10
|
Pastorino L, Dalmasso B, Allavena E, Vanni I, Ugolini F, Baroni G, Croce M, Guadagno A, Cabiddu F, Andreotti V, Bruno W, Zoppoli G, Ferrando L, Tanda ET, Spagnolo F, Menin C, Gangemi R, Massi D, Ghiorzo P. Ataxia-Telangiectasia Mutated Loss of Heterozygosity in Melanoma. Int J Mol Sci 2022; 23:16027. [PMID: 36555667 PMCID: PMC9786167 DOI: 10.3390/ijms232416027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
ATM germline pathogenic variants were recently found enriched in high-risk melanoma patients. However, ATM loss of heterozygosity (LOH) has never been investigated in melanoma and, therefore, a causal association with melanoma development has not been established yet. The purpose of this study was to functionally characterize 13 germline ATM variants found in high-risk melanoma patients-and classified by in silico tools as pathogenic, uncertain significance, or benign-using multiple assays evaluating ATM/pATM expression and/or LOH in melanoma tissues and cell lines. We assessed ATM status by Immunohistochemistry (IHC), Western Blot, Whole-Exome Sequencing/Copy Number Variation analysis, and RNA sequencing, supported by Sanger sequencing and microsatellite analyses. For most variants, IHC results matched those obtained with in silico classification and LOH analysis. Two pathogenic variants (p.Ser1135_Lys1192del and p.Ser1993ArgfsTer23) showed LOH and complete loss of ATM activation in melanoma. Two variants of unknown significance (p.Asn358Ile and p.Asn796His) showed reduced expression and LOH, suggestive of a deleterious effect. This study, showing a classic two-hit scenario in a well-known tumor suppressor gene, supports the inclusion of melanoma in the ATM-related cancer spectrum.
Collapse
Affiliation(s)
- Lorenza Pastorino
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Bruna Dalmasso
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Eleonora Allavena
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Irene Vanni
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Filippo Ugolini
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - Gianna Baroni
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - Michela Croce
- Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Antonio Guadagno
- Anatomia Patologica, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Cabiddu
- Anatomia Patologica, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Virginia Andreotti
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - William Bruno
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- Clinica di Medicina Interna a Indirizzo Oncologico, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo Ferrando
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- Clinica di Medicina Interna a Indirizzo Oncologico, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Enrica Teresa Tanda
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Spagnolo
- Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Rosaria Gangemi
- Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
11
|
Seviiri M, Law MH, Ong JS, Gharahkhani P, Fontanillas P, Olsen CM, Whiteman DC, MacGregor S. A multi-phenotype analysis reveals 19 susceptibility loci for basal cell carcinoma and 15 for squamous cell carcinoma. Nat Commun 2022; 13:7650. [PMID: 36496446 PMCID: PMC9741635 DOI: 10.1038/s41467-022-35345-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Basal cell carcinoma and squamous cell carcinoma are the most common skin cancers, and have genetic overlap with melanoma, pigmentation traits, autoimmune diseases, and blood biochemistry biomarkers. In this multi-trait genetic analysis of over 300,000 participants from Europe, Australia and the United States, we reveal 78 risk loci for basal cell carcinoma (19 previously unknown and replicated) and 69 for squamous cell carcinoma (15 previously unknown and replicated). The previously unknown risk loci are implicated in cancer development and progression (e.g. CDKL1), pigmentation (e.g. TPCN2), cardiometabolic (e.g. FADS2), and immune-regulatory pathways for innate immunity (e.g. IFIH1), and HIV-1 viral load modulation (e.g. CCR5). We also report an optimised polygenic risk score for effective risk stratification for keratinocyte cancer in the Canadian Longitudinal Study of Aging (794 cases and 18139 controls), which could facilitate skin cancer surveillance e.g. in high risk subpopulations such as transplantees.
Collapse
Affiliation(s)
- Mathias Seviiri
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- Center for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Matthew H Law
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jue-Sheng Ong
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Puya Gharahkhani
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Catherine M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - David C Whiteman
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Stuart MacGregor
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Corpas M, Megy K, Metastasio A, Lehmann E. Implementation of individualised polygenic risk score analysis: a test case of a family of four. BMC Med Genomics 2022; 15:207. [PMID: 36192731 PMCID: PMC9531350 DOI: 10.1186/s12920-022-01331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Polygenic risk scores (PRS) have been widely applied in research studies, showing how population groups can be stratified into risk categories for many common conditions. As healthcare systems consider applying PRS to keep their populations healthy, little work has been carried out demonstrating their implementation at an individual level. CASE PRESENTATION We performed a systematic curation of PRS sources from established data repositories, selecting 15 phenotypes, comprising an excess of 37 million SNPs related to cancer, cardiovascular, metabolic and autoimmune diseases. We tested selected phenotypes using whole genome sequencing data for a family of four related individuals. Individual risk scores were given percentile values based upon reference distributions among 1000 Genomes Iberians, Europeans, or all samples. Over 96 billion allele effects were calculated in order to obtain the PRS for each of the individuals analysed here. CONCLUSIONS Our results highlight the need for further standardisation in the way PRS are developed and shared, the importance of individual risk assessment rather than the assumption of inherited averages, and the challenges currently posed when translating PRS into risk metrics.
Collapse
Affiliation(s)
- Manuel Corpas
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK.
- Institute of Continuing Education, University of Cambridge, Cambridge, UK.
- Facultad de Ciencias de La Salud, Universidad Internacional de La Rioja, Madrid, Spain.
| | - Karyn Megy
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
- Department of Haematology, University of Cambridge & NHS Blood and Transplant, Cambridge, UK
| | - Antonio Metastasio
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | - Edmund Lehmann
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, UK
| |
Collapse
|
13
|
Yepes S, Tucker MA, Koka H, Xiao Y, Zhang T, Jones K, Vogt A, Burdette L, Luo W, Zhu B, Hutchinson A, Yeager M, Hicks B, Brown KM, Freedman ND, Chanock SJ, Goldstein AM, Yang XR. Integrated Analysis of Coexpression and Exome Sequencing to Prioritize Susceptibility Genes for Familial Cutaneous Melanoma. J Invest Dermatol 2022; 142:2464-2475.e5. [PMID: 35181301 PMCID: PMC9378750 DOI: 10.1016/j.jid.2022.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
The application of whole-exome sequencing has led to the identification of high- and moderate-risk variants that contribute to cutaneous melanoma susceptibility. However, confirming disease-causing variants remains challenging. We applied a gene coexpression network analysis to prioritize the candidate genes identified from whole-exome sequencing of 34 melanoma-prone families, with at least three affected members sequenced per family (N = 119 cases). A coexpression network was constructed from genotype-tissue expression project, skin melanoma from the cancer genome atlas, and primary melanocyte cultures. We performed module-specific enrichment and focused on modules associated with pigmentation processes because they are the best-studied and most well-known risk factors for melanoma susceptibility. We found that pigmentation-associated modules across the four expression datasets examined were enriched for well-known melanoma susceptibility genes plus genes associated with pigmentation. We also used network properties to prioritize genes within pigmentation modules as candidate susceptibility genes. Integrating information from coexpression network analysis and variant prioritization, we identified 36 genes (such as DCT, TPCN2, TRPM1, ATP10A, and EPHA5) as potential melanoma risk genes in the families. Our approach also allowed us to link families with private gene mutations on the basis of gene coexpression patterns and thereby may provide an innovative perspective in gene identification in high-risk families.
Collapse
Affiliation(s)
- Sally Yepes
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Margaret A Tucker
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hela Koka
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yanzi Xiao
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristine Jones
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Wen Luo
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Bin Zhu
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Neal D Freedman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Castaneda-Garcia C, Iyer V, Nsengimana J, Trower A, Droop A, Brown KM, Choi J, Zhang T, Harland M, Newton-Bishop JA, Bishop DT, Adams DJ, Iles MM, Robles-Espinoza CD. Defining novel causal SNPs and linked phenotypes at melanoma-associated loci. Hum Mol Genet 2022; 31:2845-2856. [PMID: 35357426 PMCID: PMC9433725 DOI: 10.1093/hmg/ddac074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
A number of genomic regions have been associated with melanoma risk through genome-wide association studies; however, the causal variants underlying the majority of these associations remain unknown. Here, we sequenced either the full locus or the functional regions including exons of 19 melanoma-associated loci in 1959 British melanoma cases and 737 controls. Variant filtering followed by Fisher's exact test analyses identified 66 variants associated with melanoma risk. Sequential conditional logistic regression identified the distinct haplotypes on which variants reside, and massively parallel reporter assays provided biological insights into how these variants influence gene function. We performed further analyses to link variants to melanoma risk phenotypes and assessed their association with melanoma-specific survival. Our analyses replicate previously known associations in the melanocortin 1 receptor (MC1R) and tyrosinase (TYR) loci, while identifying novel potentially causal variants at the MTAP/CDKN2A and CASP8 loci. These results improve our understanding of the architecture of melanoma risk and outcome.
Collapse
Affiliation(s)
- Carolina Castaneda-Garcia
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, México 76230, USA
| | - Vivek Iyer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB101SA, UK
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BN, UK
| | - Adam Trower
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, USA
| | - Alastair Droop
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB101SA, UK
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Harland
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Julia A Newton-Bishop
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - D Timothy Bishop
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, USA
| | - David J Adams
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB101SA, UK
| | - Mark M Iles
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds LS9 7TF, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS9 7TF, USA
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, México 76230, USA
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB101SA, UK
| |
Collapse
|
15
|
Pflugfelder A, Yong XLH, Jagirdar K, Eigentler TK, Soyer HP, Sturm RA, Flatz L, Duffy DL. Genome-Wide Association Study Suggests the Variant rs7551288*A within the DHCR24 Gene Is Associated with Poor Overall Survival in Melanoma Patients. Cancers (Basel) 2022; 14:cancers14102410. [PMID: 35626014 PMCID: PMC9139953 DOI: 10.3390/cancers14102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The aim of this work was to investigate prognostic genetic factors in melanoma patients. Phenotypic and disease data as well as biomaterial were collected after informed consent from patients followed up in a Skin Cancer Center of a University clinic. Genome-wide analysis (GWAS) was performed with survival data of 556 melanoma patients and genetic data including more than 300,000 common polymorphisms. The SNP rs7551288 reached suggestive genome-wide significance (p = 2 × 10−6). This intronic variant of the DHCR24 gene is involved in the cholesterol synthesis pathway. Further analyses and a literature review suggest an important role of this locus for the clinical course of disease in melanoma patients. Abstract Melanoma incidence rates are high among individuals with fair skin and multiple naevi. Established prognostic factors are tumour specific, and less is known about prognostic host factors. A total of 556 stage I to stage IV melanoma patients from Germany with phenotypic and disease-specific data were analysed; 64 of these patients died of melanoma after a median follow-up time of 8 years. Germline DNA was assessed by the HumanCoreExome BeadChip and data of 356,384 common polymorphisms distributed over all 23 chromosomes were used for a genome-wide analysis. A suggestive genome-wide significant association of the intronic allele rs7551288*A with diminished melanoma-specific survival was detected (p = 2 × 10−6). The frequency of rs7551288*A was 0.43 and was not associated with melanoma risk, hair and eye colour, tanning and total naevus count. Cox regression multivariate analyses revealed a 5.31-fold increased risk of melanoma-specific death for patients with the rs7551288 A/A genotype, independent of tumour thickness, ulceration and stage of disease at diagnoses. The variant rs7551288 belongs to the DHCR24 gene, which encodes Seladin-1, an enzyme involved in the biosynthesis of cholesterol. Further investigations are needed to confirm this genetic variant as a novel prognostic biomarker and to explore whether specific treatment strategies for melanoma patients might be derived from it.
Collapse
Affiliation(s)
- Annette Pflugfelder
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia; (X.L.H.Y.); (K.J.); (H.P.S.); (R.A.S.); (D.L.D.)
- Center of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany;
- Correspondence:
| | - Xuan Ling Hilary Yong
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia; (X.L.H.Y.); (K.J.); (H.P.S.); (R.A.S.); (D.L.D.)
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kasturee Jagirdar
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia; (X.L.H.Y.); (K.J.); (H.P.S.); (R.A.S.); (D.L.D.)
