1
|
Hu X, Han Y, Liu J, Wang H, Tian Z, Zhang X, Zhang Y, Wang X. CTP synthase 2 predicts inferior survival and mediates DNA damage response via interacting with BRCA1 in chronic lymphocytic leukemia. Exp Hematol Oncol 2023; 12:6. [PMID: 36635772 PMCID: PMC9835321 DOI: 10.1186/s40164-022-00364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cytidine triphosphate synthase 2 (CTPS2) is an essential metabolic enzyme that catalyzes the biosynthesis of CTP. CTP synthases contribute to lymphocytes proliferation and tumorigenesis, but the role of CTPS2 in chronic lymphocytic leukemia (CLL) remains undefined. METHODS In silico analysis was performed to quantified the expression and clinical analysis of CTPS2 and BRCA1. The expression was then validated on the internal sets. Loss-and gain-of-function assays were conducted to investigate the physiological phenotypes in CLL. RNA-seq was employed to probe the molecular mechanism of CTPS2. RESULTS Herein, significant elevated expression of CTPS2 was observed in CLL patients compared to normal CD19 + B cells, which was verified in three independent cohorts. Furthermore, overexpression of CTPS2 was closely associated with undesired prognostic indicators, including unmutated IGHV status and chromosome 11q23 deletion. Additionally, elevated CTPS2 expression predicted adverse overall survival and treatment-free survival with independent prognostic significance. Downregulation of CTPS2 in CLL cells exhibited attenuated cell proliferation, arrested G2/M cell cycle and increased apoptosis. The addition of CTP or glutamine could reverse the above effects. Since RNA-seq showed the enrichment in DNA damage and response signaling, we subsequently found that silence of CTPS2 remarkably elevated DNA damage and decreased DNA repair. It was demonstrated that CTPS2 mediated DNA damage response via interacting with Breast Cancer 1 (BRCA1) protein in CLL through CoIP assays and rescued experiments. CONCLUSIONS Collectively, our study generated the novel findings that CTPS2 promoted CLL progression via DNA damage response and repair pathway. Targeting nucleotide metabolism potentially became an attractive strategy for treatment against CLL.
Collapse
Affiliation(s)
- Xinting Hu
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Yang Han
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Jiarui Liu
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Hua Wang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Zheng Tian
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Xin Zhang
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Ya Zhang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Xin Wang
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| |
Collapse
|
2
|
Andreadis C, Li T, Liu JL. Ubiquitination regulates cytoophidium assembly in Schizosaccharomyces pombe. Exp Cell Res 2022; 420:113337. [PMID: 36087798 DOI: 10.1016/j.yexcr.2022.113337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/30/2022]
Abstract
CTP synthase (CTPS), a metabolic enzyme responsible for the de novo synthesis of CTP, can form filamentous structures termed cytoophidia, which are evolutionarily conserved from bacteria to humans. Here we used Schizosaccharomyces pombe to study the cytoophidium assembly regulation by ubiquitination. We tested the CTP synthase's capacity to be post-translationally modified by ubiquitin or be affected by the ubiquitination state of the cell and showed that ubiquitination is important for the maintenance of the CTPS filamentous structure in fission yeast. We have identified proteins which are in complex with CTPS, including specific ubiquitination regulators which significantly affect CTPS filamentation, and mapped probable ubiquitination targets on CTPS. Furthermore, we discovered that a cohort of deubiquitinating enzymes is important for the regulation of cytoophidium's filamentous morphology. Our study provides a framework for the analysis of the effects that ubiquitination and deubiquitination have on the formation of cytoophidia.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Tianhao Li
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|
3
|
Hansen JM, Horowitz A, Lynch EM, Farrell DP, Quispe J, DiMaio F, Kollman JM. Cryo-EM structures of CTP synthase filaments reveal mechanism of pH-sensitive assembly during budding yeast starvation. eLife 2021; 10:73368. [PMID: 34734801 PMCID: PMC8641951 DOI: 10.7554/elife.73368] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Many metabolic enzymes self-assemble into micron-scale filaments to organize and regulate metabolism. The appearance of these assemblies often coincides with large metabolic changes as in development, cancer, and stress. Yeast undergo cytoplasmic acidification upon starvation, triggering the assembly of many metabolic enzymes into filaments. However, it is unclear how these filaments assemble at the molecular level and what their role is in the yeast starvation response. CTP Synthase (CTPS) assembles into metabolic filaments across many species. Here, we characterize in vitro polymerization and investigate in vivo consequences of CTPS assembly in yeast. Cryo-EM structures reveal a pH-sensitive assembly mechanism and highly ordered filament bundles that stabilize an inactive state of the enzyme, features unique to yeast CTPS. Disruption of filaments in cells with non-assembly or pH-insensitive mutations decreases growth rate, reflecting the importance of regulated CTPS filament assembly in homeotstasis.
