1
|
Yang G, Huang L, Wu J, Huang B, Zhang C, Li S, Wang F, Jiang X. Case report and literature review: A young man with giant intra-abdominal Ewing sarcoma. Medicine (Baltimore) 2024; 103:e39983. [PMID: 39465729 PMCID: PMC11460867 DOI: 10.1097/md.0000000000039983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 10/29/2024] Open
Abstract
RATIONALE Extraosseous Ewing sarcoma (EES) is a rare manifestation within the Ewing sarcoma tumor family (ESFT). Its clinical manifestations lack specificity, intestinal obstruction is the main symptom but can also present with abdominal pain, gastrointestinal bleeding, and other discomforts, making it prone to misdiagnosis as intestinal mesenchymal tumor. PATIENT CONCERNS A 29-year-old male was admitted to the hospital with intestinal obstruction symptoms and abdominal CT suggesting "left abdominal occupation." DIAGNOSIS The patient was initially misdiagnosed as intestinal mesenchymal tumor, and was later definitively diagnosed as abdominal Ewing sarcoma by postoperative pathology and genetic testing. INTERVENTIONS Due to the patient's surgical indication, surgical resection with exploratory laparotomy was performed and then the patient underwent systemic chemotherapy. OUTCOMES Intraoperatively, we found a 15-cm tumor originating from the proximal jejunum, with invasion into the peritoneum, duodenum, jejunum, and colon. Finally, the pathological report revealed Ewing sarcoma. LESSONS Giant abdominal Ewing sarcoma with a diameter of 15 cm is rare. Considering postoperative pathology and genetic testing, abdominal Ewing sarcoma was suspected. The patient was successfully treated using surgery.
Collapse
Affiliation(s)
- Guang Yang
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Lining Huang
- Department of Hepatobiliary Surgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianwu Wu
- Department of Hepatobiliary Surgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Bo Huang
- Department of Hepatobiliary Surgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Cong Zhang
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Song Li
- Department of Hepatobiliary Surgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Feng Wang
- Department of Hepatobiliary Surgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xinwei Jiang
- Department of Hepatobiliary Surgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
2
|
Dong GF, Hou YK, Ma Q, Ma SY, Wang YJ, Rexiati M, Wang WG. Cushing's syndrome caused by giant Ewing's sarcoma of the kidney: A case report and review of literature. World J Clin Cases 2024; 12:5431-5440. [PMID: 39156087 PMCID: PMC11238686 DOI: 10.12998/wjcc.v12.i23.5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Primary renal Ewing's sarcoma (ES) is extremely rare, and only two cases causing Cushing's syndrome (CS) have been reported to date. We report that the case of an 18-year-old patient is diagnosed primary renal ES with typical CS characterized by purple stripes, weight gain, and hypertension. CASE SUMMARY CS was first diagnosed by laboratory testing. A huge tumor was revealed in the kidney following an imaging examination. Moreover, brain and bone metastases were observed. After comprehensive treatment, primarily based on surgery, primary renal ES was pathologically diagnosed with a typical EWSR1-FLI1 genetic mutation through genetic testing. Furthermore, the glucocorticoid level returned to normal. By the ninth postoperative month of follow-up, the patient was recovering well. Cushing-related symptoms had improved, and a satisfactory curative effect was achieved. CONCLUSION Primary renal ES, a rare adult malignant tumor, can cause CS and a poor prognosis.
Collapse
Affiliation(s)
- Guo-Fan Dong
- Department of Urologic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Ya-Kun Hou
- Department of Urologic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Qi Ma
- Department of Urologic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Shuang-Yu Ma
- Department of Urologic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Yu-Jie Wang
- Department of Urologic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Mulati Rexiati
- Department of Urologic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| | - Wen-Guang Wang
- Department of Urologic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
3
|
Walker RL, Hornicek FJ, Duan Z. Transcriptional regulation and therapeutic potential of cyclin-dependent kinase 9 (CDK9) in sarcoma. Biochem Pharmacol 2024; 226:116342. [PMID: 38848777 DOI: 10.1016/j.bcp.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.
Collapse
Affiliation(s)
- Robert L Walker
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA.
| |
Collapse
|
4
|
Ebegboni VJ, Jones TL, Brownmiller T, Zhao PX, Pehrsson EC, Rajan SS, Caplen NJ. ETS1, a Target Gene of the EWSR1::FLI1 Fusion Oncoprotein, Regulates the Expression of the Focal Adhesion Protein TENSIN3. Mol Cancer Res 2024; 22:625-641. [PMID: 38588446 PMCID: PMC11219265 DOI: 10.1158/1541-7786.mcr-23-1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma cells reflects the regulatory state of genes associated with the DNA-binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in Ewing sarcoma cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3-repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of Ewing sarcoma cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. Ewing sarcoma cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared with control cells. Visualization of control Ewing sarcoma cells showed a distributed vinculin signal and a network-like organization of F-actin; in contrast, ETS1-activated Ewing sarcoma cells showed an accumulation of vinculin and F-actin toward the plasma membrane. Interestingly, the phenotype of ETS1-activated Ewing sarcoma cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in Ewing sarcoma tumors positively correlates with that of ETS1. Implications: ETS1's transcriptional regulation of the gene encoding the focal adhesion protein TENSIN3 in Ewing sarcoma cells promotes cell movement, a critical step in the evolution of metastasis.
Collapse
Affiliation(s)
- Vernon Justice Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick X. Zhao
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Erica C. Pehrsson
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Doll S, Schweizer L, Bollwein C, Steiger K, Pfarr N, Walker M, Wörtler K, Knebel C, von Eisenhart-Rothe R, Hartmann W, Weichert W, Mann M, Kuhn PH, Specht K. Proteomic Characterization of Undifferentiated Small Round Cell Sarcomas With EWSR1 and CIC::DUX4 Translocations Reveals Diverging Tumor Biology and Distinct Diagnostic Markers. Mod Pathol 2024; 37:100511. [PMID: 38705279 DOI: 10.1016/j.modpat.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
Undifferentiated small round cell sarcomas (USRS) of bone and soft tissue are a group of tumors with heterogenic genomic alterations sharing similar morphology. In the present study, we performed a comparative large-scale proteomic analysis of USRS (n = 42) with diverse genomic translocations including classic Ewing sarcomas with EWSR1::FLI1 fusions (n = 24) or EWSR1::ERG fusions (n = 4), sarcomas with an EWSR1 rearrangement (n = 2), CIC::DUX4 fusion (n = 8), as well as tumors classified as USRS with no genetic data available (n = 4). Proteins extracted from formalin-fixed, paraffin-embedded pretherapeutic biopsies were analyzed qualitatively and quantitatively using shotgun mass spectrometry (MS). More than 8000 protein groups could be quantified using data-independent acquisition. Unsupervised hierarchical cluster analysis based on proteomic data allowed stratification of the 42 cases into distinct groups reflecting the different molecular genotypes. Protein signatures that significantly correlated with the respective genomic translocations were identified and used to generate a heatmap of all 42 sarcomas with assignment of cases with unknown molecular genetic data to either the EWSR1- or CIC-rearranged groups. MS-based prediction of sarcoma subtypes was molecularly confirmed in 2 cases where next-generation sequencing was technically feasible. MS also detected proteins routinely used in the immunohistochemical approach for the differential diagnosis of USRS. BCL11B highly expressed in Ewing sarcomas, and BACH2 as well as ETS-1 highly expressed in CIC::DUX4-associated sarcomas, were among proteins identified by the present proteomic study, and were chosen for immunohistochemical confirmation of MS data in our study cohort. Differential expressions of these 3 markers in the 2 genetic groups were further validated in an independent cohort of n = 34 USRS. Finally, our proteomic results point toward diverging signaling pathways in the different USRS subgroups.
Collapse
Affiliation(s)
- Sophia Doll
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany; OmicEra Diagnostics GmbH, Planegg, Bavaria, Germany
| | - Lisa Schweizer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | | | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Nicole Pfarr
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Maria Walker
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Klaus Wörtler
- Musculoskeletal Radiology Section, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carolin Knebel
- Department of Orthopaedic Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Bavaria, Germany
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Katja Specht
- Institute of Pathology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Gridina MM, Stepanchuk YK, Nurridinov MA, Lagunov TA, Torgunakov NY, Shadsky AA, Ryabova AI, Vasiliev NV, Vtorushin SV, Gerashchenko TS, Denisov EV, Travin MA, Korolev MA, Fishman VS. Modification of the Hi-C Technology for Molecular Genetic Analysis of Formalin-Fixed Paraffin-Embedded Sections of Tumor Tissues. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:637-652. [PMID: 38831501 DOI: 10.1134/s0006297924040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 06/05/2024]
Abstract
Molecular genetic analysis of tumor tissues is the most important step towards understanding the mechanisms of cancer development; it is also necessary for the choice of targeted therapy. The Hi-C (high-throughput chromatin conformation capture) technology can be used to detect various types of genomic variants, including balanced chromosomal rearrangements, such as inversions and translocations. We propose a modification of the Hi-C method for the analysis of chromatin contacts in formalin-fixed paraffin-embedded (FFPE) sections of tumor tissues. The developed protocol allows to generate high-quality Hi-C data and detect all types of chromosomal rearrangements. We have analyzed various databases to compile a comprehensive list of translocations that hold clinical importance for the targeted therapy selection. The practical value of molecular genetic testing is its ability to influence the treatment strategies and to provide prognostic insights. Detecting specific chromosomal rearrangements can guide the choice of the targeted therapies, which is a critical aspect of personalized medicine in oncology.
Collapse
Affiliation(s)
- Maria M Gridina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Yana K Stepanchuk
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Miroslav A Nurridinov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Timofey A Lagunov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Nikita Yu Torgunakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Artem A Shadsky
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Anastasia I Ryabova
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Nikolay V Vasiliev
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Sergey V Vtorushin
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
- Siberian State Medical University, Ministry of Health of Russia, Tomsk, 634050, Russia
| | - Tatyana S Gerashchenko
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Evgeny V Denisov
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Mikhail A Travin
- Research Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630117, Russia
| | - Maxim A Korolev
- Research Institute of Clinical and Experimental Lymphology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630117, Russia
| | - Veniamin S Fishman
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
7
|
Ruzanov P, Evdokimova V, Pachva MC, Minkovich A, Zhang Z, Langman S, Gassmann H, Thiel U, Orlic-Milacic M, Zaidi SH, Peltekova V, Heisler LE, Sharma M, Cox ME, McKee TD, Zaidi M, Lapouble E, McPherson JD, Delattre O, Radvanyi L, Burdach SE, Stein LD, Sorensen PH. Oncogenic ETS fusions promote DNA damage and proinflammatory responses via pericentromeric RNAs in extracellular vesicles. J Clin Invest 2024; 134:e169470. [PMID: 38530366 PMCID: PMC11060741 DOI: 10.1172/jci169470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.