- Biochemistry and Molecular Biology Department, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Thomas K. Eigentler
- Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10177 Berlin, Germany;
| | - H. Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia; (X.L.H.Y.); (K.J.); (H.P.S.); (R.A.S.); (D.L.D.)
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Richard A. Sturm
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia; (X.L.H.Y.); (K.J.); (H.P.S.); (R.A.S.); (D.L.D.)
| | - Lukas Flatz
- Center of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany;
| | - David L. Duffy
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD 4102, Australia; (X.L.H.Y.); (K.J.); (H.P.S.); (R.A.S.); (D.L.D.)
- Genetic Epidemiology, QIMR Berghofer Institute of Medical Research, Herston, QLD 4006, Australia
| |
Collapse
|
16
|
Tímár J, Ladányi A. Molecular Pathology of Skin Melanoma: Epidemiology, Differential Diagnostics, Prognosis and Therapy Prediction. Int J Mol Sci 2022; 23:5384. [PMID: 35628196 PMCID: PMC9140388 DOI: 10.3390/ijms23105384] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022] Open
Abstract
Similar to other malignancies, TCGA network efforts identified the detailed genomic picture of skin melanoma, laying down the basis of molecular classification. On the other hand, genome-wide association studies discovered the genetic background of the hereditary melanomas and the susceptibility genes. These genetic studies helped to fine-tune the differential diagnostics of malignant melanocytic lesions, using either FISH tests or the myPath gene expression signature. Although the original genomic studies on skin melanoma were mostly based on primary tumors, data started to accumulate on the genetic diversity of the progressing disease. The prognostication of skin melanoma is still based on staging but can be completed with gene expression analysis (DecisionDx). Meanwhile, this genetic knowledge base of skin melanoma did not turn to the expected wide array of target therapies, except the BRAF inhibitors. The major breakthrough of melanoma therapy was the introduction of immune checkpoint inhibitors, which showed outstanding efficacy in skin melanoma, probably due to their high immunogenicity. Unfortunately, beyond BRAF, KIT mutations and tumor mutation burden, no clinically validated predictive markers exist in melanoma, although several promising biomarkers have been described, such as the expression of immune-related genes or mutations in the IFN-signaling pathway. After the initial success of either target or immunotherapies, sooner or later, relapses occur in the majority of patients, due to various induced genetic alterations, the diagnosis of which could be developed to novel predictive genetic markers.
Collapse
Affiliation(s)
- József Tímár
- 2nd Department of Pathology, Semmelweis University, 1191 Budapest, Hungary
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| |
Collapse
|
17
|
Kim Y, Yin J, Huang H, Jorgenson E, Choquet H, Asgari MM. Genome-wide association study of actinic keratosis identifies new susceptibility loci implicated in pigmentation and immune regulation pathways. Commun Biol 2022; 5:386. [PMID: 35449187 PMCID: PMC9023580 DOI: 10.1038/s42003-022-03301-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 03/18/2022] [Indexed: 01/07/2023] Open
Abstract
Actinic keratosis (AK) is a common precancerous cutaneous neoplasm that arises on chronically sun-exposed skin. AK susceptibility has a moderate genetic component, and although a few susceptibility loci have been identified, including IRF4, TYR, and MC1R, additional loci have yet to be discovered. We conducted a genome-wide association study of AK in non-Hispanic white participants of the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (n = 63,110, discovery cohort), with validation in the Mass-General Brigham (MGB) Biobank cohort (n = 29,130). We identified eleven loci (P < 5 × 10-8), including seven novel loci, of which four novel loci were validated. In a meta-analysis (GERA + MGB), one additional novel locus, TRPS1, was identified. Genes within the identified loci are implicated in pigmentation (SLC45A2, IRF4, BNC2, TYR, DEF8, RALY, HERC2, and TRPS1), immune regulation (FOXP1 and HLA-DQA1), and cell signaling and tissue remodeling (MMP24) pathways. Our findings provide novel insight into the genetics and pathogenesis of AK susceptibility.
Collapse
Affiliation(s)
- Yuhree Kim
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
| | - Maryam M Asgari
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA.
| |
Collapse
|
18
|
Feng C, Li T, Xiao J, Wang J, Meng X, Niu H, Jiang B, Huang L, Deng X, Yan X, Wu D, Fang Y, Lin Y, Chen F, Wu X, Zhao X, Feng J. Tumor Microenvironment Profiling Identifies Prognostic Signatures and Suggests Immunotherapeutic Benefits in Neuroblastoma. Front Cell Dev Biol 2022; 10:814836. [PMID: 35493068 PMCID: PMC9047956 DOI: 10.3389/fcell.2022.814836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) influences disease initiation and progression. Cross-talks of cells within TME can affect the efficacy of immunotherapies. However, a precise, concise, and comprehensive TME landscape in neuroblastoma (NB) has not been established. Here, we profiled the TME landscape of 498 NB-related patients on a self-curated gene list and identified three prognostic TMEsubgroups. The differentially expressed genes in these three TMEsubgroups were used to construct a genetic signature of the TME landscape and characterize three GeneSubgroups. The subgroup with the worst overall survival prognosis, the TMEsubgroup/GeneSubgroup3, lacked immune cell infiltration and received the highest scores of MYCN- and ALK-related signatures and lowest scores of immune pathways. Additionally, we found that the GeneSubgroup3 might be benefited from anti-GD2 instead of anti-PD-1 therapy. We further created a 48-gene signature, the TMEscore, to infer prognosis and validated it in three independent NB cohorts and a pan-cancer cohort of 9,460 patients. We did RNA-seq on 16 samples and verified that TMEscore was higher in patients with stage 3/4 than stage 1/2 diseases. The TMEscore could also predict responses for several immunotherapies. After adding clinical features, we found that the nomogram-based score system, the TMEIndex, surpassed the current risk system at predicting survivals. Our analysis explained TME at the transcriptome level and paved the way for immunotherapies in NB.
Collapse
Affiliation(s)
- Chenzhao Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huizhong Niu
- Department of General Surgery, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Bin Jiang
- Department of General Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Huang
- Department of General Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaogeng Deng
- Department of Pediatric Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xueqiang Yan
- Department of Pediatric Surgery, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianming Wu
- Department of Pediatric Surgery, Fujian Provincial Maternity and Children’s Hospital, Fuzhou, China
| | - Yifan Fang
- Department of Pediatric Surgery, Fujian Provincial Maternity and Children’s Hospital, Fuzhou, China
| | - Yu Lin
- Department of Pediatric Surgery, Fujian Provincial Maternity and Children’s Hospital, Fuzhou, China
| | - Feng Chen
- Department of Pediatric Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojuan Wu
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Zhao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Lesueur F, Easton DF, Renault AL, Tavtigian SV, Bernstein JL, Kote-Jarai Z, Eeles RA, Plaseska-Karanfia D, Feliubadaló L, Arun B, Herold N, Versmold B, Schmutzler RK, Nguyen-Dumont T, Southey MC, Dorling L, Dunning AM, Ghiorzo P, Dalmasso BS, Cavaciuti E, Le Gal D, Roberts NJ, Dominguez-Valentin M, Rookus M, Taylor AMR, Goldstein AM, Goldgar DE, Stoppa-Lyonnet D, Andrieu N. First international workshop of the ATM and cancer risk group (4-5 December 2019). Fam Cancer 2022; 21:211-227. [PMID: 34125377 PMCID: PMC9969796 DOI: 10.1007/s10689-021-00248-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022]
Abstract
The first International Workshop of the ATM and Cancer Risk group focusing on the role of Ataxia-Telangiectasia Mutated (ATM) gene in cancer was held on December 4 and 5, 2019 at Institut Curie in Paris, France. It was motivated by the fact that germline ATM pathogenic variants have been found to be associated with different cancer types. However, due to the lack of precise age-, sex-, and site-specific risk estimates, no consensus on management guidelines for variant carriers exists, and the clinical utility of ATM variant testing is uncertain. The meeting brought together epidemiologists, geneticists, biologists and clinicians to review current knowledge and on-going challenges related to ATM and cancer risk. This report summarizes the meeting sessions content that covered the latest results in family-based and population-based studies, the importance of accurate variant classification, the effect of radiation exposures for ATM variant carriers, and the characteristics of ATM-deficient tumors. The report concludes that ATM variant carriers outside of the context of Ataxia-Telangiectasia may benefit from effective cancer risk management and therapeutic strategies and that efforts to set up large-scale studies in the international framework to achieve this goal are necessary.
Collapse
Affiliation(s)
- Fabienne Lesueur
- Genetic Epidemiology of Cancer Team, INSERM U900, Institut Curie, 26 rue d'Ulm, 75005, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Douglas F Easton
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
- Department of Oncology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - Anne-Laure Renault
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | | | | | | | | | - Dijana Plaseska-Karanfia
- Research Centre for Genetic Engineering and Biotechnology « Georgi D. Efremov », MASA, Skopje, UK
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Banu Arun
- University of Texas MD Anderson Cancer Center, Houston, USA
| | - Natalie Herold
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Beatrix Versmold
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Rita Katharina Schmutzler
- Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tú Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Victoria, 3004, Australia
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Victoria, 3004, Australia
| | - Leila Dorling
- Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Department of Oncology, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Bruna Samia Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Eve Cavaciuti
- Genetic Epidemiology of Cancer Team, INSERM U900, Institut Curie, 26 rue d'Ulm, 75005, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Dorothée Le Gal
- Genetic Epidemiology of Cancer Team, INSERM U900, Institut Curie, 26 rue d'Ulm, 75005, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
- PSL Research University, Paris, France
| | - Nicholas J Roberts
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University, Baltimore, USA
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Matti Rookus
- Netherlands Cancer Institute NKI, Amsterdam, The Netherlands
| | - Alexander M R Taylor
- Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, UK
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, USA
| | | | - Dominique Stoppa-Lyonnet
- Université Paris Descartes, Paris, France
- Service de Génétique, Institut Curie, Paris, France
- INSERM U830, Paris, France
| | - Nadine Andrieu
- Genetic Epidemiology of Cancer Team, INSERM U900, Institut Curie, 26 rue d'Ulm, 75005, Paris, France.
- Institut Curie, Paris, France.
- Mines ParisTech, Fontainebleau, France.
- PSL Research University, Paris, France.
| |
Collapse
|
20
|
Marley AR, Li M, Champion VL, Song Y, Han J, Li X. Citrus-Gene interaction and melanoma risk in the UK Biobank. Int J Cancer 2022; 150:976-983. [PMID: 34724200 PMCID: PMC10015424 DOI: 10.1002/ijc.33862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/29/2021] [Accepted: 10/15/2021] [Indexed: 11/10/2022]
Abstract
High citrus consumption may increase melanoma risk; however, little is known about the biological mechanisms of this association, or whether it is modified by genetic variants. We conducted a genome-wide analysis of gene-citrus consumption interactions on melanoma risk among 1563 melanoma cases and 193 296 controls from the UK Biobank. Both the 2-degrees-of-freedom (df) joint test of genetic main effect and gene-environment (G-E) interaction and the standard 1-df G-E interaction test were performed. Three index SNPs (lowest P-value SNP among highly correlated variants [r2 > .6]) were identified from among the 365 genome-wide significant 2-df test results (rs183783391 on chromosome 3 [MITF], rs869329 on chromosome 9 [MTAP] and rs11446223 on chromosome 16 [DEF8]). Although all three were statistically significant for the 2-df test (4.25e-08, 1.98e-10 and 4.93e-13, respectively), none showed evidence of interaction according to the 1-df test (P = .73, .24 and .12, respectively). Eight nonindex, 2-df test significant SNPs on chromosome 16 were significant (P < .05) according to the 1-df test, providing evidence of citrus-gene interaction. Seven of these SNPs were mapped to AFG3L1P (rs199600347, rs111822773, rs113178244, rs3803683, rs73283867, rs78800020, rs73283871), and one SNP was mapped to GAS8 (rs74583214). We identified several genetic loci that may elucidate the association between citrus consumption and melanoma risk. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Andrew R Marley
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, Indiana, USA
| | - Ming Li
- Department of Epidemiology and Biostatistics, Indiana University School of Public health, Bloomington, Indiana, USA
| | - Victoria L Champion
- Department of Community Health Systems, Indiana University School of Nursing, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Yiqing Song
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, Indiana, USA
| | - Jiali Han
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Xin Li
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| |
Collapse
|
21
|
Scionti F, Arbitrio M, Caracciolo D, Pensabene L, Tassone P, Tagliaferri P, Di Martino MT. Integration of DNA Microarray with Clinical and Genomic Data. Methods Mol Biol 2022; 2401:239-248. [PMID: 34902132 DOI: 10.1007/978-1-0716-1839-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA microarrays have been widely employed to understand cancer development. This technology is able to measure expression levels of a large numbers of genes or to genotype multiple regions of a genome in a massively parallel experiment. In addition, the detection of methylation patterns and gene copy number variations are also performed. Clinicians began to apply these findings in personalized medicine for the selection of cancer therapy according to the individual's cancer genomic profile. Because cancer is a complex disease it is of great value to integrate microarray data with genomic and clinical data. Here, we presented an overview of DNA microarray technology and discuss about benefits and challenging of microarray data integration.