Collapse
Affiliation(s)
- Jesse M Hansen
- Department of Biochemistry, University of Washington, Seattle, United States.,Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, United States
| | - Avital Horowitz
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Daniel P Farrell
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Joel Quispe
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, United States
| |
Collapse
|
4
|
Di Francia R, Crisci S, De Monaco A, Cafiero C, Re A, Iaccarino G, De Filippi R, Frigeri F, Corazzelli G, Micera A, Pinto A. Response and Toxicity to Cytarabine Therapy in Leukemia and Lymphoma: From Dose Puzzle to Pharmacogenomic Biomarkers. Cancers (Basel) 2021; 13:cancers13050966. [PMID: 33669053 PMCID: PMC7956511 DOI: 10.3390/cancers13050966] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary In this review, the authors propose a crosswise examination of cytarabine-related issues ranging from the spectrum of clinical activity and severe toxicities, through updated cellular pharmacology and drug formulations, to the genetic variants associated with drug-induced phenotypes. Cytarabine (cytosine arabinoside; Ara-C) in multiagent chemotherapy regimens is often used for leukemia or lymphoma treatments, as well as neoplastic meningitis. Chemotherapy regimens can induce a suboptimal clinical outcome in a fraction of patients. The individual variability in clinical response to Leukemia & Lymphoma treatments among patients appears to be associated with intracellular accumulation of Ara-CTP due to genetic variants related to metabolic enzymes. The review provides exhaustive information on the effects of Ara-C-based therapies, the adverse drug reaction will also be provided including bone pain, ocular toxicity (corneal pain, keratoconjunctivitis, and blurred vision), maculopapular rash, and occasional chest pain. Evidence for predicting the response to cytarabine-based treatments will be highlighted, pointing at their significant impact on the routine management of blood cancers. Abstract Cytarabine is a pyrimidine nucleoside analog, commonly used in multiagent chemotherapy regimens for the treatment of leukemia and lymphoma, as well as for neoplastic meningitis. Ara-C-based chemotherapy regimens can induce a suboptimal clinical outcome in a fraction of patients. Several studies suggest that the individual variability in clinical response to Leukemia & Lymphoma treatments among patients, underlying either Ara-C mechanism resistance or toxicity, appears to be associated with the intracellular accumulation and retention of Ara-CTP due to genetic variants related to metabolic enzymes. Herein, we reported (a) the latest Pharmacogenomics biomarkers associated with the response to cytarabine and (b) the new drug formulations with optimized pharmacokinetics. The purpose of this review is to provide readers with detailed and comprehensive information on the effects of Ara-C-based therapies, from biological to clinical practice, maintaining high the interest of both researcher and clinical hematologist. This review could help clinicians in predicting the response to cytarabine-based treatments.