Collapse
Affiliation(s)
- Peter Ruzanov
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Manideep C. Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alon Minkovich
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Zhenbo Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sofya Langman
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hendrik Gassmann
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Uwe Thiel
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | | | - Syed H. Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Vanya Peltekova
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Manju Sharma
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Michael E. Cox
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Trevor D. McKee
- STTARR Innovation Centre, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Pathomics Inc., Toronto, Ontario, Canada
| | - Mark Zaidi
- Pathomics Inc., Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eve Lapouble
- Unité Génétique Somatique (UGS), Institut Curie, Centre Hospitalier Paris, France
| | - John D. McPherson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California, USA
| | - Olivier Delattre
- Unité Génétique Somatique (UGS), Institut Curie, Centre Hospitalier Paris, France
- Diversity and Plasticity of Childhood tumors, INSERM U830, Institut Curie Research Center, PSL Research University, Paris, France
| | - Laszlo Radvanyi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stefan E.G. Burdach
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- CCC München Comprehensive Cancer Center, DKTK German Cancer Consortium, Munich, Germany
- Institute of Pathology, Translation Pediatric Cancer Research Action, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lincoln D. Stein
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Poul H. Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre and
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Mooney B, Negri GL, Shyp T, Delaidelli A, Zhang HF, Spencer Miko SE, Weiner AK, Radaoui AB, Shraim R, Lizardo MM, Hughes CS, Li A, El-Naggar AM, Rouleau M, Li W, Dimitrov DS, Kurmasheva RT, Houghton PJ, Diskin SJ, Maris JM, Morin GB, Sorensen PH. Surface and Global Proteome Analyses Identify ENPP1 and Other Surface Proteins as Actionable Immunotherapeutic Targets in Ewing Sarcoma. Clin Cancer Res 2024; 30:1022-1037. [PMID: 37812652 PMCID: PMC10905525 DOI: 10.1158/1078-0432.ccr-23-2187] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Ewing sarcoma is the second most common bone sarcoma in children, with 1 case per 1.5 million in the United States. Although the survival rate of patients diagnosed with localized disease is approximately 70%, this decreases to approximately 30% for patients with metastatic disease and only approximately 10% for treatment-refractory disease, which have not changed for decades. Therefore, new therapeutic strategies are urgently needed for metastatic and refractory Ewing sarcoma. EXPERIMENTAL DESIGN This study analyzed 19 unique Ewing sarcoma patient- or cell line-derived xenografts (from 14 primary and 5 metastatic specimens) using proteomics to identify surface proteins for potential immunotherapeutic targeting. Plasma membranes were enriched using density gradient ultracentrifugation and compared with a reference standard of 12 immortalized non-Ewing sarcoma cell lines prepared in a similar manner. In parallel, global proteome analysis was carried out on each model to complement the surfaceome data. All models were analyzed by Tandem Mass Tags-based mass spectrometry to quantify identified proteins. RESULTS The surfaceome and global proteome analyses identified 1,131 and 1,030 annotated surface proteins, respectively. Among surface proteins identified, both approaches identified known Ewing sarcoma-associated proteins, including IL1RAP, CD99, STEAP1, and ADGRG2, and many new cell surface targets, including ENPP1 and CDH11. Robust staining of ENPP1 was demonstrated in Ewing sarcoma tumors compared with other childhood sarcomas and normal tissues. CONCLUSIONS Our comprehensive proteomic characterization of the Ewing sarcoma surfaceome provides a rich resource of surface-expressed proteins in Ewing sarcoma. This dataset provides the preclinical justification for exploration of targets such as ENPP1 for potential immunotherapeutic application in Ewing sarcoma. See related commentary by Bailey, p. 934.
Collapse
Affiliation(s)
- Brian Mooney
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Taras Shyp
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Feng Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sandra E. Spencer Miko
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Amber K. Weiner
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Alexander B. Radaoui
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Michael M. Lizardo
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Christopher S. Hughes
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy Li
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amal M. El-Naggar
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melanie Rouleau
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wei Li
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Dimiter S. Dimitrov
- Division of Infectious Diseases, Department of Medicine, Center for Antibody Therapeutics, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Raushan T. Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Peter J. Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregg B. Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Poul H. Sorensen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Ebegboni VJ, Jones TL, Brownmiller T, Zhao PX, Pehrsson EC, Rajan SS, Caplen NJ. ETS1, a target gene of the EWSR1::FLI1 fusion oncoprotein, regulates the expression of the focal adhesion protein TENSIN3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572864. [PMID: 38187702 PMCID: PMC10769395 DOI: 10.1101/2023.12.21.572864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The mechanistic basis for the metastasis of Ewing sarcomas remains poorly understood, as these tumors harbor few mutations beyond the chromosomal translocation that initiates the disease. Instead, the epigenome of Ewing sarcoma (EWS) cells reflects the regulatory state of genes associated with the DNA binding activity of the fusion oncoproteins EWSR1::FLI1 or EWSR1::ERG. In this study, we examined the EWSR1::FLI1/ERG's repression of transcription factor genes, concentrating on those that exhibit a broader range of expression in tumors than in EWS cell lines. Focusing on one of these target genes, ETS1, we detected EWSR1::FLI1 binding and an H3K27me3 repressive mark at this locus. Depletion of EWSR1::FLI1 results in ETS1's binding of promoter regions, substantially altering the transcriptome of EWS cells, including the upregulation of the gene encoding TENSIN3 (TNS3), a focal adhesion protein. EWS cell lines expressing ETS1 (CRISPRa) exhibited increased TNS3 expression and enhanced movement compared to control cells. The cytoskeleton of control cells and ETS1-activated EWS cell lines also differed. Specifically, control cells exhibited a distributed vinculin signal and a network-like organization of F-actin. In contrast, ETS1-activated EWS cells showed an accumulation of vinculin and F-actin towards the plasma membrane. Interestingly, the phenotype of ETS1-activated EWS cell lines depleted of TNS3 resembled the phenotype of the control cells. Critically, these findings have clinical relevance as TNS3 expression in EWS tumors positively correlates with that of ETS1.
Collapse
Affiliation(s)
- Vernon Justice Ebegboni
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patrick X Zhao
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Erica C Pehrsson
- Omics Bioinformatics Facility, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Soumya Sundara Rajan
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Thway K, Fisher C. A Practical Approach to Small Round Cell Tumors Involving the Gastrointestinal Tract and Abdomen. Surg Pathol Clin 2023; 16:765-778. [PMID: 37863565 DOI: 10.1016/j.path.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Small round cell neoplasms are diagnostically challenging owing to their clinical and pathologic overlap, necessitating use of large immunopanels and molecular analysis. Ewing sarcomas (ES) are the most common, but EWSR1 is translocated in several diverse neoplasms, some with round cell morphology. Molecular advances enable classification of many tumors previously termed 'atypical ES'. The current WHO Classification includes two new undifferentiated round cell sarcomas (with CIC or BCOR alterations), and a group of sarcomas in which EWSR1 partners with non-Ewing family transcription factor genes. This article reviews the spectrum of small round cell sarcomas within the gastrointestinal tract and abdomen.
Collapse
Affiliation(s)
- Khin Thway
- Sarcoma Unit, Royal Marsden Hospital, London SW3 6JJ, UK; Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Cyril Fisher
- Division of Molecular Pathology, The Institute of Cancer Research, London SW3 6JB, UK; Department of Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
| |
Collapse
|
11
|
Banaszek N, Kurpiewska D, Kozak K, Rutkowski P, Sobczuk P. Hedgehog pathway in sarcoma: from preclinical mechanism to clinical application. J Cancer Res Clin Oncol 2023; 149:17635-17649. [PMID: 37815662 PMCID: PMC10657326 DOI: 10.1007/s00432-023-05441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Sarcomas are a diverse group of malignant neoplasms of mesenchymal origin. They develop rarely, but due to poor prognosis, they are a challenging and significant clinical problem. Currently, available therapeutic options have very limited activity. A better understating of sarcomas' pathogenesis may help develop more effective therapies in the future. The Sonic hedgehog (Shh) signaling pathway is involved in both embryonic development and mature tissue repair and carcinogenesis. Shh pathway inhibitors are presently used in the treatment of basal cell carcinoma. Its increased activity has been demonstrated in many sarcomas, including osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma, leiomyosarcoma, and malignant rhabdoid tumor. In vitro studies have demonstrated the effectiveness of inhibitors of the Hedgehog pathway in inhibiting proliferation in those sarcomas in which the components of the pathway are overexpressed. These results were confirmed by in vivo studies, which additionally proved the influence of Shh pathway inhibitors on limiting the metastatic potential of sarcoma cells. However, until now, the efficacy of sarcomas treatment with Shh pathway inhibitors has not been established in clinical trials. The reason for that may be the non-canonical activation of the pathway or interactions with other signaling pathways, such as Wnt or Notch. In this review, we present the Shh signaling pathway's role in the pathogenesis of sarcomas, including both canonical and non-canonical signaling. We also propose how this knowledge could be potentially translated into clinics.
Collapse
Affiliation(s)
- Natalia Banaszek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Kurpiewska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kozak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Paweł Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland.
| |
Collapse
|
12
|
Rock A, Uche A, Yoon J, Agulnik M, Chow W, Millis S. Bioinformatic Analysis of Recurrent Genomic Alterations and Corresponding Pathway Alterations in Ewing Sarcoma. J Pers Med 2023; 13:1499. [PMID: 37888109 PMCID: PMC10608227 DOI: 10.3390/jpm13101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Ewing Sarcoma (ES) is an aggressive, mesenchymal malignancy associated with a poor prognosis in the recurrent or metastatic setting with an estimated overall survival (OS) of <30% at 5 years. ES is characterized by a balanced, reciprocal chromosomal translocation involving the EWSR1 RNA-binding protein and ETS transcription factor gene (EWS-FLI being the most common). Interestingly, murine ES models have failed to produce tumors phenotypically representative of ES. Genomic alterations (GA) in ES are infrequent and may work synergistically with EWS-ETS translocations to promote oncogenesis. Aberrations in fibroblast growth factor receptor (FGFR4), a receptor tyrosine kinase (RTK) have been shown to contribute to carcinogenesis. Mouse embryonic fibroblasts (MEFs) derived from knock-in strain of homologous Fgfr4G385R mice display a transformed phenotype with enhanced TGF-induced mammary carcinogenesis. The association between the FGFRG388R SNV in high-grade soft tissue sarcomas has previously been demonstrated conferring a statistically significant association with poorer OS. How the FGFR4G388R SNV specifically relates to ES has not previously been delineated. To further define the genomic landscape and corresponding pathway alterations in ES, comprehensive genomic profiling (CGP) was performed on the tumors of 189 ES patients. The FGFR4G388R SNV was identified in a significant proportion of the evaluable cases (n = 97, 51%). In line with previous analyses, TP53 (n = 36, 19%), CDK2NA/B (n = 33, 17%), and STAG2 (n = 22, 11.6%) represented the most frequent alterations in our cohort. Co-occurrence of CDK2NA and STAG2 alterations was observed (n = 5, 3%). Notably, we identified a higher proportion of TP53 mutations than previously observed. The most frequent pathway alterations affected MAPK (n = 89, 24% of pathological samples), HRR (n = 75, 25%), Notch1 (n = 69, 23%), Histone/Chromatin remodeling (n = 57, 24%), and PI3K (n = 64, 20%). These findings help to further elucidate the genomic landscape of ES with a novel investigation of the FGFR4G388R SNV revealing frequent aberration.