Collapse
Affiliation(s)
- Francesca Scionti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Messina, Italy
| | - Mariamena Arbitrio
- Institute for Biomedical Research and Innovation (IRIB-CNR), Section of Catanzaro, Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Medical and Surgical Sciences, Pediatric Unit, Magna Græcia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy.
| |
Collapse
|
22
|
Association of Melanoma-Risk Variants with Primary Melanoma Tumor Prognostic Characteristics and Melanoma-Specific Survival in the GEM Study. Curr Oncol 2021; 28:4756-4771. [PMID: 34898573 PMCID: PMC8628692 DOI: 10.3390/curroncol28060401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWAS) and candidate pathway studies have identified low-penetrant genetic variants associated with cutaneous melanoma. We investigated the association of melanoma-risk variants with primary melanoma tumor prognostic characteristics and melanoma-specific survival. The Genes, Environment, and Melanoma Study enrolled 3285 European origin participants with incident invasive primary melanoma. For each of 47 melanoma-risk single nucleotide polymorphisms (SNPs), we used linear and logistic regression modeling to estimate, respectively, the per allele mean changes in log of Breslow thickness and odds ratios for presence of ulceration, mitoses, and tumor-infiltrating lymphocytes (TILs). We also used Cox proportional hazards regression modeling to estimate the per allele hazard ratios for melanoma-specific survival. Passing the false discovery threshold (p = 0.0026) were associations of IRF4 rs12203592 and CCND1 rs1485993 with log of Breslow thickness, and association of TERT rs2242652 with presence of mitoses. IRF4 rs12203592 also had nominal associations (p < 0.05) with presence of mitoses and melanoma-specific survival, as well as a borderline association (p = 0.07) with ulceration. CCND1 rs1485993 also had a borderline association with presence of mitoses (p = 0.06). MX2 rs45430 had nominal associations with log of Breslow thickness, presence of mitoses, and melanoma-specific survival. Our study indicates that further research investigating the associations of these genetic variants with underlying biologic pathways related to tumor progression is warranted.
Collapse
|
23
|
A large Canadian cohort provides insights into the genetic architecture of human hair colour. Commun Biol 2021; 4:1253. [PMID: 34737440 PMCID: PMC8568909 DOI: 10.1038/s42003-021-02764-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/08/2021] [Indexed: 12/05/2022] Open
Abstract
Hair colour is a polygenic phenotype that results from differences in the amount and ratio of melanins located in the hair bulb. Genome-wide association studies (GWAS) have identified many loci involved in the pigmentation pathway affecting hair colour. However, most of the associated loci overlap non-protein coding regions and many of the molecular mechanisms underlying pigmentation variation are still not understood. Here, we conduct GWAS meta-analyses of hair colour in a Canadian cohort of 12,741 individuals of European ancestry. By performing fine-mapping analyses we identify candidate causal variants in pigmentation loci associated with blonde, red and brown hair colour. Additionally, we observe colocalization of several GWAS hits with expression and methylation quantitative trait loci (QTLs) of cultured melanocytes. Finally, transcriptome-wide association studies (TWAS) further nominate the expression of EDNRB and CDK10 as significantly associated with hair colour. Our results provide insights on the mechanisms regulating pigmentation biology in humans.
Collapse
|
24
|
Potjer TP, van der Grinten TWJ, Lakeman IMM, Bollen SH, Rodríguez-Girondo M, Iles MM, Barrett JH, Kiemeney LA, Gruis NA, van Asperen CJ, van der Stoep N. Association between a 46-SNP Polygenic Risk Score and melanoma risk in Dutch patients with familial melanoma. J Med Genet 2021; 58:760-766. [PMID: 32994281 PMCID: PMC8551976 DOI: 10.1136/jmedgenet-2020-107251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Familial clustering of melanoma suggests a shared genetic predisposition among family members, but only 10%-40% of familial cases carry a pathogenic variant in a known high-risk melanoma susceptibility gene. We investigated whether a melanoma-specific Polygenic Risk Score (PRS) is associated with melanoma risk in patients with genetically unexplained familial melanoma. METHODS Dutch familial melanoma cases (n=418) were genotyped for 46 SNPs previously identified as independently associated with melanoma risk. The 46-SNP PRS was calculated and standardised to 3423 healthy controls (sPRS) and the association between PRS and melanoma risk was modelled using logistic regression. Within the case series, possible differences were further explored by investigating the PRS in relation to (1) the number of primary melanomas in a patient and (2) the extent of familial clustering of melanoma. RESULTS The PRS was significantly associated with melanoma risk, with a per-SD OR of 2.12 (95% CI 1.90 to 2.35, p<0.001), corresponding to a 5.70-fold increased risk (95% CI 3.93 to 8.28) when comparing the top 90th to the middle 40-60th PRS percentiles. The mean PRS was significantly higher in cases with multiple primary melanomas than in cases with a single melanoma (sPRS 1.17 vs 0.71, p=0.001). Conversely, cases from high-density melanoma families had a lower (but non-significant) mean PRS than cases from low-density families (sPRS 0.60 vs 0.94, p=0.204). CONCLUSION Our work underlines the significance of a PRS in determining melanoma susceptibility and encourages further exploration of the diagnostic value of a PRS in genetically unexplained melanoma families.
Collapse
Affiliation(s)
- Thomas P Potjer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Inge M M Lakeman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander H Bollen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mar Rodríguez-Girondo
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark M Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, UK
| | - Jennifer H Barrett
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, UK
| | - Lambertus A Kiemeney
- Department of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nienke van der Stoep
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Qian D, Liu H, Zhao L, Luo S, Walsh KM, Huang J, Li CY, Wei Q. A pleiotropic ATM variant (rs1800057 C>G) is associated with risk of multiple cancers. Carcinogenesis 2021; 43:60-66. [PMID: 34643693 DOI: 10.1093/carcin/bgab092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
ATM (ataxia-telangiectasia mutated) is an important cell-cycle checkpoint kinase required for cellular response to DNA damage. Activated by DNA double strand breaks, ATM regulates the activities of many downstream proteins involved in various carcinogenic events. Therefore, ATM or its genetic variants may have a pleiotropic effect in cancer development. We conducted a pleiotropic analysis to evaluate associations between genetic variants of ATM and risk of multiple cancers. With genotyping data extracted from previously published genome-wide association studies of various cancers, we performed multivariate logistic regression analysis, followed by a meta-analysis for each cancer site, to identify cancer risk-associated single-nucleotide polymorphisms (SNPs). In the ASSET two-sided analysis, we found that two ATM SNPs were significantly associated with risk of multiple cancers. One tagging SNP (rs1800057 C>G) was associated with risk of multiple cancers (two-sided P=5.27×10 -7). Because ATM rs1800057 is a missense variant, we also explored the intermediate phenotypes through which this variant may confer risk of multiple cancers and identified a possible immune-mediated effect of this variant. Our findings indicate that genetic variants of ATM may have a pleiotropic effect on cancer risk and thus provide an important insight into common mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Danwen Qian
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lingling Zhao
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Neurosurgery, Duke University, Durham, NC 27710, USA
| | - Jiaoti Huang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of pathology, Duke University, Durham, NC 27710, USA
| | - Chuan-Yuan Li
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
26
|
He Y, Liu H, Luo S, Amos CI, Lee JE, Li X, Nan H, Wei Q. Genetic variants of SDCCAG8 and MAGI2 in mitosis-related pathway genes are independent predictors of cutaneous melanoma-specific survival. Cancer Sci 2021; 112:4355-4364. [PMID: 34375487 PMCID: PMC8486203 DOI: 10.1111/cas.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/01/2022] Open
Abstract
Mitosis is a prognostic factor for cutaneous melanoma (CM), but accurate mitosis detection in CM tissues is difficult. Therefore, the 8th Edition of the American Joint Committee on Cancer staging system has removed the mitotic rate as a category criterion of the tumor T-category, based on the evidence that the mitotic rate was not an independent prognostic factor for melanoma survival. As single-nucleotide polymorphisms (SNPs) have been shown to be potential predictors for cutaneous melanoma-specific survival (CMSS), we investigated the potential prognostic value of SNPs in mitosis-related pathway genes in CMSS by analyzing their associations with outcomes of 850 CM patients from The University of Texas MD Anderson Cancer Center in a discovery dataset and validated the findings in another dataset of 409 CM patients from the Harvard University Nurses' Health Study and Health Professionals Follow-up Study. In both datasets, we identified two SNPs (SDCCAG8 rs10803138 G>A and MAGI2 rs3807694 C>T) as independent prognostic factors for CMSS, with adjusted allelic hazards ratios of 1.49 (95% confidence interval = 1.17-1.90, P = .001) and 1.45 (1.13-1.86, P = .003), respectively. Furthermore, their combined unfavorable alleles also predicted a poor survival in both discovery and validation datasets in a dose-response manner (Ptrend = .0006 and .0001, respectively). Additional functional analysis revealed that both SDCCAG8 rs10803138 A and MAGI2 rs3807694 T alleles were associated with elevated mRNA expression levels in normal tissues. Therefore, these findings suggest that SDCCAG8 rs10803138 G>A and MAGI2 rs3807694 C>T are independent prognostic biomarkers for CMSS, possibly by regulating the mRNA expression of the corresponding genes involved in mitosis.
Collapse
Affiliation(s)
- Yuanmin He
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| | - Hongliang Liu
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| | - Sheng Luo
- Department of Biostatistics and BioinformaticsDuke University School of MedicineDurhamNCUSA
| | - Christopher I. Amos
- Institute for Clinical and Translational ResearchBaylor College of MedicineHoustonTXUSA
| | - Jeffrey E. Lee
- Department of Surgical OncologyThe University of Texas M. D. Anderson Cancer CenterHoustonTXUSA
| | - Xin Li
- Department of EpidemiologyRichard M. Fairbanks School of Public HealthIndiana UniversityIndianapolisINUSA
| | - Hongmei Nan
- Department of EpidemiologyRichard M. Fairbanks School of Public HealthIndiana UniversityIndianapolisINUSA
| | - Qingyi Wei
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
| |
Collapse
|
27
|
Bakshi A, Yan M, Riaz M, Polekhina G, Orchard SG, Tiller J, Wolfe R, Joshi A, Cao Y, McInerney-Leo AM, Yanes T, Janda M, Soyer HP, Cust AE, Law MH, Gibbs P, McLean C, Chan AT, McNeil JJ, Mar VJ, Lacaze P. Genomic Risk Score for Melanoma in a Prospective Study of Older Individuals. J Natl Cancer Inst 2021; 113:1379-1385. [PMID: 33837773 PMCID: PMC8921762 DOI: 10.1093/jnci/djab076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recent genome-wide association meta-analysis for melanoma doubled the number of previously identified variants. We assessed the performance of an updated polygenic risk score (PRS) in a population of older individuals, where melanoma incidence and cumulative ultraviolet radiation exposure is greatest. METHODS We assessed a PRS for cutaneous melanoma comprising 55 variants in a prospective study of 12 712 individuals in the ASPirin in Reducing Events in the Elderly Trial. We evaluated incident melanomas diagnosed during the trial and prevalent melanomas diagnosed preenrolment (self-reported). Multivariable models examined associations between PRS as a continuous variable (per SD) and categorical (low-risk [0%-20%], medium-risk [21%-80%], high-risk [81%-100%] groups) with incident melanoma. Logistic regression examined the association between PRS and prevalent melanoma. RESULTS At baseline, mean participant age was 75 years; 55.0% were female, and 528 (4.2%) had prevalent melanomas. During follow-up (median = 4.7 years), 120 (1.0%) incident cutaneous melanomas occurred, 98 of which were in participants with no history. PRS was associated with incident melanoma (hazard ratio = 1.46 per SD, 95% confidence interval [CI] = 1.20 to 1.77) and prevalent melanoma (odds ratio [OR] = 1.55 per SD, 95% CI = 1.42 to 1.69). Participants in the highest-risk PRS group had increased risk compared with the low-risk group for incident melanoma (OR = 2.51, 95% CI = 1.28 to 4.92) and prevalent melanoma (OR = 3.66, 95% CI = 2.69 to 5.05). When stratifying by sex, only males had an association between the PRS and incident melanoma, whereas both sexes had an association between the PRS and prevalent melanoma. CONCLUSIONS A genomic risk score is associated with melanoma risk in older individuals and may contribute to targeted surveillance.