Collapse
Affiliation(s)
- Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics, 60126 Ancona, Italy;
| | - Stefania Crisci
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| | - Angela De Monaco
- Clinical Patology, ASL Napoli 2 Nord, “S.M. delle Grazie Hospital”, 80078 Pozzuoli, Italy;
| | - Concetta Cafiero
- Medical Oncology, S.G. Moscati, Statte, 74010 Taranto, Italy
- Correspondence: or (C.C.); (A.M.); Tel.:+39-34-0101-2002 (C.C.); +39-06-4554-1191 (A.M.)
| | - Agnese Re
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Giancarla Iaccarino
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| | - Rosaria De Filippi
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | | | - Gaetano Corazzelli
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS—Fondazione Bietti, 00184 Rome, Italy
- Correspondence: or (C.C.); (A.M.); Tel.:+39-34-0101-2002 (C.C.); +39-06-4554-1191 (A.M.)
| | - Antonio Pinto
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| |
Collapse
|
5
|
Emami K, Wu LJ, Errington J. A Small Molecule Inhibitor of CTP Synthetase Identified by Differential Activity on a Bacillus subtilis Mutant Deficient in Class A Penicillin-Binding Proteins. Front Microbiol 2020; 11:2001. [PMID: 32973723 PMCID: PMC7479849 DOI: 10.3389/fmicb.2020.02001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/28/2020] [Indexed: 12/03/2022] Open
Abstract
In the course of screening for compounds with differential growth inhibition activity on a mutant of Bacillus subtilis lacking all four class A penicillin-binding proteins (Δ4), we came across an isoquinoline derivative, IQ-1 carboxylic acid (IQC) with relatively high activity on the mutant compared to the wild type strain. Treated cells were slightly elongated and had altered chromosome morphology. Mutants of Δ4 resistant to IQC were isolated and subjected to whole genome sequencing. Most of the mutants were affected in the gene, pyrG, encoding CTP synthetase (CTPS). Purified wild type CTPS was inhibited in vitro by IQC. Two of the three mutant proteins purified showed decreased sensitivity to IQC in vitro. Finally, inhibition by IQC was rescued by addition of cytidine but not uridine to the growth medium, consistent with the notion that IQC acts by reducing the synthesis of CTP or a related compound. IQC provides a promising new starting point for antibiotic inhibitors of CTPS.
Collapse
Affiliation(s)
- Kaveh Emami
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Lynch EM, Kollman JM. Coupled structural transitions enable highly cooperative regulation of human CTPS2 filaments. Nat Struct Mol Biol 2019; 27:42-48. [PMID: 31873303 PMCID: PMC6954954 DOI: 10.1038/s41594-019-0352-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/15/2019] [Indexed: 01/26/2023]
Abstract
Many enzymes assemble into defined oligomers, providing a mechanism for cooperatively regulating activity. Recent studies have described a mode of regulation in which enzyme activity is modulated by polymerization into large-scale filaments. Here we describe an ultrasensitive form of polymerization-based regulation employed by human CTP synthase 2 (CTPS2). Cryo-EM structures reveal that CTPS2 filaments dynamically switch between active and inactive forms in response to changes in substrate and product levels. Linking the conformational state of many CTPS2 subunits in a filament results in highly cooperative regulation, greatly exceeding the limits of cooperativity for the CTPS2 tetramer alone. The structures reveal a link between conformation and control of ammonia channeling between the enzyme’s active sites, and explain differences in regulation of human CTPS isoforms. This filament-based mechanism of enhanced cooperativity demonstrates how the widespread phenomenon of enzyme polymerization can be adapted to achieve different regulatory outcomes.