Collapse
Affiliation(s)
- Adam Rock
- City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (J.Y.); (M.A.)
| | - An Uche
- Alameda Health System, 1411 E. 31st St., Oakland, CA 94602, USA;
| | - Janet Yoon
- City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (J.Y.); (M.A.)
| | - Mark Agulnik
- City of Hope Comprehensive Cancer Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (J.Y.); (M.A.)
| | - Warren Chow
- UCI Health, 101 The City Drive, South Orange, CA 92868, USA;
| | - Sherri Millis
- Foundation Medicine, Inc., 150 Second St., Cambridge, MA 02141, USA;
| |
Collapse
|
13
|
Mukherjee S, Mukherjee SB, Frenkel-Morgenstern M. Functional and regulatory impact of chimeric RNAs in human normal and cancer cells. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1777. [PMID: 36633099 DOI: 10.1002/wrna.1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Fusions of two genes can lead to the generation of chimeric RNAs, which may have a distinct functional role from their original molecules. Chimeric RNAs could encode novel functional proteins or serve as novel long noncoding RNAs (lncRNAs). The appearance of chimeric RNAs in a cell could help to generate new functionality and phenotypic diversity that might facilitate this cell to survive against new environmental stress. Several recent studies have demonstrated the functional roles of various chimeric RNAs in cancer progression and are considered as biomarkers for cancer diagnosis and sometimes even drug targets. Further, the growing evidence demonstrated the potential functional association of chimeric RNAs with cancer heterogeneity and drug resistance cancer evolution. Recent studies highlighted that chimeric RNAs also have functional potentiality in normal physiological processes. Several functionally potential chimeric RNAs were discovered in human cancer and normal cells in the last two decades. This could indicate that chimeric RNAs are the hidden layer of the human transcriptome that should be explored from the functional insights to better understand the functional evolution of the genome and disease development that could facilitate clinical practice improvements. This review summarizes the current knowledge of chimeric RNAs and highlights their functional, regulatory, and evolutionary impact on different cancers and normal physiological processes. Further, we will discuss the potential functional roles of a recently discovered novel class of chimeric RNAs named sense-antisense/cross-strand chimeric RNAs generated by the fusion of the bi-directional transcripts of the same gene. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sunanda Biswas Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
14
|
Tanaka M, Nakamura T. Targeting epigenetic aberrations of sarcoma in CRISPR era. Genes Chromosomes Cancer 2023; 62:510-525. [PMID: 36967299 DOI: 10.1002/gcc.23142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sarcomas are rare malignancies that exhibit diverse biological, genetic, morphological, and clinical characteristics. Genetic alterations, such as gene fusions, mutations in transcriptional machinery components, histones, and DNA methylation regulatory molecules, play an essential role in sarcomagenesis. These mutations induce and/or cooperate with specific epigenetic aberrations required for the growth and maintenance of sarcomas. Appropriate mouse models have been developed to clarify the significance of genetic and epigenetic interactions in sarcomas. Studies using the mouse models for human sarcomas have demonstrated major advances in our understanding the developmental processes as well as tumor microenvironment of sarcomas. Recent technological progresses in epigenome editing will not only improve the studies using animal models but also provide a direct clue for epigenetic therapies. In this manuscript, we review important epigenetic aberrations in sarcomas and their representative mouse models, current methods of epigenetic editing using CRISPR/dCas9 systems, and potential applications in sarcoma studies and therapeutics.
Collapse
Affiliation(s)
- Miwa Tanaka
- Project for Cancer Epigenomics, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takuro Nakamura
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
15
|
Apte SS, Mor E, Mitchell C, Gyorki DE. Practical Management of Adult Ultra-Rare Primary Retroperitoneal Soft Tissue Sarcoma: A Focus on Perivascular Epithelioid Tumours and Extraosseous Ewing Sarcoma. Curr Oncol 2023; 30:5953-5972. [PMID: 37504306 PMCID: PMC10377910 DOI: 10.3390/curroncol30070445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
With the exception of well-differentiated liposarcoma, dedifferentiated liposarcoma, leiomyosarcoma, solitary fibrous tumour, malignant peripheral nerve sheath tumour, and undifferentiated pleomorphic sarcoma, the majority of the ≈70 histologic subtypes of retroperitoneal sarcoma are defined as 'ultra-rare' sarcomas, with an incidence of ≤1-5/1,000,000 persons/year. For most of these ultra-rare RPS subtypes, diagnosis and treatment follows international guidelines for the management of more common RPS histologies, with en bloc surgical resection as the mainstay of curative treatment, and enrolment in clinical trials where possible. Because the treatment of RPS is heavily driven by histology, the surgeon must be familiar with specific issues related to the diagnosis and management of ultra-rare sarcoma subtypes. Expert radiological and surgeon reviews are required to differentiate similarly presenting tumours where surgery can be avoided (e.g., angiomyolipoma), or where upfront systemic therapy is indicated (e.g., extraosseous Ewing's sarcoma). Thus, the management of all retroperitoneal sarcomas should occur at a sarcoma referral centre, with a multidisciplinary team of experts dedicated to the surgical and medical management of these rare tumours. In this focused review, we highlight how diagnosis and management of the ultra-rare primary RPS histologies of malignant perivascular epithelioid cell tumour (PEComa), extraosseous Ewing sarcoma (EES), extraosseous osteosarcoma (EOS), and rhabdomyosarcoma (RMS) critically diverge from the management of more common RPS subtypes.
Collapse
Affiliation(s)
- Sameer S Apte
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Division of General Surgery, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| | - Eyal Mor
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Catherine Mitchell
- Division of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - David E Gyorki
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| |
Collapse
|
16
|
Ioannidou M, Tsotridou E, Samoladas E, Tragiannidis A, Kouskouras K, Sfougaris D, Spyridakis I, Foroulis C, Galli-Tsinopoulou A, Hatzipantelis E. Unusual Manifestation of Extraosseous Ewing Sarcoma: Report of 3 Cases. Balkan J Med Genet 2023; 25:77-81. [PMID: 37265973 PMCID: PMC10230840 DOI: 10.2478/bjmg-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Ewing sarcoma (ES), described as a diffuse endothelioma of the bone, is divided into two categories: osseous and extraosseous, which mainly affects adolescents. Extraosseous Ewing Sarcomas (EES) are rare tumors originating from soft tissues. Their clinical presentation depends mainly on the primary location of the tumor and are highly chemosensitive and radiosensitive. The purpose of this study was to describe the clinical characteristics and outcomes of 3 children with EES and uncommon presentation treated in our Unit. The diagnosis of EES was confirmed by biopsy and cytogenetic analysis with fluorescence in situ hybridization (FISH). Surgical excision was planned as primary treatment, followed by adjuvant chemotherapy according to EURO-E.W.I.N.G protocol. To date, all patients are alive, 1, 3 and 4 years after completion of treatment, with no signs of recurrence or metastasis.
Collapse
Affiliation(s)
- M. Ioannidou
- Children’s and Adolescent’s Hematology-Oncology Unit of 2 Department of Pediatrics, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - E. Tsotridou
- Children’s and Adolescent’s Hematology-Oncology Unit of 2 Department of Pediatrics, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - E. Samoladas
- 2 Department of Orthopedic Surgery, Aristotle University of Thessaloniki, “Gennimatas” General Hospital, Thessaloniki, Greece
| | - A. Tragiannidis
- Children’s and Adolescent’s Hematology-Oncology Unit of 2 Department of Pediatrics, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - K. Kouskouras
- Department of Radiology, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - D. Sfougaris
- 1 Department of Pediatric Surgery, Aristotle University of Thessaloniki, “Gennimatas” General Hospital, Thessaloniki, Greece
| | - I. Spyridakis
- 2 Department of Pediatric Surgery, Aristotle University of Thessaloniki, “Papageorgiou” General Hospital, Thessaloniki, Greece
| | - C. Foroulis
- Department of Cardiothoracic Surgery, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - A. Galli-Tsinopoulou
- Children’s and Adolescent’s Hematology-Oncology Unit of 2 Department of Pediatrics, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| | - E. Hatzipantelis
- Children’s and Adolescent’s Hematology-Oncology Unit of 2 Department of Pediatrics, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, Greece
| |
Collapse
|
17
|
Huang W, Zhang W, Zeng L, Liao S, Liu F, Li L. ERG Expression is Helpful in Differentiating T-Lymphoblastic Lymphoma from Thymoma. Int J Surg Pathol 2023; 31:137-141. [PMID: 35435050 DOI: 10.1177/10668969221095165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ETS-related gene (ERG) is the member of ETS-family of transcription factors and is commonly expressed in Ewing sarcoma. Recently, we found that ERG can also be expressed in lymphoblastic lymphoma. The aim of this article is to explore the expression patterns of ERG in T-lymphoblastic lymphoma, and to evaluate its diagnostic value for differentiating T-lymphoblastic lymphoma and nonneoplastic T-precursor cells in thymoma via immunohistochemistry. In this study, we explored the expression pattern of ERG in T-lymphoblastic lymphoma and thymoma specimens via immunohistochemistry. Sixteen T-lymphoblastic lymphoma and 18 thymoma specimens were evaluated for the expression of ERG. Our findings showed that ERG was expressed in 10 of the 16 (63%) T-lymphoblastic lymphoma specimens, and in only 1 of the 18 (6%) thymoma specimens. The positive and negative predictive value of ERG in T-lymphoblastic lymphoma was 91% and 74%, respectively. ERG is a helpful marker for the diagnosis of T-lymphoblastic lymphoma and is a promising new method to differentiate T-lymphoblastic lymphoma and the nonneoplastic T-precursor cells in thymoma.
Collapse
Affiliation(s)
- Wenyong Huang
- Department of Pathology, 196534The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wen Zhang
- Department of Pathology, 196534The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Lei Zeng
- Department of Pathology, 196534The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Shousheng Liao
- Department of Pathology, 196534The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Fanrong Liu
- Department of Pathology, 196534The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Lixiang Li
- Department of Pathology, 196534The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
18
|
Agnoletto C, Pignochino Y, Caruso C, Garofalo C. Exosome-Based Liquid Biopsy Approaches in Bone and Soft Tissue Sarcomas: Review of the Literature, Prospectives, and Hopes for Clinical Application. Int J Mol Sci 2023; 24:ijms24065159. [PMID: 36982236 PMCID: PMC10048895 DOI: 10.3390/ijms24065159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The knowledge of exosome impact on sarcoma development and progression has been implemented in preclinical studies thanks to technological advances in exosome isolation. Moreover, the clinical relevance of liquid biopsy is well established in early diagnosis, prognosis prediction, tumor burden assessment, therapeutic responsiveness, and recurrence monitoring of tumors. In this review, we aimed to comprehensively summarize the existing literature pointing out the clinical relevance of detecting exosomes in liquid biopsy from sarcoma patients. Presently, the clinical utility of liquid biopsy based on exosomes in patients affected by sarcoma is under debate. The present manuscript collects evidence on the clinical impact of exosome detection in circulation of sarcoma patients. The majority of these data are not conclusive and the relevance of liquid biopsy-based approaches in some types of sarcoma is still insufficient. Nevertheless, the utility of circulating exosomes in precision medicine clearly emerged and further validation in larger and homogeneous cohorts of sarcoma patients is clearly needed, requiring collaborative projects between clinicians and translational researchers for these rare cancers.
Collapse
Affiliation(s)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy
- Candiolo Cancer Instute, FPO-IRCCS, 10060 Torino, Italy
| | - Chiara Caruso
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Immunology and Molecular Oncology Diagnostic Unit, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy
| |
Collapse
|
19
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
20
|
Watanabe M, Kosaka H, Sugawara M, Maemoto M, Ono Y, Uemori T, Shizu R, Yoshinari K. Screening for DAX1/EWS-FLI1 functional inhibitors identified dihydroorotate dehydrogenase as a therapeutic target for Ewing's sarcoma. Cancer Med 2023; 12:9802-9814. [PMID: 36825574 PMCID: PMC10166890 DOI: 10.1002/cam4.5741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/27/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
OBJECTIVE EWS-FLI1 is the most common oncogenic fusion protein in Ewing's sarcoma family tumors (ESFTs). DAX1, an orphan member of the nuclear receptor superfamily, is up-regulated by EWS-FLI1 and plays a key role in the transformed phenotype of ESFTs. METHODS To discover a functional inhibitor of DAX1 and EWS-FLI1, we screened small-molecular inhibitors using a DAX1 reporter assay system. RESULTS K-234 and its derivatives, which were dihydroorotate dehydrogenase (DHODH) inhibitors, showed inhibitory effects in the reporter assay. K-234 inhibited the growth of Ewing's sarcoma with various fusion types, and K-234 derivatives altered the expression of EWS-FLI1-regulated genes. The DAX1 expression had no effect on the growth inhibitory effect of the K-234 derivatives, while DHODH overexpression or uridine treatment attenuated their inhibitory effects, suggesting that inhibition by K-234 derivatives occurs through DHODH inhibition. An in vivo study showed that a K-234 derivative clearly inhibited tumor growth in an Ewing's sarcoma xenograft mouse model. CONCLUSION Taken together, the present results suggest that DHODH inhibitors can inhibit the function of DAX1/EWS-FLI1 in ESFTs and might be a therapeutic agent with potent anti-tumor activity for Ewing's sarcoma patients.