Collapse
Affiliation(s)
- Andrew Bakshi
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Mabel Yan
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Moeen Riaz
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Galina Polekhina
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Suzanne G Orchard
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jane Tiller
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Rory Wolfe
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Amit Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; MGH Cancer Center, Boston, MA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA; Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Aideen M McInerney-Leo
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, USA
| | - Tatiane Yanes
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, USA
| | - Monika Janda
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, USA
- Centre of Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - H Peter Soyer
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, USA
| | - Anne E Cust
- Sydney School of Public Health and Melanoma Institute Australia, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Matthew H Law
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Health, and Institute of health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia, Personalised Oncology Division, Walter and Eliza Hall Institute Medical Research and Faculty of Medicine University of Melbourne, Australia
| | - Peter Gibbs
- Department of Anatomical Pathology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; MGH Cancer Center, Boston, MA, USA
| | - John J McNeil
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Victoria J Mar
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- Victorian Melanoma Service, Alfred Health, Melbourne, Australia
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
28
|
Xu M, Mehl L, Zhang T, Thakur R, Sowards H, Myers T, Jessop L, Chesi A, Johnson ME, Wells AD, Michael HT, Bunda P, Jones K, Higson H, Hennessey RC, Jermusyk A, Kovacs MA, Landi MT, Iles MM, Goldstein AM, Choi J, Chanock SJ, Grant SF, Chari R, Merlino G, Law MH, Brown KM, Brown KM. A UVB-responsive common variant at chromosome band 7p21.1 confers tanning response and melanoma risk via regulation of the aryl hydrocarbon receptor, AHR. Am J Hum Genet 2021; 108:1611-1630. [PMID: 34343493 DOI: 10.1016/j.ajhg.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified a melanoma-associated locus on chromosome band 7p21.1 with rs117132860 as the lead SNP and a secondary independent signal marked by rs73069846. rs117132860 is also associated with tanning ability and cutaneous squamous cell carcinoma (cSCC). Because ultraviolet radiation (UVR) is a key environmental exposure for all three traits, we investigated the mechanisms by which this locus contributes to melanoma risk, focusing on cellular response to UVR. Fine-mapping of melanoma GWASs identified four independent sets of candidate causal variants. A GWAS region-focused Capture-C study of primary melanocytes identified physical interactions between two causal sets and the promoter of the aryl hydrocarbon receptor (AHR). Subsequent chromatin state annotation, eQTL, and luciferase assays identified rs117132860 as a functional variant and reinforced AHR as a likely causal gene. Because AHR plays critical roles in cellular response to dioxin and UVR, we explored links between this SNP and AHR expression after both 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and ultraviolet B (UVB) exposure. Allele-specific AHR binding to rs117132860-G was enhanced following both, consistent with predicted weakened AHR binding to the risk/poor-tanning rs117132860-A allele, and allele-preferential AHR expression driven from the protective rs117132860-G allele was observed following UVB exposure. Small deletions surrounding rs117132860 introduced via CRISPR abrogates AHR binding, reduces melanocyte cell growth, and prolongs growth arrest following UVB exposure. These data suggest AHR is a melanoma susceptibility gene at the 7p21.1 risk locus and rs117132860 is a functional variant within a UVB-responsive element, leading to allelic AHR expression and altering melanocyte growth phenotypes upon exposure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
He Y, Liu H, Luo S, Amos CI, Lee JE, Yang K, Qureshi AA, Han J, Wei Q. Genetic variants of EML1 and HIST1H4E in myeloid cell-related pathway genes independently predict cutaneous melanoma-specific survival. Am J Cancer Res 2021; 11:3252-3262. [PMID: 34249459 PMCID: PMC8263692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 06/13/2023] Open
Abstract
Both in vivo and in vitro evidence has supported a key role of myeloid cells in immune suppression in melanoma and in promoting melanocytic metastases. Some single-nucleotide polymorphisms (SNPs) have been shown to predict cutaneous melanoma-specific survival (CMSS), but the association between genetic variation in myeloid cell-related genes and cutaneous melanoma (CM) patient survival remains unknown. METHODS we investigated associations between SNPs in myeloid cell-related pathway genes and CMSS in a discovery dataset of 850 CM patients and replicated the findings in another dataset of 409 CM patients. RESULTS we identified two SNPs (EML1 rs10151787 A>G and HIST1H4E rs2069018 T>C) as independent prognostic factors for CMSS, with adjusted allelic hazards ratios of 1.56 (95% confidence interval =1.19-2.05, P=0.001) and 1.66 (1.22-2.26, P=0.001), respectively; so were their combined unfavorable alleles in a dose-response manner in both discovery and replication datasets (P trend<0.001 and 0.002, respectively). Additional functional analysis revealed that both EML1 rs10151787 G and HIST1H4E rs2069018 C alleles were associated with elevated mRNA expression levels in normal tissues. CONCLUSIONS Our findings suggest that EML1 rs10151787 A>G and HIST1H4E rs2069018 T>C are independent prognostic biomarkers for CMSS.
Collapse
Affiliation(s)
- Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of MedicineDurham, NC 27710, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of MedicineHouston, TX 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer CenterHouston, TX 77030, USA
| | - Keming Yang
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana UniversityIndianapolis, IN 46202, USA
| | - Abrar A Qureshi
- Department of Dermatology, Rhode Island HospitalProvidence, RI 02901, USA
- Warren Alpert Medical School at Brown UniversityProvidence, RI 02901, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana UniversityIndianapolis, IN 46202, USA
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
- Department of Medicine, Duke University School of MedicineDurham, NC 27710, USA
| |
Collapse
|
30
|
Chen Y, André M, Adhikari K, Blin M, Bonfante B, Mendoza-Revilla J, Fuentes-Guajardo M, Palmal S, Chacón-Duque JC, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Lozano RB, Everardo-Martínez P, Gómez-Valdés J, Villamil-Ramírez H, de Cerqueira CCS, Hünemeier T, Ramallo V, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Bedoya G, Rothhammer F, Balding D, Tobin DJ, Wang S, Faux P, Ruiz-Linares A. A genome-wide association study identifies novel gene associations with facial skin wrinkling and mole count in Latin Americans. Br J Dermatol 2021; 185:988-998. [PMID: 33959940 DOI: 10.1111/bjd.20436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Genome-wide association studies (GWASs) have identified genes influencing skin ageing and mole count in Europeans, but little is known about the relevance of these (or other genes) in non-Europeans. OBJECTIVES To conduct a GWAS for facial skin ageing and mole count in adults < 40 years old, of mixed European, Native American and African ancestry, recruited in Latin America. METHODS Skin ageing and mole count scores were obtained from facial photographs of over 6000 individuals. After quality control checks, three wrinkling traits and mole count were retained for genetic analyses. DNA samples were genotyped with Illumina's HumanOmniExpress chip. Association testing was performed on around 8 703 729 single-nucleotide polymorphisms (SNPs) across the autosomal genome. RESULTS Genome-wide significant association was observed at four genome regions: two were associated with wrinkling (in 1p13·3 and 21q21·2), one with mole count (in 1q32·3) and one with both wrinkling and mole count (in 5p13·2). Associated SNPs in 5p13·2 and in 1p13·3 are intronic within SLC45A2 and VAV3, respectively, while SNPs in 1q32·3 are near the SLC30A1 gene, and those in 21q21·2 occur in a gene desert. Analyses of SNPs in IRF4 and MC1R are consistent with a role of these genes in skin ageing. CONCLUSIONS We replicate the association of wrinkling with variants in SLC45A2, IRF4 and MC1R reported in Europeans. We identify VAV3 and SLC30A1 as two novel candidate genes impacting on wrinkling and mole count, respectively. We provide the first evidence that SLC45A2 influences mole count, in addition to variants in this gene affecting melanoma risk in Europeans.
Collapse
Affiliation(s)
- Y Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, China
| | - M André
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille, 13005, France.,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
| | - K Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, UK.,Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| | - M Blin
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille, 13005, France
| | - B Bonfante
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille, 13005, France
| | - J Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú.,Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, 75015, France
| | - M Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, 1000000, Chile
| | - S Palmal
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille, 13005, France
| | - J C Chacón-Duque
- Division of Vertebrates and Anthropology, Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| | - M Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - V Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - V Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - C Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - W Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - R B Lozano
- National Institute of Anthropology and History, Mexico City, MC, 6600, Mexico.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, 07745, Germany
| | - P Everardo-Martínez
- National Institute of Anthropology and History, Mexico City, MC, 6600, Mexico
| | - J Gómez-Valdés
- National Institute of Anthropology and History, Mexico City, MC, 6600, Mexico
| | - H Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, MC, 4510, Mexico
| | | | - T Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - V Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil.,Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, U9129ACD, Argentina
| | - R Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, U9129ACD, Argentina
| | - L Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | - M-C Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | - V Acuña-Alonzo
- National Institute of Anthropology and History, Mexico City, MC, 6600, Mexico
| | - S Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, MC, 4510, Mexico
| | - C Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - G Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 31, Perú
| | - G Bedoya
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - F Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile
| | - D Balding
- Melbourne Integrative Genomics, Schools of BioSciences and Mathematics & Statistics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - D J Tobin
- The Charles Institute of Dermatology, University College Dublin, Dublin, Ireland
| | - S Wang
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - P Faux
- UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille, 13005, France
| | - A Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, China.,UMR 7268 ADES, CNRS, Aix-Marseille Université, EFS, Faculté de Médecine Timone, Marseille, 13005, France.,Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| |
Collapse
|
31
|
Juraleviciute M, Nsengimana J, Newton-Bishop J, Hendriks GJ, Slipicevic A. MX2 mediates establishment of interferon response profile, regulates XAF1, and can sensitize melanoma cells to targeted therapy. Cancer Med 2021; 10:2840-2854. [PMID: 33734579 PMCID: PMC8026919 DOI: 10.1002/cam4.3846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 01/05/2023] Open
Abstract
MX2 is an interferon inducible gene that is mostly known for its antiviral activity. We have previously demonstrated that MX2 is also associated with the tumorigenesis process in melanoma. However, it remains unknown which molecular mechanisms are regulated by MX2 in response to interferon signaling in this disease. Here, we report that MX2 is necessary for the establishment of an interferon‐induced transcriptional profile partially through regulation of STAT1 phosphorylation and other interferon‐related downstream factors, including proapoptotic tumor suppressor XAF1. MX2 and XAF1 expression tightly correlate in both cultured melanoma cell lines and in patient‐derived primary and metastatic tumors, where they also are significantly related with survival. MX2 mediates IFN growth‐inhibitory signals in both XAF1 dependent and independent ways and in a cell type and context‐dependent manner. Higher MX2 expression renders melanoma cells more sensitive to targeted therapy drugs such as vemurafenib and trametinib; however, this effect is XAF1 independent. In summary, we uncovered a new mechanism in the complex regulation of interferon signaling in melanoma that can influence both survival and response to therapy.