Collapse
Affiliation(s)
- Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Andreadis C, Hulme L, Wensley K, Liu JL. The TOR pathway modulates cytoophidium formation in Schizosaccharomyces pombe. J Biol Chem 2019; 294:14686-14703. [PMID: 31431504 PMCID: PMC6779450 DOI: 10.1074/jbc.ra119.009913] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Indexed: 12/30/2022] Open
Abstract
CTP synthase (CTPS) has been demonstrated to form evolutionarily-conserved filamentous structures termed cytoophidia whose exact cellular functions remain unclear, but they may play a role in intracellular compartmentalization. We have previously shown that the mammalian target of rapamycin complex 1 (mTORC1)-S6K1 pathway mediates cytoophidium assembly in mammalian cells. Here, using the fission yeast Schizosaccharomyces pombe as a model of a unicellular eukaryote, we demonstrate that the target of rapamycin (TOR)-signaling pathway regulates cytoophidium formation (from the S. pombe CTPS ortholog Cts1) also in S. pombe Conducting a systematic analysis of all viable single TOR subunit-knockout mutants and of several major downstream effector proteins, we found that Cts1 cytoophidia are significantly shortened and often dissociate when TOR is defective. We also found that the activities of the downstream effector kinases of the TORC1 pathway, Sck1, Sck2, and Psk1 S6, as well as of the S6K/AGC kinase Gad8, the major downstream effector kinase of the TORC2 pathway, are necessary for proper cytoophidium filament formation. Interestingly, we observed that the Crf1 transcriptional corepressor for ribosomal genes is a strong effector of Cts1 filamentation. Our findings connect TOR signaling, a major pathway required for cell growth, with the compartmentalization of the essential nucleotide synthesis enzyme CTPS, and we uncover differences in the regulation of its filamentation among higher multicellular and unicellular eukaryotic systems.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lydia Hulme
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Katherine Wensley
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ji-Long Liu
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China .,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
8
|
McCluskey GD, Mohamady S, Taylor SD, Bearne SL. Exploring the Potent Inhibition of CTP Synthase by Gemcitabine-5'-Triphosphate. Chembiochem 2016; 17:2240-2249. [PMID: 27643605 DOI: 10.1002/cbic.201600405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 11/10/2022]
Abstract
CTP synthase (CTPS) catalyzes the conversion of UTP to CTP and is a target for the development of antiviral, anticancer, antiprotozoal, and immunosuppressive agents. Exposure of cell lines to the antineoplastic cytidine analogue gemcitabine causes depletion of intracellular CTP levels, but the direct inhibition of CTPS by its metabolite gemcitabine-5'-triphosphate (dF-dCTP) has not been demonstrated. We show that dF-dCTP is a potent competitive inhibitor of Escherichia coli CTPS with respect to UTP [Ki =(3.0±0.1) μm], and that its binding affinity exceeds that of CTP ≈75-fold. Site-directed mutagenesis studies indicated that Glu149 is an important binding determinant for both CTP and dF-dCTP. Comparison of the binding affinities of the 5'-triphosphates of 2'-fluoro-2'-deoxycytidine and 2'-fluoro-2'-deoxyarabinocytidine revealed that the 2'-F-arabino group contributes markedly to the strong binding of dF-dCTP. Geminal 2'-F substitution on UTP (dF-dUTP) did not result in an increase in binding affinity with CTPS. Remarkably, CTPS catalyzed the conversion of dF-dUTP into dF-dCTP, thus suggesting that dF-dCTP might be regenerated in vivo from its catabolite dF-dUTP.
Collapse
Affiliation(s)
- Gregory D McCluskey
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Samy Mohamady
- Faculty of Pharmacy, The British University in Egypt, 11837, Cairo, Egypt
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
9
|
Abstract
Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease.