Collapse
Affiliation(s)
- Miwa Watanabe
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan.,Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiromichi Kosaka
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Masamori Sugawara
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Michihiro Maemoto
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Yoko Ono
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Takeshi Uemori
- Research and Development Division, Kyowa Kirin Co., Ltd., Shizuoka, Japan
| | - Ryota Shizu
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
21
|
Chavan M, Dhakal S, Singh A, Rai V, Arora S, C Mallipeddi M, Das A. Ewing sarcoma genomics and recent therapeutic advancements. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2023. [DOI: 10.1016/j.phoj.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
22
|
Heller D, Wasilewski G, Mustafa J, Chaudhry H, Lowery E, Borys D, Allam E. Extraskeletal Ewing sarcoma of the sciatic nerve. Radiol Case Rep 2023; 18:1221-1226. [PMID: 36660563 PMCID: PMC9842801 DOI: 10.1016/j.radcr.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 01/13/2023] Open
Abstract
Extraskeletal Ewing sarcoma (EES) is a rare tumor diagnosed in children or young adults and is even more unusual in individuals over 30 years of age. Due to its rare occurrence and low index of suspicion, this tumor can pose diagnostic and therapeutic challenges. We present a case of a 60-year-old male with EES of the sciatic nerve, an unexpected entity given the patient's age, tumor type, and tumor location. This can mimic a nerve sheath tumor on imaging.
Collapse
|
23
|
Orth MF, Surdez D, Faehling T, Ehlers AC, Marchetto A, Grossetête S, Volckmann R, Zwijnenburg DA, Gerke JS, Zaidi S, Alonso J, Sastre A, Baulande S, Sill M, Cidre-Aranaz F, Ohmura S, Kirchner T, Hauck SM, Reischl E, Gymrek M, Pfister SM, Strauch K, Koster J, Delattre O, Grünewald TGP. Systematic multi-omics cell line profiling uncovers principles of Ewing sarcoma fusion oncogene-mediated gene regulation. Cell Rep 2022; 41:111761. [PMID: 36476851 DOI: 10.1016/j.celrep.2022.111761] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/25/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (EwS) is characterized by EWSR1-ETS fusion transcription factors converting polymorphic GGAA microsatellites (mSats) into potent neo-enhancers. Although the paucity of additional mutations makes EwS a genuine model to study principles of cooperation between dominant fusion oncogenes and neo-enhancers, this is impeded by the limited number of well-characterized models. Here we present the Ewing Sarcoma Cell Line Atlas (ESCLA), comprising whole-genome, DNA methylation, transcriptome, proteome, and chromatin immunoprecipitation sequencing (ChIP-seq) data of 18 cell lines with inducible EWSR1-ETS knockdown. The ESCLA shows hundreds of EWSR1-ETS-targets, the nature of EWSR1-ETS-preferred GGAA mSats, and putative indirect modes of EWSR1-ETS-mediated gene regulation, converging in the duality of a specific but plastic EwS signature. We identify heterogeneously regulated EWSR1-ETS-targets as potential prognostic EwS biomarkers. Our freely available ESCLA (http://r2platform.com/escla/) is a rich resource for EwS research and highlights the power of comprehensive datasets to unravel principles of heterogeneous gene regulation by chimeric transcription factors.
Collapse
Affiliation(s)
- Martin F Orth
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Didier Surdez
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France; Balgrist University Hospital, Faculty of Medicine, University of Zürich, 8008 Zürich, Switzerland
| | - Tobias Faehling
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Anna C Ehlers
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Aruna Marchetto
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Sandrine Grossetête
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Richard Volckmann
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Danny A Zwijnenburg
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Julia S Gerke
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany
| | - Sakina Zaidi
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CB06/07/1009, CIBERER-ISCIII), 28029 Madrid, Spain
| | - Ana Sastre
- Unidad Hemato-oncología Pediátrica, Hospital Infantil Universitario La Paz, 28029 Madrid, Spain
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie Research Center, 75005 Paris, France
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Florencia Cidre-Aranaz
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Shunya Ohmura
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, 80337 Munich, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Eva Reischl
- Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Melissa Gymrek
- Division of Genetics, Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Department of Pediatric Hematology & Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Konstantin Strauch
- Institute of Medical Biometry, Epidemiology, and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Jan Koster
- Department of Oncogenomics, Amsterdam University Medical Centers (AUMC), 1105 Amsterdam, the Netherlands
| | - Olivier Delattre
- INSERM Unit 830 "Genetics and Biology of Cancers," Institut Curie Research Center, 75005 Paris, France
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany; Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany; Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Hassa E, Aliç T. Ewing sarcoma: what trends in recent works? A holistic analysis with global productivity: A cross-sectional study. Medicine (Baltimore) 2022; 101:e31406. [PMID: 36401481 PMCID: PMC9678599 DOI: 10.1097/md.0000000000031406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Advances in the biology of Ewing sarcoma, which continues to be an important cause of mortality, have caused an increase in information in the literature related to the underlying molecular base of the disease and discussions of new treatment approaches. In this study, we aimed to comprehensively analyze the published scientific articles on Ewing sarcoma. The Web of Science database was used to obtain and statistically analysis articles on Ewing sarcoma that were published between 1980 and 2021. Maps of network visualization were used to reveal trending topics, global collaborations, and the most effective studies. Correlation analysis was performed using Spearman's correlation coefficient. A total of 3236 articles were analyzed. The first 3 countries that contributed the most to the literature and cooperated most intensively were USA (1194, 36.8%), Germany (293, 9%), Italy (254, 7.8%). Pediatric Blood & Cancer (n = 122), Cancer (87), Journal of Pediatric Hematology Oncology (71) were among the top 3 journals with the most articles. The most active author was Piero Picci (n = 94). High-income countries have a great effect on the literature on this subject. The most studied trend topics in recent years were pediatric oncology, EWS RNA Binding Protein 1 (EWSR1), EWSR1-FL1, epigenetics, bioinformatics, microRNA, gene expression, metastasis, migration, biomarker, immunotherapy, survival, outcomes, surveillance epidemiology and end results (SEER), nomogram, temozolomide, irinotecan, and drug resistance. Genetic studies, metastasis, immunotherapy, life analyses/nomogram based on new data obtained from SEER, and chemotherapy with irinotecan and temozolomide combination, were seen to be the topics researched in recent years.
Collapse
Affiliation(s)
- Ercan Hassa
- Memorial Ankara Hospital, Department of Orthopaedics and Traumatology, Ankara, Turkey
| | - Taner Aliç
- Hitit University, Faculty of Medicine, Department of Orthopaedics and Traumatology, Çorum, Turkey
- *Correspondence: Taner Aliç, Hitit University, Faculty of Medicine, Department of Orthopaedics and Traumatology, Çorum, 19000, Turkey (e-mail: )
| |
Collapse
|
25
|
Neomorphic DNA-binding enables tumor-specific therapeutic gene expression in fusion-addicted childhood sarcoma. Mol Cancer 2022; 21:199. [PMID: 36229873 PMCID: PMC9558418 DOI: 10.1186/s12943-022-01641-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric fusion transcription factors are oncogenic hallmarks of several devastating cancer entities including pediatric sarcomas, such as Ewing sarcoma (EwS) and alveolar rhabdomyosarcoma (ARMS). Despite their exquisite specificity, these driver oncogenes have been considered largely undruggable due to their lack of enzymatic activity. Here, we show in the EwS model that – capitalizing on neomorphic DNA-binding preferences – the addiction to the respective fusion transcription factor EWSR1-FLI1 can be leveraged to express therapeutic genes. We genetically engineered a de novo enhancer-based, synthetic and highly potent expression cassette that can elicit EWSR1-FLI1-dependent expression of a therapeutic payload as evidenced by episomal and CRISPR-edited genomic reporter assays. Combining in silico screens and immunohistochemistry, we identified GPR64 as a highly specific cell surface antigen for targeted transduction strategies in EwS. Functional experiments demonstrated that anti-GPR64-pseudotyped lentivirus harboring our expression cassette can specifically transduce EwS cells to promote the expression of viral thymidine kinase sensitizing EwS for treatment to otherwise relatively non-toxic (Val)ganciclovir and leading to strong anti-tumorigenic, but no adverse effects in vivo. Further, we prove that similar vector designs can be applied in PAX3-FOXO1-driven ARMS, and to express immunomodulatory cytokines, such as IL-15 and XCL1, in tumor entities typically considered to be immunologically ‘cold’. Collectively, these results generated in pediatric sarcomas indicate that exploiting, rather than suppressing, the neomorphic functions of chimeric transcription factors may open inroads to innovative and personalized therapies, and that our highly versatile approach may be translatable to other cancers addicted to oncogenic transcription factors with unique DNA-binding properties.
Collapse
|
26
|
Shulman DS, Whittle SB, Surdez D, Bailey KM, de Álava E, Yustein JT, Shlien A, Hayashi M, Bishop AJR, Crompton BD, DuBois SG, Shukla N, Leavey PJ, Lessnick SL, Kovar H, Delattre O, Grünewald TGP, Antonescu CR, Roberts RD, Toretsky JA, Tirode F, Gorlick R, Janeway KA, Reed D, Lawlor ER, Grohar PJ. An international working group consensus report for the prioritization of molecular biomarkers for Ewing sarcoma. NPJ Precis Oncol 2022; 6:65. [PMID: 36115869 PMCID: PMC9482616 DOI: 10.1038/s41698-022-00307-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
The advent of dose intensified interval compressed therapy has improved event-free survival for patients with localized Ewing sarcoma (EwS) to 78% at 5 years. However, nearly a quarter of patients with localized tumors and 60-80% of patients with metastatic tumors suffer relapse and die of disease. In addition, those who survive are often left with debilitating late effects. Clinical features aside from stage have proven inadequate to meaningfully classify patients for risk-stratified therapy. Therefore, there is a critical need to develop approaches to risk stratify patients with EwS based on molecular features. Over the past decade, new technology has enabled the study of multiple molecular biomarkers in EwS. Preliminary evidence requiring validation supports copy number changes, and loss of function mutations in tumor suppressor genes as biomarkers of outcome in EwS. Initial studies of circulating tumor DNA demonstrated that diagnostic ctDNA burden and ctDNA clearance during induction are also associated with outcome. In addition, fusion partner should be a pre-requisite for enrollment on EwS clinical trials, and the fusion type and structure require further study to determine prognostic impact. These emerging biomarkers represent a new horizon in our understanding of disease risk and will enable future efforts to develop risk-adapted treatment.