Collapse
Affiliation(s)
- Marina Juraleviciute
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jérémie Nsengimana
- Faculty of Medical Sciences, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Newton-Bishop
- Division of Haematology and Immunology, Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Gert J Hendriks
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ana Slipicevic
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
32
|
Fang S, Lu J, Zhou X, Wang Y, Ross MI, Gershenwald JE, Cormier JN, Wargo J, Sui D, Amos CI, Lee JE. Functional annotation of melanoma risk loci identifies novel susceptibility genes. Carcinogenesis 2020; 41:452-457. [PMID: 31630191 DOI: 10.1093/carcin/bgz173] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
Genome-wide association study (GWAS)-identified single-nucleotide polymorphisms (SNPs) are tag SNPs located in both transcribed and non-coding regulatory DNA regions, rather than representing causal or functional variants for disease. To identify functional variants or genes for melanoma susceptibility, we used functional mapping and annotation (FUMA) to perform functional annotation of the summary statistics of 2541 significant melanoma risk SNPs (P < 5 × 10-8) identified by GWAS. The original GWAS melanoma study included 15 990 cases and 26 409 controls, representing the largest international meta-analysis of melanoma susceptibility. We prioritized 330 unique genes, including those in immune cytokine signaling pathways, from 19 loci through positional, expression quantitative trait locus, and chromatin interaction mapping. In comparison, only 38 melanoma-related genes were identified in the original meta-analysis. In addition to the well-known melanoma susceptibility genes confirmed in the meta-analysis (MC1R, CDKN2A, TERT, OCA2 and ARNT/SETDB1), we also identified additional novel genes using FUMA to map SNPs to genes. Through chromatin interaction mapping, we prioritized IFNA7, IFNA10, IFNA16, IFNA17, IFNA14, IFNA6, IFNA21, IFNA4, IFNE and IFNA5; these 10 most significant genes are all involved in immune system and cytokine signaling pathways. In the gene analysis, we identified 72 genes with a P < 2.5 × 10-6. The genes associated with melanoma risk were DEF8 (P = 1.09 × 10-57), DBNDD1 (P = 2.19 × 10-42), SPATA33 (P = 3.54 × 10-38) and MC1R (P = 1.04 × 10-36). In summary, this study identifies novel putative melanoma susceptibility genes and provides a guide for further experimental validation of functional variants and disease-related genes.
Collapse
Affiliation(s)
- Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiachun Lu
- The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Xinke Zhou
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuling Wang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Merrick I Ross
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Janice N Cormier
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dawen Sui
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Rashkin SR, Graff RE, Kachuri L, Thai KK, Alexeeff SE, Blatchins MA, Cavazos TB, Corley DA, Emami NC, Hoffman JD, Jorgenson E, Kushi LH, Meyers TJ, Van Den Eeden SK, Ziv E, Habel LA, Hoffmann TJ, Sakoda LC, Witte JS. Pan-cancer study detects genetic risk variants and shared genetic basis in two large cohorts. Nat Commun 2020; 11:4423. [PMID: 32887889 PMCID: PMC7473862 DOI: 10.1038/s41467-020-18246-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Deciphering the shared genetic basis of distinct cancers has the potential to elucidate carcinogenic mechanisms and inform broadly applicable risk assessment efforts. Here, we undertake genome-wide association studies (GWAS) and comprehensive evaluations of heritability and pleiotropy across 18 cancer types in two large, population-based cohorts: the UK Biobank (408,786 European ancestry individuals; 48,961 cancer cases) and the Kaiser Permanente Genetic Epidemiology Research on Adult Health and Aging cohorts (66,526 European ancestry individuals; 16,001 cancer cases). The GWAS detect 21 genome-wide significant associations independent of previously reported results. Investigations of pleiotropy identify 12 cancer pairs exhibiting either positive or negative genetic correlations; 25 pleiotropic loci; and 100 independent pleiotropic variants, many of which are regulatory elements and/or influence cross-tissue gene expression. Our findings demonstrate widespread pleiotropy and offer further insight into the complex genetic architecture of cross-cancer susceptibility.
Collapse
Affiliation(s)
- Sara R Rashkin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.,Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Khanh K Thai
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Maruta A Blatchins
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Taylor B Cavazos
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.,Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, USA
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Nima C Emami
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.,Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua D Hoffman
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Travis J Meyers
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen K Van Den Eeden
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.,Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Elad Ziv
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.,Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. .,Department of Urology, University of California, San Francisco, San Francisco, CA, USA. .,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Li Y, Shi P, Jiang D. Polymorphism rs1801516 (G > A) in the ATM gene is not associated with overall cancer risk: an updated meta-analysis. J Int Med Res 2020; 48:300060520937618. [PMID: 32674635 PMCID: PMC7370572 DOI: 10.1177/0300060520937618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/06/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The ataxia telangiectasia mutated (ATM) gene contains a functional single nucleotide polymorphism (SNP) rs1801516 (G > A) that may be associated with cancer risk. This meta-analysis aimed to interrogate the relationship between rs1801516 and cancer occurrence and disease etiology. METHODS We retrieved and identified the available case-control studies that met the inclusion criteria from the PubMed, Web of Science, and Embase databases. Odds ratio (OR) and 95% confidence intervals (CIs) were used to measure the association between rs1801516 and cancer risk. Additionally, we performed sensitivity, subgroup, and publication bias analyses. RESULTS After inclusion criteria were met, the meta-analysis included 29 studies, with 9,453 cancer patients (cases) and 14,646 controls. No association was found between rs1801516 and cancer risk (pooled OR = 0.911; 95% CI, 0.740-1.123). Concordantly, no association was found between rs1801516 and cancer risk after subgroup analysis by source of controls, cancer type, or ethnicity, which confirmed the finding of the dominant model that this SNP is not involved in the occurrence of cancer. CONCLUSIONS Through this meta-analysis, we found no association between rs1801516 and cancer occurrence as a risk factor. These data provide useful information for future case-control studies on cancer etiology.
Collapse
Affiliation(s)
- Yueting Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Pengxu Shi
- Department of Bone Surgery, People’s Hospital of Liaoning Province, Shenyang, Liaoning Province, P.R. China
| | - Daqing Jiang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China
| |
Collapse
|
35
|
Choi J, Zhang T, Vu A, Ablain J, Makowski MM, Colli LM, Xu M, Hennessey RC, Yin J, Rothschild H, Gräwe C, Kovacs MA, Funderburk KM, Brossard M, Taylor J, Pasaniuc B, Chari R, Chanock SJ, Hoggart CJ, Demenais F, Barrett JH, Law MH, Iles MM, Yu K, Vermeulen M, Zon LI, Brown KM. Massively parallel reporter assays of melanoma risk variants identify MX2 as a gene promoting melanoma. Nat Commun 2020; 11:2718. [PMID: 32483191 PMCID: PMC7264232 DOI: 10.1038/s41467-020-16590-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified ~20 melanoma susceptibility loci, most of which are not functionally characterized. Here we report an approach integrating massively-parallel reporter assays (MPRA) with cell-type-specific epigenome and expression quantitative trait loci (eQTL) to identify susceptibility genes/variants from multiple GWAS loci. From 832 high-LD variants, we identify 39 candidate functional variants from 14 loci displaying allelic transcriptional activity, a subset of which corroborates four colocalizing melanocyte cis-eQTL genes. Among these, we further characterize the locus encompassing the HIV-1 restriction gene, MX2 (Chr21q22.3), and validate a functional intronic variant, rs398206. rs398206 mediates the binding of the transcription factor, YY1, to increase MX2 levels, consistent with the cis-eQTL of MX2 in primary human melanocytes. Melanocyte-specific expression of human MX2 in a zebrafish model demonstrates accelerated melanoma formation in a BRAFV600E background. Our integrative approach streamlines GWAS follow-up studies and highlights a pleiotropic function of MX2 in melanoma susceptibility. There are more than 20 known melanoma susceptibility genes. Here, using a massively parallel reporter assay, the authors identify risk-associated variants that alter gene transcription, and demonstrate that expression of one such gene, MX2, leads to the promotion of melanoma in a zebrafish model.
Collapse
Affiliation(s)
- Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Andrew Vu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Julien Ablain
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Matthew M Makowski
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 XZ, Nijmegen, The Netherlands
| | - Leandro M Colli
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mai Xu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Rebecca C Hennessey
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Jinhu Yin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Harriet Rothschild
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Cathrin Gräwe
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 XZ, Nijmegen, The Netherlands
| | - Michael A Kovacs
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karen M Funderburk
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Myriam Brossard
- Université de Paris, UMRS-1124, Institut National de la Santé et de la Recherche Médicale (INSERM), F-75006, Paris, France
| | - John Taylor
- Leeds Institute for Data Analytics, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, National Cancer Institute, Frederick, MD, 21701, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Clive J Hoggart
- Department of Medicine, Imperial College London, London, SW7 2BU, UK
| | - Florence Demenais
- Université de Paris, UMRS-1124, Institut National de la Santé et de la Recherche Médicale (INSERM), F-75006, Paris, France
| | - Jennifer H Barrett
- Leeds Institute for Data Analytics, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Mark M Iles
- Leeds Institute for Data Analytics, School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, 6525 XZ, Nijmegen, The Netherlands
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
36
|
Landi MT, Bishop DT, MacGregor S, Machiela MJ, Stratigos AJ, Ghiorzo P, Brossard M, Calista D, Choi J, Fargnoli MC, Zhang T, Rodolfo M, Trower AJ, Menin C, Martinez J, Hadjisavvas A, Song L, Stefanaki I, Scolyer R, Yang R, Goldstein AM, Potrony M, Kypreou KP, Pastorino L, Queirolo P, Pellegrini C, Cattaneo L, Zawistowski M, Gimenez-Xavier P, Rodriguez A, Elefanti L, Manoukian S, Rivoltini L, Smith BH, Loizidou MA, Del Regno L, Massi D, Mandala M, Khosrotehrani K, Akslen LA, Amos CI, Andresen PA, Avril MF, Azizi E, Soyer HP, Bataille V, Dalmasso B, Bowdler LM, Burdon KP, Chen WV, Codd V, Craig JE, Dębniak T, Falchi M, Fang S, Friedman E, Simi S, Galan P, Garcia-Casado Z, Gillanders EM, Gordon S, Green A, Gruis NA, Hansson J, Harland M, Harris J, Helsing P, Henders A, Hočevar M, Höiom V, Hunter D, Ingvar C, Kumar R, Lang J, Lathrop GM, Lee JE, Li X, Lubiński J, Mackie RM, Malt M, Malvehy J, McAloney K, Mohamdi H, Molven A, Moses EK, Neale RE, Novaković S, Nyholt DR, Olsson H, Orr N, Fritsche LG, Puig-Butille JA, Qureshi AA, Radford-Smith GL, Randerson-Moor J, Requena C, Rowe C, Samani NJ, Sanna M, Schadendorf D, et alLandi MT, Bishop DT, MacGregor S, Machiela MJ, Stratigos AJ, Ghiorzo P, Brossard M, Calista D, Choi J, Fargnoli MC, Zhang T, Rodolfo M, Trower AJ, Menin C, Martinez J, Hadjisavvas A, Song L, Stefanaki I, Scolyer R, Yang R, Goldstein AM, Potrony M, Kypreou KP, Pastorino L, Queirolo P, Pellegrini C, Cattaneo L, Zawistowski M, Gimenez-Xavier P, Rodriguez A, Elefanti L, Manoukian S, Rivoltini L, Smith BH, Loizidou MA, Del Regno L, Massi D, Mandala M, Khosrotehrani K, Akslen LA, Amos CI, Andresen PA, Avril MF, Azizi E, Soyer HP, Bataille V, Dalmasso B, Bowdler LM, Burdon KP, Chen WV, Codd V, Craig JE, Dębniak T, Falchi M, Fang S, Friedman E, Simi S, Galan P, Garcia-Casado Z, Gillanders EM, Gordon S, Green A, Gruis NA, Hansson J, Harland M, Harris J, Helsing P, Henders A, Hočevar M, Höiom V, Hunter D, Ingvar C, Kumar R, Lang J, Lathrop GM, Lee JE, Li X, Lubiński J, Mackie RM, Malt M, Malvehy J, McAloney K, Mohamdi H, Molven A, Moses EK, Neale RE, Novaković S, Nyholt DR, Olsson H, Orr N, Fritsche LG, Puig-Butille JA, Qureshi AA, Radford-Smith GL, Randerson-Moor J, Requena C, Rowe C, Samani NJ, Sanna M, Schadendorf D, Schulze HJ, Simms LA, Smithers M, Song F, Swerdlow AJ, van der Stoep N, Kukutsch NA, Visconti A, Wallace L, Ward SV, Wheeler L, Sturm RA, Hutchinson A, Jones K, Malasky M, Vogt A, Zhou W, Pooley KA, Elder DE, Han J, Hicks B, Hayward NK, Kanetsky PA, Brummett C, Montgomery GW, Olsen CM, Hayward C, Dunning AM, Martin NG, Evangelou E, Mann GJ, Long G, Pharoah PDP, Easton DF, Barrett JH, Cust AE, Abecasis G, Duffy DL, Whiteman DC, Gogas H, De Nicolo A, Tucker MA, Newton-Bishop JA, Peris K, Chanock SJ, Demenais F, Brown KM, Puig S, Nagore E, Shi J, Iles MM, Law MH. Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nat Genet 2020; 52:494-504. [PMID: 32341527 PMCID: PMC7255059 DOI: 10.1038/s41588-020-0611-8] [Show More Authors] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Most genetic susceptibility to cutaneous melanoma remains to be discovered. Meta-analysis genome-wide association study (GWAS) of 36,760 cases of melanoma (67% newly genotyped) and 375,188 controls identified 54 significant (P < 5 × 10-8) loci with 68 independent single nucleotide polymorphisms. Analysis of risk estimates across geographical regions and host factors suggests the acral melanoma subtype is uniquely unrelated to pigmentation. Combining this meta-analysis with GWAS of nevus count and hair color, and transcriptome association approaches, uncovered 31 potential secondary loci for a total of 85 cutaneous melanoma susceptibility loci. These findings provide insights into cutaneous melanoma genetic architecture, reinforcing the importance of nevogenesis, pigmentation and telomere maintenance, together with identifying potential new pathways for cutaneous melanoma pathogenesis.