Collapse
Affiliation(s)
- Gabriel N Aughey
- a MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics , University of Oxford , Oxford , UK
| | - Ji-Long Liu
- a MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics , University of Oxford , Oxford , UK
| |
Collapse
|
10
|
Aughey GN, Grice SJ, Liu JL. The Interplay between Myc and CTP Synthase in Drosophila. PLoS Genet 2016; 12:e1005867. [PMID: 26889675 PMCID: PMC4759343 DOI: 10.1371/journal.pgen.1005867] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/23/2016] [Indexed: 01/24/2023] Open
Abstract
CTP synthase (CTPsyn) is essential for the biosynthesis of pyrimidine nucleotides. It has been shown that CTPsyn is incorporated into a novel cytoplasmic structure which has been termed the cytoophidium. Here, we report that Myc regulates cytoophidium formation during Drosophila oogenesis. We have found that Myc protein levels correlate with cytoophidium abundance in follicle epithelia. Reducing Myc levels results in cytoophidium loss and small nuclear size in follicle cells, while overexpression of Myc increases the length of cytoophidia and the nuclear size of follicle cells. Ectopic expression of Myc induces cytoophidium formation in late stage follicle cells. Furthermore, knock-down of CTPsyn is sufficient to suppress the overgrowth phenotype induced by Myc overexpression, suggesting CTPsyn acts downstream of Myc and is required for Myc-mediated cell size control. Taken together, our data suggest a functional link between Myc, a renowned oncogene, and the essential nucleotide biosynthetic enzyme CTPsyn. The coordination of metabolism with cell growth is critical for regulation of organismal development. Therefore there is significant interplay between metabolic enzymes and key developmental regulators such as transcription factors. The enzyme CTP synthase (CTPsyn) is essential for metabolic homeostasis as well as growth and development, due to its role in synthesising precursors for many fundamental cellular macromolecules such as RNA and lipids. However, the mechanisms by which CTPsyn is regulated during development are little understood. Here we have shown that Myc, an oncogene and a key developmental regulator, is necessary and sufficient for the assembly of CTPsyn-containing macrostructures termed cytoophidia. We show that the presence of CTPsyn is required for Myc to mediate its effect on cell growth during Drosophila oogenesis. Roles for CTPsyn and Myc in tumourigenesis have been well established and both proteins have been considered promising therapeutic targets. By better understanding the relationship between these two proteins, we can gain important insights, not only into tumour pathology and aetiology, but also metazoan developmental processes.
Collapse
Affiliation(s)
- Gabriel N. Aughey
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Stuart J. Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ji-Long Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Noree C, Monfort E, Shiau AK, Wilhelm JE. Common regulatory control of CTP synthase enzyme activity and filament formation. Mol Biol Cell 2014; 25:2282-90. [PMID: 24920825 PMCID: PMC4116302 DOI: 10.1091/mbc.e14-04-0912] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CTP synthase is one of many enzymes that form novel intracellular filaments/structures. A
structure–function approach is used to show that the same regulatory sites that control CTP
synthase enzyme activity also control filament formation. Close coupling of assembly to enzyme
regulation is proposed to be a general feature of these structures. The ability of enzymes to assemble into visible supramolecular complexes is a widespread
phenomenon. Such complexes have been hypothesized to play a number of roles; however, little is
known about how the regulation of enzyme activity is coupled to the assembly/disassembly of these
cellular structures. CTP synthase is an ideal model system for addressing this question because its
activity is regulated via multiple mechanisms and its filament-forming ability is evolutionarily
conserved. Our structure–function studies of CTP synthase in Saccharomyces
cerevisiae reveal that destabilization of the active tetrameric form of the enzyme
increases filament formation, suggesting that the filaments comprise inactive CTP synthase dimers.
Furthermore, the sites responsible for feedback inhibition and allosteric activation control
filament length, implying that multiple regions of the enzyme can influence filament structure. In
contrast, blocking catalysis without disrupting the regulatory sites of the enzyme does not affect
filament formation or length. Together our results argue that the regulatory sites that control CTP
synthase function, but not enzymatic activity per se, are critical for controlling filament
assembly. We predict that the ability of enzymes to form supramolecular structures in general is
closely coupled to the mechanisms that regulate their activity.