Collapse
Affiliation(s)
- David S Shulman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Sarah B Whittle
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Didier Surdez
- Bone Sarcoma Research Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Kelly M Bailey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC/Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Center and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX, USA
| | - Adam Shlien
- Department of Laboratory Medicine and Pathobiology/Department of Paediatric Laboratory Medicine/Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute and Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrick J Leavey
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, and the Division of Pediatric Heme/Onc/BMT, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Heinrich Kovar
- St. Anna Children´s Cancer Research Institute (CCRI) and Department Pediatrics Medical University of Vienna, Vienna, Austria
| | - Olivier Delattre
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg/Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)/Institut of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disease, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC, USA
| | - Franck Tirode
- Univ Lyon, Universite Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Leon Berard, F-69008, Lyon, France
| | - Richard Gorlick
- Division of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Damon Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL, USA
| | - Elizabeth R Lawlor
- Seattle Children's Research Institute, University of Washington Medical School, Seattle, WA, USA
| | - Patrick J Grohar
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Ogura K, Elkrief A, Bowman AS, Koche RP, de Stanchina E, Benayed R, Mauguen A, Mattar MS, Khodos I, Meyers PA, Healey JH, Tap WD, Hameed M, Zehir A, Shukla N, Sawyers C, Bose R, Slotkin E, Ladanyi M. Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance. JCO Precis Oncol 2022; 6:e2200048. [PMID: 35952322 PMCID: PMC9384944 DOI: 10.1200/po.22.00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ewing sarcoma (ES) is a primitive sarcoma defined by EWSR1-ETS fusions as the primary driver alteration. To better define the landscape of cooperating secondary genetic alterations in ES, we analyzed clinical genomic profiling data of 113 patients with ES, a cohort including more adult patients (> 18 years) and more patients with advanced stage at presentation than previous genomic cohorts.
Collapse
Affiliation(s)
- Koichi Ogura
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Arielle Elkrief
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Anita S Bowman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elisa de Stanchina
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,AstraZeneca Pharmaceuticals, Wilmington, DE
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marissa S Mattar
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Inna Khodos
- Anti-tumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Paul A Meyers
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John H Healey
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Surgery, Orthopaedic Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William D Tap
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,AstraZeneca Pharmaceuticals, Wilmington, DE
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Charles Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,HHMI, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rohit Bose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA.,Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA.,Department of Urology, University of California, San Francisco, San Francisco, CA.,Benioff Initiative for Prostate Cancer Research, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | - Emily Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
28
|
Barghi F, Shannon HE, Saadatzadeh MR, Bailey BJ, Riyahi N, Bijangi-Vishehsaraei K, Just M, Ferguson MJ, Pandya PH, Pollok KE. Precision Medicine Highlights Dysregulation of the CDK4/6 Cell Cycle Regulatory Pathway in Pediatric, Adolescents and Young Adult Sarcomas. Cancers (Basel) 2022; 14:cancers14153611. [PMID: 35892870 PMCID: PMC9331212 DOI: 10.3390/cancers14153611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary This review provides an overview of clinical features and current therapies in children, adolescents, and young adults (AYA) with sarcoma. It highlights the basic and clinical findings on the cyclin-dependent kinases 4 and 6 (CDK4/6) cell cycle regulatory pathway in the context of the precision medicine-based molecular profiles of the three most common types of pediatric and AYA sarcomas—osteosarcoma (OS), rhabdomyosarcoma (RMS), and Ewing sarcoma (EWS). Abstract Despite improved therapeutic and clinical outcomes for patients with localized diseases, outcomes for pediatric and AYA sarcoma patients with high-grade or aggressive disease are still relatively poor. With advancements in next generation sequencing (NGS), precision medicine now provides a strategy to improve outcomes in patients with aggressive disease by identifying biomarkers of therapeutic sensitivity or resistance. The integration of NGS into clinical decision making not only increases the accuracy of diagnosis and prognosis, but also has the potential to identify effective and less toxic therapies for pediatric and AYA sarcomas. Genome and transcriptome profiling have detected dysregulation of the CDK4/6 cell cycle regulatory pathway in subpopulations of pediatric and AYA OS, RMS, and EWS. In these patients, the inhibition of CDK4/6 represents a promising precision medicine-guided therapy. There is a critical need, however, to identify novel and promising combination therapies to fight the development of resistance to CDK4/6 inhibition. In this review, we offer rationale and perspective on the promise and challenges of this therapeutic approach.
Collapse
Affiliation(s)
- Farinaz Barghi
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
| | - Harlan E. Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
| | - M. Reza Saadatzadeh
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Barbara J. Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
| | - Niknam Riyahi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Marissa Just
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Michael J. Ferguson
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Pankita H. Pandya
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
- Correspondence: (P.H.P.); (K.E.P.)
| | - Karen E. Pollok
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (P.H.P.); (K.E.P.)
| |
Collapse
|
29
|
Deng Q, Natesan R, Cidre-Aranaz F, Arif S, Liu Y, Rasool RU, Wang P, Mitchell-Velasquez E, Das CK, Vinca E, Cramer Z, Grohar PJ, Chou M, Kumar-Sinha C, Weber K, Eisinger-Mathason TK, Grillet N, Grünewald T, Asangani IA. Oncofusion-driven de novo enhancer assembly promotes malignancy in Ewing sarcoma via aberrant expression of the stereociliary protein LOXHD1. Cell Rep 2022; 39:110971. [PMID: 35705030 PMCID: PMC9716578 DOI: 10.1016/j.celrep.2022.110971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 01/16/2023] Open
Abstract
Ewing sarcoma (EwS) is a highly aggressive tumor of bone and soft tissues that mostly affects children and adolescents. The pathognomonic oncofusion EWSR1::FLI1 transcription factor drives EwS by orchestrating an oncogenic transcription program through de novo enhancers. By integrative analysis of thousands of transcriptomes representing pan-cancer cell lines, primary cancers, metastasis, and normal tissues, we identify a 32-gene signature (ESS32 [Ewing Sarcoma Specific 32]) that stratifies EwS from pan-cancer. Among the ESS32, LOXHD1, encoding a stereociliary protein, is the most highly expressed gene through an alternative transcription start site. Deletion or silencing of EWSR1::FLI1 bound upstream de novo enhancer results in loss of the LOXHD1 short isoform, altering EWSR1::FLI1 and HIF1α pathway genes and resulting in decreased proliferation/invasion of EwS cells. These observations implicate LOXHD1 as a biomarker and a determinant of EwS metastasis and suggest new avenues for developing LOXHD1-targeted drugs or cellular therapies for this deadly disease.
Collapse
Affiliation(s)
- Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group of Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany,Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany
| | - Shehbeel Arif
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Ying Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA
| | - Reyaz ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Endrit Vinca
- Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany,Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Hopp Children’s Cancer Center (KiTZ), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zvi Cramer
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | | | - Margaret Chou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kristy Weber
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T.S. Karin Eisinger-Mathason
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas Grünewald
- Max-Eder Research Group of Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany,Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany,Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Hopp Children’s Cancer Center (KiTZ), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Irfan A. Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Lead contact,Correspondence:
| |
Collapse
|
30
|
Challenges in Cell Fate Acquisition to Scid-Repopulating Activity from Hemogenic Endothelium of hiPSCs Derived from AML Patients Using Forced Transcription Factor Expression. Cells 2022; 11:cells11121915. [PMID: 35741044 PMCID: PMC9221973 DOI: 10.3390/cells11121915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
The generation of human hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) represents a major goal in regenerative medicine and is believed would follow principles of early development. HSCs arise from a type of endothelial cell called a “hemogenic endothelium” (HE), and human HSCs are experimentally detected by transplantation into SCID or other immune-deficient mouse recipients, termed SCID-Repopulating Cells (SRC). Recently, SRCs were detected by forced expression of seven transcription factors (TF) (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1, and SPI1) in hPSC-derived HE, suggesting these factors are deficient in hPSC differentiation to HEs required to generate HSCs. Here we derived PECAM-1-, Flk-1-, and VE-cadherin-positive endothelial cells that also lack CD45 expression (PFVCD45−) which are solely responsible for hematopoietic output from iPSC lines reprogrammed from AML patients. Using HEs derived from AML patient iPSCs devoid of somatic leukemic aberrations, we sought to generate putative SRCs by the forced expression of 7TFs to model autologous HSC transplantation. The expression of 7TFs in hPSC-derived HE cells from an enhanced hematopoietic progenitor capacity was present in vitro, but failed to acquire SRC activity in vivo. Our findings emphasize the benefits of forced TF expression, along with the continued challenges in developing HSCs for autologous-based therapies from hPSC sources.
Collapse
|
31
|
Wang H, Wang X, Xu L, Zhang J. PBX1, EMCN and ERG are associated with the sub-clusters and the prognosis of VHL mutant clear cell renal cell carcinoma. Sci Rep 2022; 12:8955. [PMID: 35624190 PMCID: PMC9142578 DOI: 10.1038/s41598-022-13148-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/20/2022] [Indexed: 12/30/2022] Open
Abstract
The molecular heterogeneity of primary clear cell renal cell carcinoma (ccRCC) has been reported. However, the classifications of Von Hippel-Lindau (VHL) mutant ccRCC are unclear. Here, VHL mutant ccRCC from The Cancer Genome Atlas and E-MTAB-1980 datasets were divided into two sub-clusters through non-negative matrix factorization algorithm. Most VHL mutant ccRCC patients in sub-cluster2 were with pathological T1 stage and VHL mutant ccRCC patients in sub-cluster1 were with decreased overall survival. DNA replication and homologous recombination scores were higher, while, WNT signaling pathway and regulation of autophagy scores were lower in sub-cluster1 VHL mutant ccRCC. Moreover, PBX1 transcriptional scores and mRNA expressions were lower in sub-cluster1 VHL mutant ccRCC patients and were associated with the overall survival of VHL mutant ccRCC. Furthermore, PBX1 associated genes EMCN and ERG were down-regulated in sub-cluster1 VHL mutant ccRCC and overall survival was decreased in EMCN or ERG lowly expressed VHL mutant ccRCC patients. Also, PBX1 and EMCN were down-regulated in ccRCC tissues, compared with normal kidney tissues. At last, we constructed risk models based on PBX1, EMCN and EGR expression features. With the increase of the risk score, the number of death of VHL mutant ccRCC patients was increased.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Ji Zhang
- Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
32
|
Identification of a novel translocation producing an in-frame fusion of TAF15 and ETV4 in a case of extraosseous Ewing sarcoma revealed in the prenatal period. Virchows Arch 2022; 481:665-669. [DOI: 10.1007/s00428-022-03335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
|
33
|
PGC1 alpha coactivates ERG fusion to drive antioxidant target genes under metabolic stress. Commun Biol 2022; 5:416. [PMID: 35508713 PMCID: PMC9068611 DOI: 10.1038/s42003-022-03385-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
The presence of ERG gene fusion; from developing prostatic intraepithelial neoplasia (PIN) lesions to hormone resistant high grade prostate cancer (PCa) dictates disease progression, altered androgen metabolism, proliferation and metastasis1–3. ERG driven transcriptional landscape may provide pro-tumorigenic cues in overcoming various strains like hypoxia, nutrient deprivation, inflammation and oxidative stress. However, insights on the androgen independent regulation and function of ERG during stress are limited. Here, we identify PGC1α as a coactivator of ERG fusion under various metabolic stress. Deacetylase SIRT1 is necessary for PGC1α-ERG interaction and function. We reveal that ERG drives the expression of antioxidant genes; SOD1 and TXN, benefitting PCa growth. We observe increased expression of these antioxidant genes in patients with high ERG expression correlates with poor survival. Inhibition of PGC1α-ERG axis driven transcriptional program results in apoptosis and reduction in PCa xenografts. Here we report a function of ERG under metabolic stress which warrants further studies as a therapeutic target for ERG fusion positive PCa. PGC1α acts as a co-activator of the ERG transcription factor during metabolic stress resulting in antioxidant functionsand inhibition of the PGC1α-ERG driven transcriptional program reduces prostate cancer growth by inducing ROS mediated apoptosis.