Collapse
Affiliation(s)
- Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - D Timothy Bishop
- Leeds Institute of Medical Research at St James's, Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander J Stratigos
- Department of Dermatology, Andreas Syggros Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Paola Ghiorzo
- Genetics of Rare Cancers, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Myriam Brossard
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-1124, Université Paris Descartes, Paris, France
| | - Donato Calista
- Department of Dermatology, Maurizio Bufalini Hospital, Cesena, Italy
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Concetta Fargnoli
- Department of Dermatology & Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Adam J Trower
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Venito Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Andreas Hadjisavvas
- Department of EM/Molecular Pathology & The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irene Stefanaki
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Richard Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
- New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Rose Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miriam Potrony
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Katerina P Kypreou
- Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Lorenza Pastorino
- Genetics of Rare Cancers, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Paola Queirolo
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristina Pellegrini
- Department of Dermatology & Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Cattaneo
- Pathology Unit, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Matthew Zawistowski
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Pol Gimenez-Xavier
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Arantxa Rodriguez
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Lisa Elefanti
- Immunology and Molecular Oncology Unit, Venito Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Maria A Loizidou
- Department of EM/Molecular Pathology & The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Laura Del Regno
- Institute of Dermatology, Catholic University, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Daniela Massi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Mario Mandala
- Department of Oncology, Giovanni XXIII Hospital, Bergamo, Italy
| | - Kiarash Khosrotehrani
- UQ Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Christopher I Amos
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Per A Andresen
- Department of Pathology, Molecular Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Marie-Françoise Avril
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Dermatologie, Université Paris Descartes, Paris, France
| | - Esther Azizi
- Department of Dermatology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv, Israel
- Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H Peter Soyer
- Department of Dermatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Veronique Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Bruna Dalmasso
- Genetics of Rare Cancers, Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Lisa M Bowdler
- Sample Processing, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Wei V Chen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Shenying Fang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eitan Friedman
- Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Simi
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Pilar Galan
- Université Paris 13, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, Institut National de la Santé et de la Recherche Médicale (INSERM U1153), Institut National de la Recherche Agronomique (INRA U1125), Conservatoire National des Arts et Métiers, Communauté d'Université Sorbonne Paris Cité, Bobigny, France
| | - Zaida Garcia-Casado
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Elizabeth M Gillanders
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, USA
| | - Scott Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Adele Green
- Cancer and Population Studies, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- CRUK Manchester Institute, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Nelleke A Gruis
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mark Harland
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Jessica Harris
- Translational Research Institute, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Per Helsing
- Department of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anjali Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Marko Hočevar
- Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Lund, Sweden
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Julie Lang
- Department of Medical Genetics, University of Glasgow, Glasgow, UK
| | - G Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Li
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Jan Lubiński
- International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Rona M Mackie
- Department of Medical Genetics, University of Glasgow, Glasgow, UK
- Department of Public Health, University of Glasgow, Glasgow, UK
| | - Maryrose Malt
- Cancer and Population Studies, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Josep Malvehy
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Kerrie McAloney
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hamida Mohamdi
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-1124, Université Paris Descartes, Paris, France
| | - Anders Molven
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eric K Moses
- Centre for Genetic Origins of Health and Disease, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Rachel E Neale
- Cancer Aetiology & Prevention, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Dale R Nyholt
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Håkan Olsson
- Department of Oncology/Pathology, Clinical Sciences, Lund University, Lund, Sweden
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nicholas Orr
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Lars G Fritsche
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Joan Anton Puig-Butille
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona,CIBERER, Barcelona, Spain
| | - Abrar A Qureshi
- Department of Dermatology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Graham L Radford-Smith
- Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Gastroenterology and Hepatology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- University of Queensland School of Medicine, Herston Campus, Brisbane, Queensland, Australia
| | | | - Celia Requena
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Casey Rowe
- UQ Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Marianna Sanna
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
- German Consortium Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Hans-Joachim Schulze
- Department of Dermatology, Fachklinik Hornheide, Institute for Tumors of the Skin, University of Münster, Münster, Germany
| | - Lisa A Simms
- Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mark Smithers
- Queensland Melanoma Project, Princess Alexandra Hospital, The University of Queensland, St Lucia, Queensland, Australia
- Mater Research Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Fengju Song
- Departments of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Nienke van der Stoep
- Department of Clinical Genetics, Center of Human and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nicole A Kukutsch
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, West Herts NHS Trust, Herts, UK
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarah V Ward
- Centre for Genetic Origins of Health and Disease, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrie Wheeler
- Translational Research Institute, Institute of Health and Biomedical Innovation, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Michael Malasky
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Aurelie Vogt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Karen A Pooley
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - David E Elder
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Genome Research Laboratory, Leidos Biomedical Research, Bethesda, MD, USA
| | - Nicholas K Hayward
- Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chad Brummett
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Grant W Montgomery
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Catherine M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, Sydney, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Georgina Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, Australia
| | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | | | - Anne E Cust
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Cancer Epidemiology and Prevention Research, Sydney School of Public Health, Sydney, Australia
| | - Goncalo Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - David L Duffy
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - David C Whiteman
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Helen Gogas
- First Department of Internal Medicine, Laikon General Hospital Greece, National and Kapodistrian University of Athens, Athens, Greece
| | - Arcangela De Nicolo
- Cancer Genomics Program, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Ketty Peris
- Institute of Dermatology, Catholic University, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Florence Demenais
- Genetic Epidemiology and Functional Genomics of Multifactorial Diseases Team, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-1124, Université Paris Descartes, Paris, France
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, CIBERER, Barcelona, Spain
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark M Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK.
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
37
|
Juraleviciute M, Pozniak J, Nsengimana J, Harland M, Randerson-Moor J, Wernhoff P, Bassarova A, Øy GF, Trøen G, Flørenes VA, Bishop DT, Herlyn M, Newton-Bishop J, Slipicevic A. MX 2 is a novel regulator of cell cycle in melanoma cells. Pigment Cell Melanoma Res 2020; 33:446-457. [PMID: 31660681 PMCID: PMC7180100 DOI: 10.1111/pcmr.12837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022]
Abstract
MX2 protein is a dynamin-like GTPase2 that has recently been identified as an interferon-induced restriction factor of HIV-1 and other primate lentiviruses. A single nucleotide polymorphism (SNP), rs45430, in an intron of the MX2 gene, was previously reported as a novel melanoma susceptibility locus in genome-wide association studies. Functionally, however, it is still unclear whether and how MX2 contributes to melanoma susceptibility and tumorigenesis. Here, we show that MX2 is differentially expressed in melanoma tumors and cell lines, with most metastatic cell lines showing lower MX2 expression than primary melanoma cell lines and melanocytes. Furthermore, high expression of MX2 RNA in primary melanoma tumors is associated with better patient survival. Overexpression of MX2 reduces in vivo proliferation partially through inhibition of AKT activation, suggesting that it can act as a tumor suppressor in melanoma. However, we have also identified a subset of melanoma cell lines with high endogenous MX2 expression where downregulation of MX2 leads to reduced proliferation. In these cells, MX2 downregulation interfered with DNA replication and cell cycle processes. Collectively, our data for the first time show that MX2 is functionally involved in the regulation of melanoma proliferation but that its function is context-dependent.
Collapse
Affiliation(s)
| | - Joanna Pozniak
- Division of Haematology and Immunology, Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jérémie Nsengimana
- Division of Haematology and Immunology, Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Mark Harland
- Division of Haematology and Immunology, Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Juliette Randerson-Moor
- Division of Haematology and Immunology, Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Patrik Wernhoff
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Assia Bassarova
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Geir Frode Øy
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Gunhild Trøen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - David Timothy Bishop
- Division of Haematology and Immunology, Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | | | - Julia Newton-Bishop
- Division of Haematology and Immunology, Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Ana Slipicevic
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
38
|
Dalmasso B, Ghiorzo P. Evolution of approaches to identify melanoma missing heritability. Expert Rev Mol Diagn 2020; 20:523-531. [PMID: 32124637 DOI: 10.1080/14737159.2020.1738221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Introduction: Around 10% of melanoma patients have a positive family history of melanoma and/or related cancers. Although a germline pathogenic variant in a high-risk gene can be identified in up to 40% of these patients, the remaining part of melanoma heritability remains largely unexplained.Areas covered: The aim of this review is to provide an overview of the impact that new technologies and new research approaches had and are having on finding more efficient ways to unravel the missing heritability in melanoma.Expert opinion: High-throughput sequencing technologies have been crucial in increasing the number of genes/loci that might be implicated in melanoma predisposition. However, results from these approaches may have been inferior to the expectations, due to an increase in quantitative information which hasn't been followed at the same speed by an improvement of the methods to correctly interpret these data. Optimal approaches for improving our knowledge on melanoma heritability are currently based on segregation analysis coupled with functional assessment of candidate genes. An improvement of computational methods to infer genotype-phenotype correlations could help address the issue of missing heritability.
Collapse
Affiliation(s)
- Bruna Dalmasso
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, Genoa, Italy
| |
Collapse
|
39
|
van der Spek A, Warner SC, Broer L, Nelson CP, Vojinovic D, Ahmad S, Arp PP, Brouwer RWW, Denniff M, van den Hout MCGN, van Rooij JGJ, Kraaij R, van IJcken WFJ, Samani NJ, Ikram MA, Uitterlinden AG, Codd V, Amin N, van Duijn CM. Exome Sequencing Analysis Identifies Rare Variants in ATM and RPL8 That Are Associated With Shorter Telomere Length. Front Genet 2020; 11:337. [PMID: 32425970 PMCID: PMC7204400 DOI: 10.3389/fgene.2020.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/20/2020] [Indexed: 01/04/2023] Open
Abstract
Telomeres are important for maintaining genomic stability. Telomere length has been associated with aging, disease, and mortality and is highly heritable (∼82%). In this study, we aimed to identify rare genetic variants associated with telomere length using whole-exome sequence data. We studied 1,303 participants of the Erasmus Rucphen Family (ERF) study, 1,259 of the Rotterdam Study (RS), and 674 of the British Heart Foundation Family Heart Study (BHF-FHS). We conducted two analyses, first we analyzed the family-based ERF study and used the RS and BHF-FHS for replication. Second, we combined the summary data of the three studies in a meta-analysis. Telomere length was measured by quantitative polymerase chain reaction in blood. We identified nine rare variants significantly associated with telomere length (p-value < 1.42 × 10–7, minor allele frequency of 0.2–0.5%) in the ERF study. Eight of these variants (in C11orf65, ACAT1, NPAT, ATM, KDELC2, and EXPH5) were located on chromosome 11q22.3 that contains ATM, a gene involved in telomere maintenance. Although we were unable to replicate the variants in the RS and BHF-FHS (p-value ≥ 0.21), segregation analysis showed that all variants segregate with shorter telomere length in a family. In the meta-analysis of all studies, a nominally significant association with LTL was observed with a rare variant in RPL8 (p-value = 1.48 × 10−6), which has previously been associated with age. Additionally, a novel rare variant in the known RTEL1 locus showed suggestive evidence for association (p-value = 1.18 × 10–4) with LTL. To conclude, we identified novel rare variants associated with telomere length. Larger samples size are needed to confirm these findings and to identify additional variants.