Collapse
Affiliation(s)
- Chalongrat Noree
- Section on Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Elena Monfort
- Section on Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - James E Wilhelm
- Section on Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
12
|
Zhu M, Sun W, Wang Y, Meng J, Zhang D, Guo T, Ouyang P, Ying H, Xie J. Engineered cytidine triphosphate synthetase with reduced product inhibition. Protein Eng Des Sel 2014; 27:225-33. [PMID: 24902851 DOI: 10.1093/protein/gzu019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytidine triphosphate (CTP) synthetase (CTPS) (EC number 6.3.4.2) is a key enzyme involved in de novo synthesis of CTP. It catalyzes the rate-limiting step of the process due to the product inhibition effects on the enzyme. In this study, a novel CTPS from Corynebacterium glutamicum ATCC 13032 (CgCTPS) was cloned, expressed and characterized. A series of mutagenesis in its N-terminal ammonia ligase (ALase) domain was performed in order to reduce CTP product inhibition. All single mutation variants (D160E, E162A, E168K) lowered product inhibition by lowering the enzyme's binding affinity for CTP. The homology model of CgCTPS showed that D160E mutant caused steric hindrance for the pyrimidine ring of CTP stacking, E162A disrupted the hydrogen bond between CTP ribose and side chain and D168K caused minor localized structure perturbations of CTP binding pocket. The triple mutant of CTPS (D160E-E162A-E168K) with halved Km, doubled Vmax and the 23.5-fold increased IC50 for CTP shows a potential for use in industrial-scale CTP production by its better performance in enzyme kinetics and product inhibition.
Collapse
Affiliation(s)
- Mengzhu Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Wujin Sun
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Raleigh 27695, USA
| | - Yan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jie Meng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Dalu Zhang
- International Cooperation Division, China National Center for Biotechnology Development, Beijing 100036, People's Republic of China
| | - Ting Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, Nanjing 211816, People's Republic of China Guangzhou Sugarcane Industry Research Institute, Guangzhou 510316, People's Republic of China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jingjing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, Nanjing 211816, People's Republic of China Present address: College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, South Puzhu Road 30, Nanjing 211816, People's Republic of China
| |
Collapse
|
13
|
Abstract
The mainstay of acute myeloid leukemia chemotherapy is the nucleoside analog cytarabine (ara-C). Numerous studies suggest that the intracellular concentrations of the ara-C active metabolite, ara-CTP, vary widely among patients and, in turn, are associated with variability in clinical response to acute myeloid leukemia treatment. Thus, genetic variation in key genes in the ara-C metabolic pathway--specifically, deoxycytidine kinase (a rate-limiting activating enzyme), 5 nucleotidase, cytidine deaminase and deoxycytidylate deaminase (all three are inactivating enzymes), human equilibrative nucleoside transporter (ara-C uptake transporter) and ribonucleotide reductase (RRM1 and RRM2--enzymes regulating intracellular deoxycytidine triphosphate pools)--form the molecular basis of the interpatient variability observed in intracellular ara-CTP concentrations and response to ara-C. Understanding genetic variants in the key candidate genes involved in the metabolic activation of ara-C, as well as the pharmacodynamic targets of ara-C, will provide an opportunity to identify patients at an increased risk of adverse reactions or decreased likelihood of response, based upon their genetic profile, which in future could help in dose optimization to reduce drug toxicity without compromising efficacy. The pharmacogenetic studies on ara-C would also be equally applicable to other nucleoside analogs, such as gemcitabine, decitabine, clofarabine and so on, which are metabolized by the same pathway.
Collapse
Affiliation(s)
- Jatinder K Lamba
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Roy AC, Lunn FA, Bearne SL. Inhibition of CTP synthase from Escherichia coli by xanthines and uric acids. Bioorg Med Chem Lett 2009; 20:141-4. [PMID: 20004571 DOI: 10.1016/j.bmcl.2009.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 11/05/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
CTP synthase (CTPS) catalyzes the conversion of UTP to CTP and is a recognized target for the development of anticancer, antiviral, and antiprotozoal agents. Xanthine and related compounds inhibit CTPS activity (IC(50)=0.16-0.58mM). The presence of an 8-oxo function (i.e., uric acids) enhances inhibition (IC(50)=0.060-0.121mM). An intact purine ring with anionic character favors inhibition. In general, methylation of the purine does not significantly affect inhibition.