Collapse
|
34
|
Blay JY, Palmerini E, Bollard J, Aguiar S, Angel M, Araya B, Badilla R, Bernabeu D, Campos F, Chs CS, Carvajal Montoya A, Casavilca-Zambrano S, Castro-Oliden, Chacón M, Clara-Altamirano MA, Collini P, Correa Genoroso R, Costa FD, Cuellar M, Dei Tos AP, Dominguez Malagon HR, Donati DM, Dufresne A, Eriksson M, Farias-Loza M, Frezza AM, Frisoni T, Garcia-Ortega DY, Gerderblom H, Gouin F, Gómez-Mateo MC, Gronchi A, Haro J, Hindi N, Huanca L, Jimenez N, Karanian M, Kasper B, Lopes A, Lopes David BB, Lopez-Pousa A, Lutter G, Maki RG, Martinez-Said H, Martinez-Tlahuel JL, Mello CA, Morales Pérez JM, Moura DS, Nakagawa SA, Nascimento AG, Ortiz-Cruz EJ, Patel S, Pfluger Y, Provenzano S, Righi A, Rodriguez A, Santos TG, Scotlandi K, Mlg S, Soulé T, Stacchiotti S, Valverde CM, Waisberg F, Zamora Estrada E, Martin-Broto J. SELNET clinical practice guidelines for bone sarcoma. Crit Rev Oncol Hematol 2022; 174:103685. [PMID: 35460913 DOI: 10.1016/j.critrevonc.2022.103685] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
Abstract
Bone sarcoma are infrequent diseases, representing < 0.2% of all adult neoplasms. A multidisciplinary management within reference centers for sarcoma, with discussion of the diagnostic and therapeutic strategies within an expert multidisciplinary tumour board, is essential for these patients, given its heterogeneity and low frequency. This approach leads to an improvement in patient's outcome, as demonstrated in several studies. The Sarcoma European Latin-American Network (SELNET), aims to improve clinical outcome in sarcoma care, with a special focus in Latin-American countries. These Clinical Practice Guidelines (CPG) have been developed and agreed by a multidisciplinary expert group (including medical and radiation oncologist, surgical oncologist, orthopaedic surgeons, radiologist, pathologist, molecular biologist and representatives of patients advocacy groups) of the SELNET consortium, and are conceived to provide the standard approach to diagnosis, treatment and follow-up of bone sarcoma patients in the Latin-American context.
Collapse
Affiliation(s)
- J Y Blay
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France.
| | - E Palmerini
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - J Bollard
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - S Aguiar
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - M Angel
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - B Araya
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - R Badilla
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - D Bernabeu
- Hospital Universitario La Paz, Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - F Campos
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - Caro-Sánchez Chs
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - A Carvajal Montoya
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - S Casavilca-Zambrano
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - Castro-Oliden
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - M Chacón
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - M A Clara-Altamirano
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - P Collini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - R Correa Genoroso
- Hospital Clínico Universitario Virgen de la Victoria, Campus Universitario de Teatinos s/n, 29010, Malaga, Spain
| | - F D Costa
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - M Cuellar
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - A P Dei Tos
- Treviso General Hospital Treviso, University of Padua, Padova, Italy
| | - H R Dominguez Malagon
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - D M Donati
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - A Dufresne
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - M Eriksson
- Skane University Hospital and Lund University, Lund, Sweden
| | - M Farias-Loza
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - A M Frezza
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - T Frisoni
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - D Y Garcia-Ortega
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - H Gerderblom
- Leiden University Medical Center, Leiden, The Netherlands
| | - F Gouin
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - M C Gómez-Mateo
- Hospital Universitario Miguel Servet, Paseo Isabel la Católica, 1-3, 50009 Zaragoza, Spain
| | - A Gronchi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - J Haro
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - N Hindi
- Research Health Institute Fundacion Jimenez Diaz (IIS/FJD), 28015 Madrid, Spain; Hospital Fundación Jimenez Diaz University Hospital, 28040 Madrid, Spain; General de Villalba University Hospital, 28400 Madrid, Spain
| | - L Huanca
- Instituto Nacional de Enfermedades Neoplásicas, Av. Angamos Este 2520, Lima, Peru
| | - N Jimenez
- Hospital San Vicente de Paúl, Avenue 16, streets 10 and 14, Heredia, Costa Rica
| | - M Karanian
- Léon Bérard Center, 28 rue Laennec 69373 Lyon Cedex 08, France
| | - B Kasper
- University of Heidelberg, Mannheim Cancer Center, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - A Lopes
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - B B Lopes David
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - A Lopez-Pousa
- Hospital de la Santa Creu i Sant Pau, Carrer de Sant Quintí, 89, 08041 Barcelona, Spain
| | - G Lutter
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - R G Maki
- University of Pennsylvania, Abramson Cancer Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104 USA
| | - H Martinez-Said
- Centro Oncologico Integral, Hospital Medica Sur, Planta Baja Torre III - Cons. 305, Col. Toriello Guerra, Deleg. Tlalpan. C.P., 14050, Mexico, D.F
| | - J L Martinez-Tlahuel
- Instituto Nacional de Cancerologia, Torre Nueva de Hospitalización, primer piso. Av. San Fernando 86, Colonia Niño Jesus. CP, 14080 Tlalpan Mexico
| | - C A Mello
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - J M Morales Pérez
- Centro Oncologico Integral, Hospital Medica Sur, Planta Baja Torre III - Cons. 305, Col. Toriello Guerra, Deleg. Tlalpan. C.P., 14050, Mexico, D.F
| | - D S Moura
- Hospital Universitario Virgen del Rocio, Av Manuel Siurot s/n, 41013 Sevilla, Spain
| | - S A Nakagawa
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - A G Nascimento
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - E J Ortiz-Cruz
- Hospital Universitario La Paz, MD Anderson Cancer Center, Calle de Arturo Soria, 270, 28033 Madrid, Spain
| | - S Patel
- UT MD Anderson Cancer Center, Houston, TX, USA
| | - Y Pfluger
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - S Provenzano
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - A Righi
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - A Rodriguez
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - T G Santos
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - K Scotlandi
- IRCCS Istituto Ortopedico Rizzoli, University of Bologna, Via Pupilli, 1, 40136, Bologna, Italy
| | - Silva Mlg
- A.C.Camargo Cancer Center, Rua prof Antonio Prudente, 211 - Liberdade, São Paulo 01509-010, Brazil
| | - T Soulé
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - S Stacchiotti
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - C M Valverde
- Vall d´Hebrón University Hospital, Passeig de la Vall d'Hebron, 119, 08035 Barcelona, Spain
| | - F Waisberg
- Instituto Alexander Fleming, Av. Cramer 1180. CP, C1426ANZ Buenos Aires, Argentina
| | - E Zamora Estrada
- Hospital Dr. R. A. Calderón Guardia, 7-9 Av, 15-17 St, Aranjuez, San José, Costa Rica
| | - J Martin-Broto
- Research Health Institute Fundacion Jimenez Diaz (IIS/FJD), 28015 Madrid, Spain; Hospital Fundación Jimenez Diaz University Hospital, 28040 Madrid, Spain; General de Villalba University Hospital, 28400 Madrid, Spain
| |
Collapse
|
35
|
Yamada Y, Ichiki T, Susuki Y, Yamada-Nozaki Y, Tateishi Y, Furue M, Oda Y. Diagnostic utility of ERG immunostaining in dermatofibroma. J Clin Pathol 2022:jclinpath-2022-208158. [PMID: 35318257 DOI: 10.1136/jclinpath-2022-208158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/07/2022] [Indexed: 01/25/2023]
Abstract
AIMS Dermatofibroma/fibrous histiocytoma (DF/FH) is a common cutaneous mesenchymal neoplasm exhibiting benign biological behaviour. However, the immunohistochemical utility of erythroblast transformation-specific-related gene (ERG) for diagnosing DF remains unknown. The authors reviewed the immunohistochemical status of ERG in different subtypes of DF and in its differential diagnoses. METHODS Overall, 97 cases of ordinary DF/FH, 6 cases of aneurysmal FH, 10 cases of cellular FH, 5 cases of angiomatoid FH, 2 cases of epithelioid FH, 64 cases of dermatofibrosarcoma protuberans (DFSP) and 52 cases of fibrous scar were retrieved. As the other histological types of cutaneous neoplasms, 6 cases of myxofibrosarcoma, 4 cases of undifferentiated pleomorphic sarcoma, 11 cases of atypical fibroxanthoma, 19 cases of malignant melanoma, 20 cases of nevocellular nevus, 20 cases of neurofibroma, 19 cases of schwannoma, 8 cases of angioleiomyoma and 1 case of pilar leiomyoma were included. RESULTS Immunohistochemical positivity for ERG was demonstrated in 87 of 97 cases (89.6%) of ordinary DF/FH, 7 of 10 cases (70%) of cellular FH, 3 of 6 cases (50%) of aneurysmal FH, 1 of 5 cases (20%) of angiomatoid FH and 1 of 52 cases (0.1%) of fibrous scar. All cases of DFSP, epithelioid FH and other types of cutaneous neoplasms included in the current investigation were negative for ERG. The intensity of ERG immunohistochemical staining in spindle-shaped cells appeared weaker than that in endothelial cells. CONCLUSIONS DF/FH was frequently positive for ERG immunostaining. ERG immunostaining may thus be useful to distinguish DF/FH from DFSP.
Collapse
Affiliation(s)
- Yuichi Yamada
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | - Toshio Ichiki
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | - Yosuke Susuki
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | | | - Yuki Tateishi
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| | - Masutaka Furue
- Department of Dermatology, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Wu Y, Ji H, Zhang S, Zhang Y, Chu W, Mei Y, Niu W, Zhang B. Primary primitive neuroectodermal tumor of urinary bladder: a case report and literature review. Transl Cancer Res 2022; 10:4997-5004. [PMID: 35116350 PMCID: PMC8797345 DOI: 10.21037/tcr-21-864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022]
Abstract
Primary primitive neuroectodermal tumor (PNET) of the bladder is an extremely rare and highly aggressive neoplasm. We report a case of PNET of the urinary bladder associated with increased serum neuron-specific enolase (NSE) in the presence of relapse and metastasis. A 66-year-old male presented to our department due to painless gross hematuria. Computed tomographic urography (CTU) showed an intraluminal tumor in the anterior bladder wall. Biopsy revealed a malignant small round blue cell tumor. The patient denied radical cystectomy, and partial cystectomy was given together with resection of adjacent peritoneum. The patient was diagnosed with primary bladder PNET after pathological inspection with negative surgical margins. Additionally, he received 6 cycles of chemotherapy using etoposide and cisplatin (EP) regime, and showed recurrence and metastasis afterwards. Disease progression was seen after transurethral resection (TUR) of bladder tumor and radiotherapy. Pelvic and retroperitoneal metastasis triggered bilateral hydronephrosis, and then palliative treatment was given with bilateral percutaneous nephrostomy. Finally, he died 12 months after diagnosis. PNETs are highly aggressive tumors characterized by the expression of MIC2 and neural markers and the presence of EWS-FLI1 translocation. We recommend histologic, immunohistochemical, and cytogenetic analysis in all patients with small round blue cell bladder malignancy in order to rule out other small cell malignancies. Multimodal treatment, including surgery and adjuvant chemotherapy must be initiated. Patients aged ≤30 years underwent complete resection of tumor and standard chemotherapy showed a better prognosis, while those with metastasis, incomplete resection and inadequate response to chemotherapy showed poor prognosis. Moreover, an elevated NSE may indicate a poor prognosis.