Collapse
Affiliation(s)
- Ashley van der Spek
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,SkylineDx B.V., Rotterdam, Netherlands
| | - Sophie C Warner
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Pascal P Arp
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Neurology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilfred F J van IJcken
- Center for Biomics, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Pastorino L, Andreotti V, Dalmasso B, Vanni I, Ciccarese G, Mandalà M, Spadola G, Pizzichetta MA, Ponti G, Tibiletti MG, Sala E, Genuardi M, Chiurazzi P, Maccanti G, Manoukian S, Sestini S, Danesi R, Zampiga V, La Starza R, Stanganelli I, Ballestrero A, Mastracci L, Grillo F, Sciallero S, Cecchi F, Tanda ET, Spagnolo F, Queirolo P, Italian Melanoma Intergroup (IMI), Goldstein AM, Bruno W, Ghiorzo P. Insights into Genetic Susceptibility to Melanoma by Gene Panel Testing: Potential Pathogenic Variants in ACD, ATM, BAP1, and POT1. Cancers (Basel) 2020; 12:1007. [PMID: 32325837 PMCID: PMC7226507 DOI: 10.3390/cancers12041007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
The contribution of recently established or candidate susceptibility genes to melanoma missing heritability has yet to be determined. Multigene panel testing could increase diagnostic yield and better define the role of candidate genes. We characterized 273 CDKN2A/ARF and CDK4-negative probands through a custom-designed targeted gene panel that included CDKN2A/ARF, CDK4, ACD, BAP1, MITF, POT1, TERF2IP, ATM, and PALB2. Co-segregation, loss of heterozygosity (LOH)/protein expression analysis, and splicing characterization were performed to improve variant classification. We identified 16 (5.9%) pathogenic and likely pathogenic variants in established high/medium penetrance cutaneous melanoma susceptibility genes (BAP1, POT1, ACD, MITF, and TERF2IP), including two novel variants in BAP1 and 4 in POT1. We also found four deleterious and five likely deleterious variants in ATM (3.3%). Thus, including potentially deleterious variants in ATM increased the diagnostic yield to about 9%. Inclusion of rare variants of uncertain significance would increase the overall detection yield to 14%. At least 10% of melanoma missing heritability may be explained through panel testing in our population. To our knowledge, this is the highest frequency of putative ATM deleterious variants reported in melanoma families, suggesting a possible role in melanoma susceptibility, which needs further investigation.
Collapse
Affiliation(s)
- Lorenza Pastorino
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Virginia Andreotti
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Bruna Dalmasso
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Irene Vanni
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Giulia Ciccarese
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Mario Mandalà
- Unit of Medical Oncology, Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy;
| | - Giuseppe Spadola
- Divisione di Chirurgia del Melanoma, IRCCS Fondazione Istituto Nazionale per lo studio e la cura dei tumori, 20133 Milano, Italy;
| | - Maria Antonietta Pizzichetta
- Dermatologic Clinic, University of Trieste, 34127 Trieste, Italy;
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Giovanni Ponti
- Department of Diagnostic and clinical medicine and public health, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | | | - Elena Sala
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy;
| | - Maurizio Genuardi
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.); (P.C.)
- Sezione Genetica Medica, Dipartimento di Scienze della Vita e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Pietro Chiurazzi
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (M.G.); (P.C.)
- Sezione Genetica Medica, Dipartimento di Scienze della Vita e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | | | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy;
| | - Serena Sestini
- Plastic & Reconstructive Surgery Unit, Regional Melanoma Referral Center and Melanoma & Skin Cancer Unit Tuscan Tumour Institute (ITT), Santa Maria Annunziata Hospital, 50012 Firenze, Italy;
| | - Rita Danesi
- Romagna Cancer Registry, IRCCS-IRST Scientific Institute of Romagna for the Study and Treatment of Cancer, 47014 Meldola, Italy;
| | - Valentina Zampiga
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, CREO, University of Perugia, 06156 Perugia, Italy;
| | - Ignazio Stanganelli
- Skin Cancer Unit, IRCCS-IRST Scientific Institute of Romagna for the Study and Treatment of Cancer, 47014 Meldola, Italy;
| | - Alberto Ballestrero
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
- Department of Internal Medicine, Università degli Studi di Genova, 16132 Genova, Italy
| | - Luca Mastracci
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
- Department of Integrated Surgical and Diagnostic Sciences, Università degli Studi di Genova, 16132 Genova, Italy
| | - Federica Grillo
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
- Department of Integrated Surgical and Diagnostic Sciences, Università degli Studi di Genova, 16132 Genova, Italy
| | - Stefania Sciallero
- IRCCS Ospedale Policlinico San Martino, Unit of Medical Oncology 1, 16132 Genova, Italy;
| | - Federica Cecchi
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, 16132 Genova, Italy; (F.C.); (E.T.T.); (F.S.); (P.Q.)
| | - Enrica Teresa Tanda
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, 16132 Genova, Italy; (F.C.); (E.T.T.); (F.S.); (P.Q.)
| | - Francesco Spagnolo
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, 16132 Genova, Italy; (F.C.); (E.T.T.); (F.S.); (P.Q.)
| | - Paola Queirolo
- IRCCS Ospedale Policlinico San Martino, Medical Oncology 2, 16132 Genova, Italy; (F.C.); (E.T.T.); (F.S.); (P.Q.)
| | | | - Alisa M. Goldstein
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA;
| | - William Bruno
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| | - Paola Ghiorzo
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genova, Italy; (L.P.); (V.A.); (B.D.); (I.V.); (G.C.); (W.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (A.B.); (L.M.); (F.G.)
| |
Collapse
|
41
|
Abstract
The past two centuries have witnessed an unprecedented rise in human life expectancy. Sustaining longer lives with reduced periods of disability will require an understanding of the underlying mechanisms of ageing, and genetics is a powerful tool for identifying these mechanisms. Large-scale genome-wide association studies have recently identified many loci that influence key human ageing traits, including lifespan. Multi-trait loci have been linked with several age-related diseases, suggesting shared ageing influences. Mutations that drive accelerated ageing in prototypical progeria syndromes in humans point to an important role for genome maintenance and stability. Together, these different strands of genetic research are highlighting pathways for the discovery of anti-ageing interventions that may be applicable in humans.
Collapse
|
42
|
Zhou B, Zhao YC, Liu H, Luo S, Amos CI, Lee JE, Li X, Nan H, Wei Q. Novel Genetic Variants of ALG6 and GALNTL4 of the Glycosylation Pathway Predict Cutaneous Melanoma-Specific Survival. Cancers (Basel) 2020; 12:E288. [PMID: 31991610 PMCID: PMC7072252 DOI: 10.3390/cancers12020288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 11/26/2022] Open
Abstract
Because aberrant glycosylation is known to play a role in the progression of melanoma, we hypothesize that genetic variants of glycosylation pathway genes are associated with the survival of cutaneous melanoma (CM) patients. To test this hypothesis, we used a Cox proportional hazards regression model in a single-locus analysis to evaluate associations between 34,096 genetic variants of 227 glycosylation pathway genes and CM disease-specific survival (CMSS) using genotyping data from two previously published genome-wide association studies. The discovery dataset included 858 CM patients with 95 deaths from The University of Texas MD Anderson Cancer Center, and the replication dataset included 409 CM patients with 48 deaths from Harvard University nurse/physician cohorts. In the multivariable Cox regression analysis, we found that two novel single-nucleotide polymorphisms (SNPs) (ALG6 rs10889417 G>A and GALNTL4 rs12270446 G>C) predicted CMSS, with an adjusted hazards ratios of 0.60 (95% confidence interval = 0.44-0.83 and p = 0.002) and 0.66 (0.52-0.84 and 0.004), respectively. Subsequent expression quantitative trait loci (eQTL) analysis revealed that ALG6 rs10889417 was associated with mRNA expression levels in the cultured skin fibroblasts and whole blood cells and that GALNTL4 rs12270446 was associated with mRNA expression levels in the skin tissues (all p < 0.05). Our findings suggest that, once validated by other large patient cohorts, these two novel SNPs in the glycosylation pathway genes may be useful prognostic biomarkers for CMSS, likely through modulating their gene expression.
Collapse
Affiliation(s)
- Bingrong Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China;
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA; (Y.C.Z.); (H.L.)
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yu Chen Zhao
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA; (Y.C.Z.); (H.L.)
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA; (Y.C.Z.); (H.L.)
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jeffrey E. Lee
- Department of Surgical Oncology, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Xin Li
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (X.L.); (H.N.)
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
| | - Hongmei Nan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (X.L.); (H.N.)
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA; (Y.C.Z.); (H.L.)
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
43
|
Djansugurova L, Altynova N, Cherednichenko O, Khussainova E, Dubrova YE. The effects of DNA repair polymorphisms on chromosome aberrations in the population of Kazakhstan. Int J Radiat Biol 2020; 96:614-621. [PMID: 31914346 DOI: 10.1080/09553002.2020.1711460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To analyze the effects of DNA repair polymorphism and other factors on the frequency chromosome aberrations in an irradiated cohort of subjects living around the Semipalatinsk nuclear test site and non-exposed group of subjects from ecologically favorable zones of Kazakhstan.Materials and methods: Blood samples were collected in the rural areas of the East Kazakhstan district around the Semipalatinsk nuclear test site and ecologically favorable zones of Almaty region of Kazakhstan. Chromosome aberrations in the fresh and cryopreserved peripheral blood lymphocyte cultures were analyzed by Giemsa staining. Single nucleotide polymorphisms at eight DNA repair genes (XRCC1 rs1799782, XRCC1 rs25487, XRCC3 rs861539, ATM rs1801516, XPD rs1799793, XPD rs13181, APEX1 rs1130409, and hOGG1 rs1052133) were determined by PCR-RFLP method.Results: The age of donors and smoking significantly affected the frequency of chromosome aberrations among the irradiated and control subjects. In the irradiated and control cohorts, the frequency of chromosome aberrations was significantly increased in the heterozygous ATM rs1801516 (1853 Asp/Asn) individuals; for the rest of the loci no significant associations between polymorphism and the frequency of chromosome aberrations were detected.Conclusions: The age of donors, smoking, and the ATM rs1801516 polymorphism significantly affect the frequency of chromosome aberrations among individuals inhabiting contaminated area around the Semipalatinsk nuclear weapon test site, as well as among those inhabiting ecologically favorable zones of Kazakhstan.