Collapse
Affiliation(s)
- Yuhai Wu
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Hong Ji
- Department of Pathology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Shudong Zhang
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, China
| | - Yangyang Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, China
| | - Wei Chu
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, China
| | - Yanhui Mei
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Wenjie Niu
- Department of Urology, Binzhou Medical University Hospital, Binzhou, China
| | - Bing Zhang
- Department of Urology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
37
|
Ingley KM, Maleddu A, Grange FL, Gerrand C, Bleyer A, Yasmin E, Whelan J, Strauss SJ. Current approaches to management of bone sarcoma in adolescent and young adult patients. Pediatr Blood Cancer 2022; 69:e29442. [PMID: 34767314 DOI: 10.1002/pbc.29442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/02/2021] [Accepted: 10/16/2021] [Indexed: 01/05/2023]
Abstract
Bone tumors are a group of histologically diverse diseases that occur across all ages. Two of the commonest, osteosarcoma (OS) and Ewing sarcoma (ES), are regarded as characteristic adolescent and young adult (AYA) cancers with an incidence peak in AYAs. They are curable for some but associated with unacceptably high rates of treatment failure and morbidity. The introduction of effective new therapeutics for bone sarcomas is slow, and to date, complex biology has been insufficiently characterized to allow more rapid therapeutic exploitation. This review focuses on current standards of care, recent advances that have or may soon change that standard of care and challenges to the expert clinical research community that we suggest must be met.
Collapse
Affiliation(s)
- Katrina M Ingley
- London Sarcoma Service, University College London Hospitals NHS Trust, London, UK
| | - Alessandra Maleddu
- London Sarcoma Service, University College London Hospitals NHS Trust, London, UK
| | - Franel Le Grange
- London Sarcoma Service, University College London Hospitals NHS Trust, London, UK
| | - Craig Gerrand
- London Sarcoma Service, Department of Orthopaedic Oncology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Archie Bleyer
- Oregon Health and Science University, Portland, Oregon
| | - Ephia Yasmin
- Reproductive Medicine Unit, University College London Hospitals NHS Trust, London, UK
| | - Jeremy Whelan
- London Sarcoma Service, University College London Hospitals NHS Trust, London, UK
| | - Sandra J Strauss
- London Sarcoma Service, University College London Hospitals NHS Trust, London, UK.,UCL Cancer Institute, London, UK
| |
Collapse
|
38
|
Pankratjevaite L, Eskandarani HA, Lizdenis P, Saladzinskas Z. Challenges in diagnosing an extraosseous Ewing sarcoma: A case report. Int J Surg Case Rep 2022; 91:106708. [PMID: 35030406 PMCID: PMC8760346 DOI: 10.1016/j.ijscr.2021.106708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 10/30/2022] Open
Abstract
INTRODUCTION Ewing sarcoma is a highly malignant and rare tumour of bones and soft tissue. It may occur at any age, but it is more common in children and teenagers. CASE REPORT We report a case of a 56-year-old woman with EES involving the right iliac fossa. Previous abdominal trauma with retroperitoneal hematoma, nonspecific symptoms and unusual age for EES have caused diagnostics difficulties. The first histopathological examination misdiagnosed tumour to be a GIST, and just after the second surgery the accurate diagnosis of EES was made. CONCLUSIONS The diagnosis of ES sometimes is complicated and delayed. Prompt detailed examination and imaging studies should be performed to people with long lasting pain without trauma and other nonspecific symptoms, especially followed by a palpable mass. The treatment of EES is multimodal.
Collapse
Affiliation(s)
- Lina Pankratjevaite
- Department of Breast Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.
| | - Hassan Ali Eskandarani
- Department of Plastic Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark
| | - Paulius Lizdenis
- Department of Surgery, Medical Academy, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Zilvinas Saladzinskas
- Department of Surgery, Medical Academy, Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
39
|
CIC rearranged sarcomas: A Single Institution Experience of the Potential Pitfalls in Interpreting CIC FISH Results. Pathol Res Pract 2022; 231:153773. [DOI: 10.1016/j.prp.2022.153773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/19/2022]
|
40
|
Seidel MG, Kashofer K, Moser T, Thueringer A, Liegl-Atzwanger B, Leithner A, Szkandera J, Benesch M, El-Heliebi A, Heitzer E. Clinical implementation of plasma cell-free circulating tumor DNA quantification by digital droplet PCR for the monitoring of Ewing sarcoma in children and adolescents. Front Pediatr 2022; 10:926405. [PMID: 36046479 PMCID: PMC9420963 DOI: 10.3389/fped.2022.926405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Treatment stratification and response assessment in pediatric sarcomas has relied on imaging studies and surgical/histopathological evidence of vital tumor cells. Such studies and evidence collection processes often involve radiation and/or general anesthesia in children. Cell-free circulating tumor DNA (ctDNA) detection in blood plasma is one available method of so-called liquid biopsies that has been shown to correlate qualitatively and quantitatively with the existence of vital tumor cells in the body. Our clinical observational study focused on the utility and feasibility of ctDNA detection in pediatric Ewing sarcoma (EWS) as a marker of minimal residual disease (MRD). PATIENTS AND METHODS We performed whole genome sequencing (WGS) to identify the exact breakpoints in tumors known to carry the EWS-FLI1 fusion gene. Patient-specific fusion breakpoints were tracked in peripheral blood plasma using digital droplet PCR (ddPCR) before, during, and after therapy in six children and young adults with EWS. Presence and levels of fusion breakpoints were correlated with clinical disease courses. RESULTS We show that the detection of ctDNA in the peripheral blood of EWS patients (i) is feasible in the clinical routine and (ii) allows for the longitudinal real-time monitoring of MRD activity in children and young adults. Although changing ctDNA levels correlated well with clinical outcome within patients, between patients, a high variability was observed (inter-individually). CONCLUSION ctDNA detection by ddPCR is a highly sensitive, specific, feasible, and highly accurate method that can be applied in EWS for follow-up assessments as an additional surrogate parameter for clinical MRD monitoring and, potentially, also for treatment stratification in the near future.
Collapse
Affiliation(s)
- Markus G Seidel
- Division for Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Tina Moser
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria.,Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Andrea Thueringer
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, Graz, Austria
| | - Joanna Szkandera
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Martin Benesch
- Division for Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Amin El-Heliebi
- BioTechMed-Graz, Graz, Austria.,Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.,Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Ellen Heitzer
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Graz, Austria.,Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| |
Collapse
|
41
|
Flores G, Grohar PJ. One oncogene, several vulnerabilities: EWS/FLI targeted therapies for Ewing sarcoma. J Bone Oncol 2021; 31:100404. [PMID: 34976713 PMCID: PMC8686064 DOI: 10.1016/j.jbo.2021.100404] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
EWS/FLI is the defining mutation of Ewing sarcoma. This oncogene drives malignant transformation and progression and occurs in a genetic background characterized by few other recurrent cooperating mutations. In addition, the tumor is absolutely dependent on the continued expression of EWS/FLI to maintain the malignant phenotype. However, EWS/FLI is a transcription factor and therefore a challenging drug target. The difficulty of directly targeting EWS/FLI stems from unique features of this fusion protein as well as the network of interacting proteins required to execute the transcriptional program. This network includes interacting proteins as well as upstream and downstream effectors that together reprogram the epigenome and transcriptome. While the vast number of proteins involved in this process challenge the development of a highly specific inhibitors, they also yield numerous therapeutic opportunities. In this report, we will review how this vast EWS-FLI transcriptional network has been exploited over the last two decades to identify compounds that directly target EWS/FLI and/or associated vulnerabilities.
Collapse
Affiliation(s)
- Guillermo Flores
- Van Andel Research Institute, Grand Rapids, MI, USA
- Michigan State University, College of Human Medicine, USA
| | - Patrick J Grohar
- Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3501 Civic Center Blvd., Philadelphia, PA, USA
| |
Collapse
|
42
|
Establishment of multiplex RT-PCR to detect fusion genes for the diagnosis of Ewing sarcoma. Diagn Pathol 2021; 16:102. [PMID: 34749732 PMCID: PMC8573982 DOI: 10.1186/s13000-021-01164-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022] Open
Abstract
Background Detection of the tumor-specific EWSR1/FUS-ETS fusion gene is essential to diagnose Ewing sarcoma. Reverse transcription–polymerase chain reaction (RT–PCR) and fluorescence in situ hybridization are commonly used to detect the fusion gene, and assays using next-generation sequencing have recently been reported. However, at least 28 fusion transcript variants have been reported, making rapid and accurate detection difficult. Methods We constructed two sets of multiplex PCR assays and evaluated their utility using cell lines and clinical samples. Results EWSR1/FUS-ETS was detected in five of six tumors by the first set, and in all six tumors by the second set. The fusion gene detected only by the latter was EWSR1-ERG, which completely lacked exon 7 of EWSR1. The fusion had a short N-terminal region of EWSR1 and showed pathologically atypical features. Conclusions We developed multiplex RT–PCR assays to detect EWSR1-ETS and FUS-ETS simultaneously. These assays will aid the rapid and accurate diagnosis of Ewing sarcoma. In addition, variants of EWSR1/FUS-ETS with a short N-terminal region that may have been previously missed can be easily detected. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-021-01164-6.
Collapse
|
43
|
Pachva MC, Lai H, Jia A, Rouleau M, Sorensen PH. Extracellular Vesicles in Reprogramming of the Ewing Sarcoma Tumor Microenvironment. Front Cell Dev Biol 2021; 9:726205. [PMID: 34604225 PMCID: PMC8484747 DOI: 10.3389/fcell.2021.726205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (EwS) is a highly aggressive cancer and the second most common malignant bone tumor of children and young adults. Although patients with localized disease have a survival rate of approximately 75%, the prognosis for patients with metastatic disease remains dismal (<30%) and has not improved in decades. Standard-of-care treatments include local therapies such as surgery and radiotherapy, in addition to poly-agent adjuvant chemotherapy, and are often associated with long-term disability and reduced quality of life. Novel targeted therapeutic strategies that are more efficacious and less toxic are therefore desperately needed, particularly for metastatic disease, given that the presence of metastasis remains the most powerful predictor of poor outcome in EwS. Intercellular communication within the tumor microenvironment is emerging as a crucial mechanism for cancer cells to establish immunosuppressive and cancer-permissive environments, potentially leading to metastasis. Altering this communication within the tumor microenvironment, thereby preventing the transfer of oncogenic signals and molecules, represents a highly promising therapeutic strategy. To achieve this, extracellular vesicles (EVs) offer a candidate mechanism as they are actively released by tumor cells and enriched with proteins and RNAs. EVs are membrane-bound particles released by normal and tumor cells, that play pivotal roles in intercellular communication, including cross-talk between tumor, stromal fibroblast, and immune cells in the local tumor microenvironment and systemic circulation. EwS EVs, including the smaller exosomes and larger microvesicles, have the potential to reprogram a diversity of cells in the tumor microenvironment, by transferring various biomolecules in a cell-specific manner. Insights into the various biomolecules packed in EwS EVs as cargos and the molecular changes they trigger in recipient cells of the tumor microenvironment will shed light on various potential targets for therapeutic intervention in EwS. This review details EwS EVs composition, their potential role in metastasis and in the reprogramming of various cells of the tumor microenvironment, and the potential for clinical intervention.