Collapse
Affiliation(s)
- Leyla Djansugurova
- Laboratory of Molecular Genetics and Laboratory of Genetic Monitoring, Institute of General Genetics and Cytology, Almaty, Kazakhstan
| | - Nazym Altynova
- Laboratory of Molecular Genetics and Laboratory of Genetic Monitoring, Institute of General Genetics and Cytology, Almaty, Kazakhstan
| | - Oksana Cherednichenko
- Laboratory of Molecular Genetics and Laboratory of Genetic Monitoring, Institute of General Genetics and Cytology, Almaty, Kazakhstan
| | - Elmira Khussainova
- Laboratory of Molecular Genetics and Laboratory of Genetic Monitoring, Institute of General Genetics and Cytology, Almaty, Kazakhstan
| | - Yuri E Dubrova
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
44
|
Kalo E, Güvenç C, Marasigan V, Lambrechts D, van den Oord J, Garmyn M. A variant in FTO gene shows association with histological ulceration in cutaneous melanoma. J Cutan Pathol 2020; 47:98-101. [PMID: 31469442 DOI: 10.1111/cup.13575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Eric Kalo
- Department of Dermatology, University Hospitals Leuven, Leuven, Belgium
| | - Canan Güvenç
- Department of Dermatology, University Hospitals Leuven, Leuven, Belgium
| | - Vivien Marasigan
- Department of Dermatology, University Hospitals Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Joost van den Oord
- Department of Imaging and Pathology, Translational Cell and Tissue Research, University Hospitals Leuven, Leuven, Belgium
| | - Marjan Garmyn
- Department of Dermatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Cust A, Drummond M, Bishop D, Azizi L, Schmid H, Jenkins M, Hopper J, Armstrong B, Aitken J, Kefford R, Giles G, Demenais F, Goldstein A, Barrett J, Kanetsky P, Elder D, Mann G, Newton‐Bishop J. Associations of pigmentary and naevus phenotype with melanoma risk in two populations with comparable ancestry but contrasting levels of ambient sun exposure. J Eur Acad Dermatol Venereol 2019; 33:1874-1885. [PMID: 31087403 PMCID: PMC6800761 DOI: 10.1111/jdv.15680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/03/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND People at high risk of developing melanoma are usually identified by pigmentary and naevus phenotypes. OBJECTIVE We examined whether associations of these phenotypes with melanoma risk differed by ambient sun exposure or participant characteristics in two population-based, case-control studies with comparable ancestry but different ambient sun exposure. METHODS Data were analysed from 616 cases and 496 controls from the Australian Melanoma Family Study and 2012 cases and 504 controls from the Leeds (UK) case-control study. Questionnaire, interview and dermatological skin examination data were collected using the same measurement protocols. Relative risks were estimated as odds ratios using unconditional logistic regression, adjusted for potential confounders. RESULTS Hair and skin colour were the strongest pigmentary phenotype risk factors. All associations of pigmentary phenotype with melanoma risk were similar across countries. The median number of clinically assessed naevi was approximately three times higher in Australia than Leeds, but the relative risks for melanoma associated with each additional common or dysplastic naevus were higher for Leeds than Australia, especially for naevi on the upper and lower limbs. Higher naevus counts on the head and neck were associated with a stronger relative risk for melanoma for women than men. The two countries had similar relative risks for melanoma based on self-reported naevus density categories, but personal perceptions of naevus number differed by country. There was no consistent evidence of interactions between phenotypes on risk. CONCLUSIONS Classifying people at high risk of melanoma based on their number of naevi should ideally take into account their country of residence, type of counts (clinical or self-reported), body site on which the naevus counts are measured and sex. The presence of naevi may be a stronger indicator of a genetic predisposition in the UK than in Australia based on less opportunity for sun exposure to influence naevus development.
Collapse
Affiliation(s)
- A.E. Cust
- Cancer Epidemiology and Prevention ResearchSydney School of Public HealthThe University of SydneySydneyAustralia
- Melanoma Institute AustraliaThe University of SydneySydneyAustralia
| | - M. Drummond
- Cancer Epidemiology and Prevention ResearchSydney School of Public HealthThe University of SydneySydneyAustralia
- Melanoma Institute AustraliaThe University of SydneySydneyAustralia
| | - D.T. Bishop
- Section of Epidemiology and BiostatisticsLeeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - L. Azizi
- School of Mathematics and StatisticsThe University of SydneySydneyAustralia
| | - H. Schmid
- Centre for Cancer ResearchWestmead Institute for Medical ResearchThe University of SydneySydneyAustralia
| | - M.A. Jenkins
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthThe University of MelbourneMelbourneAustralia
| | - J.L. Hopper
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthThe University of MelbourneMelbourneAustralia
| | - B.K. Armstrong
- Cancer Epidemiology and Prevention ResearchSydney School of Public HealthThe University of SydneySydneyAustralia
| | - J.F. Aitken
- Viertel Centre for Research in Cancer ControlCancer Council QueenslandBrisbaneAustralia
| | - R.F. Kefford
- Melanoma Institute AustraliaThe University of SydneySydneyAustralia
- Macquarie University Health Sciences CentreMacquarie UniversitySydneyAustralia
| | - G.G. Giles
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthThe University of MelbourneMelbourneAustralia
- Cancer Epidemiology CentreCancer Council VictoriaMelbourneAustralia
| | - F. Demenais
- Genetic Variation and Human Diseases UnitUMR‐946INSERMUniversité Paris DiderotUniversité Sorbonne Paris CitéParisFrance
| | - A.M. Goldstein
- Human Genetics ProgramDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMDUSA
| | - J.H. Barrett
- Section of Epidemiology and BiostatisticsLeeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| | - P.A. Kanetsky
- Cancer Epidemiology ProgramMoffitt Cancer CenterTampaFLUSA
| | - D.E. Elder
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - G.J. Mann
- Melanoma Institute AustraliaThe University of SydneySydneyAustralia
- Centre for Cancer ResearchWestmead Institute for Medical ResearchThe University of SydneySydneyAustralia
| | - J.A. Newton‐Bishop
- Section of Epidemiology and BiostatisticsLeeds Institute of Cancer and PathologyUniversity of LeedsLeedsUK
| |
Collapse
|
46
|
Inherited Melanoma Risk Variants Associated with Histopathologically Amelanotic Melanoma. J Invest Dermatol 2019; 140:918-922.e7. [PMID: 31568773 DOI: 10.1016/j.jid.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 01/26/2023]
|
47
|
Liyanage UE, Law MH, Han X, An J, Ong JS, Gharahkhani P, Gordon S, Neale RE, Olsen CM, 23andMe Research Team, MacGregor S, Whiteman DC. Combined analysis of keratinocyte cancers identifies novel genome-wide loci. Hum Mol Genet 2019; 28:3148-3160. [PMID: 31174203 PMCID: PMC6737293 DOI: 10.1093/hmg/ddz121] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
The keratinocyte cancers (KC), basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common cancers in fair-skinned people. KC treatment represents the second highest cancer healthcare expenditure in Australia. Increasing our understanding of the genetic architecture of KC may provide new avenues for prevention and treatment. We first conducted a series of genome-wide association studies (GWAS) of KC across three European ancestry datasets from Australia, Europe and USA, and used linkage disequilibrium (LD) Score regression (LDSC) to estimate their pairwise genetic correlations. We employed a multiple-trait approach to map genes across the combined set of KC GWAS (total N = 47 742 cases, 634 413 controls). We also performed meta-analyses of BCC and SCC separately to identify trait specific loci. We found substantial genetic correlations (generally 0.5-1) between BCC and SCC suggesting overlapping genetic risk variants. The multiple trait combined KC GWAS identified 63 independent genome-wide significant loci, 29 of which were novel. Individual separate meta-analyses of BCC and SCC identified an additional 13 novel loci not found in the combined KC analysis. Three new loci were implicated using gene-based tests. New loci included common variants in BRCA2 (distinct to known rare high penetrance cancer risk variants), and in CTLA4, a target of immunotherapy in melanoma. We found shared and trait specific genetic contributions to BCC and SCC. Considering both, we identified a total of 79 independent risk loci, 45 of which are novel.
Collapse
Affiliation(s)
- Upekha E Liyanage
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia
| | - Matthew H Law
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia
| | - Xikun Han
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia
| | - Jiyuan An
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia
| | - Jue-Sheng Ong
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia
| | - Puya Gharahkhani
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia
| | - Scott Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia
| | - Rachel E Neale
- Cancer Aetiology and Prevention, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia
| | - Catherine M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | | | - Stuart MacGregor
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia
| | - David C Whiteman
- Cancer Control Group, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4006, Australia
| |
Collapse
|
48
|
McNally EJ, Luncsford PJ, Armanios M. Long telomeres and cancer risk: the price of cellular immortality. J Clin Invest 2019; 129:3474-3481. [PMID: 31380804 PMCID: PMC6715353 DOI: 10.1172/jci120851] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The distribution of telomere length in humans is broad, but it has finite upper and lower boundaries. Growing evidence shows that there are disease processes that are caused by both short and long telomere length extremes. The genetic basis of these short and long telomere syndromes may be linked to mutations in the same genes, such as the telomerase reverse transcriptase (TERT), but through differential effects on telomere length. Short telomere syndromes have a predominant degenerative phenotype marked by organ failure that most commonly manifests as pulmonary fibrosis and are associated with a relatively low cancer incidence. In contrast, insights from studies of cancer-prone families as well as genome-wide association studies (GWAS) have identified both rare and common variants that lengthen telomeres as being strongly associated with cancer risk. We have hypothesized that these cancers represent a long telomere syndrome that is associated with a high penetrance of cutaneous melanoma and chronic lymphocytic leukemia. In this Review, we will synthesize the clinical and human genetic observations with data from mouse models to define the role of telomeres in cancer etiology and biology.
Collapse
Affiliation(s)
| | | | - Mary Armanios
- Department of Oncology
- Telomere Center
- Sidney Kimmel Comprehensive Cancer Center, and
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Immunomodulatory germline variation associated with the development of multiple primary melanoma (MPM). Sci Rep 2019; 9:10173. [PMID: 31308438 PMCID: PMC6629847 DOI: 10.1038/s41598-019-46665-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
Multiple primary melanoma (MPM) has been associated with a higher 10-year mortality risk compared to patients with single primary melanoma (SPM). Given that 3–8% of patients with SPM develop additional primary melanomas, new markers predictive of MPM risk are needed. Based on the evidence that the immune system may regulate melanoma progression, we explored whether germline genetic variants controlling the expression of 41 immunomodulatory genes modulate the risk of MPM compared to patients with SPM or healthy controls. By genotyping these 41 variants in 977 melanoma patients, we found that rs2071304, linked to the expression of SPI1, was strongly associated with MPM risk reduction (OR = 0.60; 95% CI = 0.45–0.81; p = 0.0007) when compared to patients with SPM. Furthermore, we showed that rs6695772, a variant affecting expression of BATF3, is also associated with MPM-specific survival (HR = 3.42; 95% CI = 1.57–7.42; p = 0.0019). These findings provide evidence that the genetic variation in immunomodulatory pathways may contribute to the development of secondary primary melanomas and also associates with MPM survival. The study suggests that inherited host immunity may play an important role in MPM development.
Collapse
|
50
|
Roberts MR, Asgari MM, Toland AE. Genome-wide association studies and polygenic risk scores for skin cancer: clinically useful yet? Br J Dermatol 2019; 181:1146-1155. [PMID: 30908599 DOI: 10.1111/bjd.17917] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified thousands of susceptibility variants, although most have been associated with small individual risk estimates that offer little predictive value. However, combining multiple variants into polygenic risk scores (PRS) may be more informative. Multiple studies have developed PRS composed of GWAS-identified variants for cutaneous cancers. This review highlights data from these studies. OBJECTIVES To review published GWAS and PRS studies for melanoma, cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma (BCC), and discuss their potential clinical utility. METHODS We searched PubMed and the National Human Genome Research Institute-European Bioinformatics Institute GWAS catalogue to identify relevant studies. RESULTS Results from 21 GWAS (11 melanoma, 3 cSCC, 7 BCC) and 11 PRS studies are summarized. Six loci in pigmentation genes overlap between these three cancers (ASIP/RALY, IRF4, MC1R, OCA2, SLC45A2 and TYR). Additional loci overlap for cSCC/BCC and BCC/melanoma, but no other loci are shared between cSCC and melanoma. PRS for melanoma show roughly two-to-threefold increases in risk and modest improvements in risk prediction (2-7% increases). PRS are associated with twofold and threefold increases in risk of cSCC and BCC, respectively, with small improvements (2% increase) in predictive ability. CONCLUSIONS Existing data indicate that PRS may offer small, but potentially meaningful, improvements to risk prediction. Additional research is needed to clarify the potential utility of PRS in cutaneous carcinomas. Clinical translation will require well-powered validation studies incorporating known risk factors to evaluate PRS as tools for screening. What's already known about this topic? Over 50 susceptibility loci for melanoma, basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) have been identified in genome-wide association studies (GWAS). Polygenic risk scores (PRS) using variants identified from GWAS have also been developed for melanoma, BCC and cSCC, and investigated with respect to clinical risk prediction. What does this study add? This review provides an overview of GWAS findings and the potential clinical utility of PRS for melanoma, BCC and cSCC.
Collapse
Affiliation(s)
- M R Roberts
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, U.S.A.,Department of Population Medicine, Harvard Pilgrim Healthcare Institute, Boston, MA, U.S.A
| | - M M Asgari
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, U.S.A.,Department of Population Medicine, Harvard Pilgrim Healthcare Institute, Boston, MA, U.S.A
| | - A E Toland
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, Ohio State University, 998 Biomedical Research Tower, 460 W 12th Ave, Columbus, OH, 43210, U.S.A
| |
Collapse
|