Collapse
Affiliation(s)
- Manideep C Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Horton Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Andy Jia
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Rouleau
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
44
|
The CAM Model for CIC-DUX4 Sarcoma and Its Potential Use for Precision Medicine. Cells 2021; 10:cells10102613. [PMID: 34685592 PMCID: PMC8533847 DOI: 10.3390/cells10102613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: CIC-DUX4 sarcoma is a rare mesenchymal small round cell tumor which belongs to rare cancers that occupy a significant percentage of cancer cases as a whole, despite each being rare. Importantly, each rare cancer type has different features, and thus there is a need to develop a model that mimics the features of each of these cancers. We evaluated the idea that the chicken chorioallantoic membrane assay (CAM), a convenient and versatile animal model, can be established for the CIC-DUX4 sarcoma. (2) Methods: Patient-derived cell lines of CIC-DUX4 were applied. These cells were transplanted onto the CAM membrane and tumor formation was examined by H&E staining, immunohistochemistry and Western blotting. The CAM tumor was transferred onto a fresh CAM and was also used to form organoids. Retention of the fusion gene was examined. (3) Results: H&E staining as well as molecular characterization demonstrated the formation of the CIC-DUX4 tumor on the CAM membrane. Expression of cyclin D2 and ETV4 was identified. The CAM tumor was transferred to a fresh CAM to form the second-generation CAM tumor. In addition, we were successful in forming tumor organoids using the CAM tumor. Retention of the fusion gene CIC-DUX4 in the CAM, second-generation CAM, and in the CAM-derived organoids was confirmed by RT-PCR. (4) Conclusions: The CAM assay provides a promising model for CIC-DUX4 sarcoma.
Collapse
|
45
|
Morales E, Olson M, Iglesias F, Dahiya S, Luetkens T, Atanackovic D. Role of immunotherapy in Ewing sarcoma. J Immunother Cancer 2021; 8:jitc-2020-000653. [PMID: 33293354 PMCID: PMC7725096 DOI: 10.1136/jitc-2020-000653] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ewing sarcoma (ES) is thought to arise from mesenchymal stem cells and is the second most common bone sarcoma in pediatric patients and young adults. Given the dismal overall outcomes and very intensive therapies used, there is an urgent need to explore and develop alternative treatment modalities including immunotherapies. In this article, we provide an overview of ES biology, features of ES tumor microenvironment (TME) and review various tumor-associated antigens that can be targeted with immune-based approaches including cancer vaccines, monoclonal antibodies, T cell receptor-transduced T cells, and chimeric antigen receptor T cells. We highlight key reasons for the limited efficacy of various immunotherapeutic approaches for the treatment of ES to date. These factors include absence of human leukocyte antigen class I molecules from the tumor tissue, lack of an ideal surface antigen, and immunosuppressive TME due to the presence of myeloid-derived suppressor cells, F2 fibrocytes, and M2-like macrophages. Lastly, we offer insights into strategies for novel therapeutics development in ES. These strategies include the development of gene-modified T cell receptor T cells against cancer–testis antigen such as XAGE-1, surface target discovery through detailed profiling of ES surface proteome, and combinatorial approaches. In summary, we provide state-of-the-art science in ES tumor immunology and immunotherapy, with rationale and recommendations for future therapeutics development.
Collapse
Affiliation(s)
- Erin Morales
- Pediatric Oncology and Hematology, University of Utah, Salt Lake City, Utah, USA
| | - Michael Olson
- Cancer Immunotherapy, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Fiorella Iglesias
- Pediatric Oncology and Hematology, University of Utah, Salt Lake City, Utah, USA
| | - Saurabh Dahiya
- Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Tim Luetkens
- Pediatric Oncology and Hematology, University of Utah, Salt Lake City, Utah, USA.,Cancer Immunotherapy, Huntsman Cancer Institute, Salt Lake City, Utah, USA.,Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.,Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Djordje Atanackovic
- Cancer Immunotherapy, Huntsman Cancer Institute, Salt Lake City, Utah, USA .,Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.,Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, Utah, USA
| |
Collapse
|
46
|
Targeting of AKT-Signaling Pathway Potentiates the Anti-cancer Efficacy of Doxorubicin in A673 Ewing Sarcoma Cell Line. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00901-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
47
|
Mukherjee S, Heng HH, Frenkel-Morgenstern M. Emerging Role of Chimeric RNAs in Cell Plasticity and Adaptive Evolution of Cancer Cells. Cancers (Basel) 2021; 13:4328. [PMID: 34503137 PMCID: PMC8431553 DOI: 10.3390/cancers13174328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Gene fusions can give rise to somatic alterations in cancers. Fusion genes have the potential to create chimeric RNAs, which can generate the phenotypic diversity of cancer cells, and could be associated with novel molecular functions related to cancer cell survival and proliferation. The expression of chimeric RNAs in cancer cells might impact diverse cancer-related functions, including loss of apoptosis and cancer cell plasticity, and promote oncogenesis. Due to their recurrence in cancers and functional association with oncogenic processes, chimeric RNAs are considered biomarkers for cancer diagnosis. Several recent studies demonstrated that chimeric RNAs could lead to the generation of new functionality for the resistance of cancer cells against drug therapy. Therefore, targeting chimeric RNAs in drug resistance cancer could be useful for developing precision medicine. So, understanding the functional impact of chimeric RNAs in cancer cells from an evolutionary perspective will be helpful to elucidate cancer evolution, which could provide a new insight to design more effective therapies for cancer patients in a personalized manner.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| |
Collapse
|
48
|
Chen Y, Su H, Su Y, Zhang Y, Lin Y, Haglund F. Identification of an RNA-Binding-Protein-Based Prognostic Model for Ewing Sarcoma. Cancers (Basel) 2021; 13:cancers13153736. [PMID: 34359637 PMCID: PMC8345188 DOI: 10.3390/cancers13153736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Ewing sarcoma (ES) is an aggressive childhood tumor for which response to chemotherapy is central to long-term prognosis, but few prognostic markers have been identified. RNA-binding proteins (RBPs) are strong regulators of cell behavior, working, for example, through post-translational modifications of mRNA. In this study, we investigated whether patterns in the RBP levels were related to outcomes in ES patients. A total of three distinct patterns were recognized, and additional modelling suggested that 10 RPBs had predictive value, suggesting that this model could be used in a clinical setting to identify patients with a higher risk of mortality. Abstract RNA-binding proteins (RBPs) are important transcriptomic regulators and may be important in tumorigenesis. Here, we sought to investigate the clinical impact of RBPs for patients with Ewing sarcoma (ES). ES transcriptome signatures were characterized from four previously published cohorts and grouped into new training and validation cohorts. A total of three distinct subtypes were identified and compared for differences in patient prognosis and RBP signatures. Next, univariate Cox and Lasso regression models were used to identify hub prognosis-related RBPs and construct a prognostic risk model, and prediction capacity was assessed through time-dependent receiver operating characteristics (ROCs), Kaplan–Meier curves, and nomograms. Across the three RBP subtypes, 29 significant prognostic-associated RBP genes were identified, of which 10 were used to build and validate an RBP-associated prognostic risk model (RPRM) that had a stable predictive value and could be considered valuable for clinical risk-stratification of ES. A comparison with immunohistochemistry validation showed a significant association between overall survival and NSUN7 immunoreactivity, which was an independent favorable prognostic marker. The association of RBP signatures with ES clinical prognosis provides a strong rationale for further investigation into RBPs molecular mechanisms.
Collapse
Affiliation(s)
- Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Solna, 17176 Stockholm, Sweden; (Y.S.); (Y.Z.); (Y.L.); (F.H.)
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
- Correspondence:
| | - Huafang Su
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Yanhong Su
- Department of Oncology-Pathology, Karolinska Institutet, Solna, 17176 Stockholm, Sweden; (Y.S.); (Y.Z.); (Y.L.); (F.H.)
| | - Yifan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, Solna, 17176 Stockholm, Sweden; (Y.S.); (Y.Z.); (Y.L.); (F.H.)
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Solna, 17176 Stockholm, Sweden; (Y.S.); (Y.Z.); (Y.L.); (F.H.)
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Solna, 17176 Stockholm, Sweden; (Y.S.); (Y.Z.); (Y.L.); (F.H.)
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| |
Collapse
|
49
|
Tanaka M, Nakamura T. Modeling fusion gene-associated sarcoma: Advantages for understanding sarcoma biology and pathology. Pathol Int 2021; 71:643-654. [PMID: 34265156 DOI: 10.1111/pin.13142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Disease-specific gene fusions are reportedly major driver mutations in approximately 30% of bone and soft tissue sarcomas. Most fusion genes encode transcription factors or co-factors that regulate downstream target genes, altering cell growth, lineage commitment, and differentiation. Given the limitations of investigating their functions in vitro, the generation of mouse models expressing fusion genes in the appropriate cellular lineages is pivotal. Therefore, we generated a series of mouse models by introducing fusion genes into embryonic mesenchymal progenitors. This review describes mouse models of Ewing, synovial, alveolar soft part, and CIC-rearranged sarcomas. Furthermore, we describe the similarities between these models and their human counterparts. These models provide remarkable advantages to identify cells-of-origin, specific collaborators of fusion genes, angiogenesis key factors, or diagnostic biomarkers. Finally, we discuss the relationship between fusion proteins and the epigenetic background as well as the possible role of the super-enhancers.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
50
|
Bodlak A, Chang K, Channel J, Treece AL, Donaldson N, Cost CR, Garrington TP, Greffe B, Luna-Fineman S, Sopfe J, Loeb DM, Hayashi M. Circulating Plasma Tumor DNA Is Superior to Plasma Tumor RNA Detection in Ewing Sarcoma Patients: ptDNA and ptRNA in Ewing Sarcoma. J Mol Diagn 2021; 23:872-881. [PMID: 33887462 DOI: 10.1016/j.jmoldx.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/11/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022] Open
Abstract
The detection of tumor-specific nucleic acids from blood increasingly is being used as a method of liquid biopsy and minimal residual disease detection. However, achieving high sensitivity and high specificity remains a challenge. Here, we perform a direct comparison of two droplet digital PCR (ddPCR)-based detection methods, circulating plasma tumor RNA and circulating plasma tumor DNA (ptDNA), in blood samples from newly diagnosed Ewing sarcoma patients. First, we developed three specific ddPCR-based assays to detect EWS-FLI1 or EWS-ERG fusion transcripts, which naturally showed superior sensitivity to DNA detection on in vitro control samples. Next, we identified the patient-specific EWS-FLI1 or EWS-ERG breakpoint from five patient tumor samples and designed ddPCR-based, patient-specific ptDNA assays for each patient. These patient-specific assays show that although plasma tumor RNA can be detected in select newly diagnosed patients, positive results are low and statistically unreliable compared with ptDNA assays, which reproducibly detect robust positive results across most patients. Furthermore, the unique disease biology of Ewing sarcoma enabled us to show that most cell-free RNA is not tumor-derived, although cell-free-DNA burden is affected strongly by tumor-derived DNA burden. Here, we conclude that, even with optimized highly sensitive and specific assays, tumor DNA detection is superior to RNA detection in Ewing sarcoma patients.
Collapse
Affiliation(s)
- Avery Bodlak
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Kyle Chang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Jessica Channel
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Amy L Treece
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Nathan Donaldson
- Department of Orthopedics, University of Colorado Denver, Aurora, Colorado
| | - Carrye R Cost
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | | - Brian Greffe
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | | - Jenna Sopfe
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - David M Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado.
| |
Collapse
|