Collapse
Affiliation(s)
- Alexander C Roy
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
15
|
Taylor SD, Lunn FA, Bearne SL. Ground state, intermediate, and multivalent nucleotide analogue inhibitors of cytidine 5'-triphosphate synthase. ChemMedChem 2009; 3:1853-7. [PMID: 18988211 DOI: 10.1002/cmdc.200800236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Scott D Taylor
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada.
| | | | | |
Collapse
|
16
|
Mutational analysis of conserved glycine residues 142, 143 and 146 reveals Gly(142) is critical for tetramerization of CTP synthase from Escherichia coli. Biochem J 2008; 412:113-21. [PMID: 18260824 DOI: 10.1042/bj20071163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CTPS (cytidine 5'-triphosphate synthase) catalyses the ATP-dependent formation of CTP from UTP using either ammonia or L-glutamine as the nitrogen source. Binding of the substrates ATP and UTP, or the product CTP, promotes oligomerization of CTPS from inactive dimers to active tetramers. In the present study, site-directed mutagenesis was used to replace the fully conserved glycine residues 142 and 143 within the UTP-binding site and 146 within the CTP-binding site of Escherchia coli CTPS. CD spectral analyses of wild-type CTPS and the glycine mutants showed a slight reduction of approximately 15% in alpha-helical content for G142A and G143A relative to G146A and wild-type CTPS, suggesting some local alterations in structure. Relative to wild-type CTPS, the values of k(cat)/K(m) for ammonia-dependent and glutamine-dependent CTP formation catalysed by G143A were reduced 22- and 16-fold respectively, whereas the corresponding values for G146A were reduced only 1.4- and 1.8-fold respectively. The glutaminase activity (k(cat)) of G146A was similar to that exhibited by the wild-type enzyme, whereas that of G143A was reduced 7.5-fold. G146A exhibited substrate inhibition at high concentrations of ammonia and a partial uncoupling of glutamine hydrolysis from CTP production. Although the apparent affinity (1/[S](0.5)) of G143A and G146A for UTP was reduced approximately 4-fold, G146A exhibited increased co-operativity with respect to UTP. Thus mutations in the CTP-binding site can affect UTP-dependent activity. Surprisingly, G142A was inactive with both ammonia and glutamine as substrates. Gel-filtration HPLC experiments revealed that both G143A and G146A were able to form active tetramers in the presence of ATP and UTP; however, nucleotide-dependent tetramerization of G142A was significantly impaired. Our observations highlight the sensitivity of the structure of CTPS to mutations in the UTP- and CTP-binding sites, with Gly(142) being critical for nucleotide-dependent oligomerization of CTPS to active tetramers. This 'structural sensitivity' may limit the number and/or types of mutations that could be selected for during the development of resistance to cytotoxic pyrimidine nucleotide analogues.
Collapse
|
17
|
Chang YF, Carman GM. CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae. Prog Lipid Res 2008; 47:333-9. [PMID: 18439916 DOI: 10.1016/j.plipres.2008.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CTP synthetase is a cytosolic-associated glutamine amidotransferase enzyme that catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In the yeast Saccharomyces cerevisiae, the reaction product CTP is an essential precursor of all membrane phospholipids that are synthesized via the Kennedy (CDP-choline and CDP-ethanolamine branches) and CDP-diacylglycerol pathways. The URA7 and URA8 genes encode CTP synthetase in S. cerevisiae, and the URA7 gene is responsible for the majority of CTP synthesized in vivo. The CTP synthetase enzymes are allosterically regulated by CTP product inhibition. Mutations that alleviate this regulation result in an elevated cellular level of CTP and an increase in phospholipid synthesis via the Kennedy pathway. The URA7-encoded enzyme is phosphorylated by protein kinases A and C, and these phosphorylations stimulate CTP synthetase activity and increase cellular CTP levels and the utilization of the Kennedy pathway. The CTPS1 and CTPS2 genes that encode human CTP synthetase enzymes are functionally expressed in S. cerevisiae, and rescue the lethal phenotype of the ura7Deltaura8Delta double mutant that lacks CTP synthetase activity. The expression in yeast has revealed that the human CTPS1-encoded enzyme is also phosphorylated and regulated by protein kinases A and C.
Collapse
Affiliation(s)
- Yu-Fang Chang
- Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | | |
Collapse
|
18
|
Lunn FA, MacDonnell JE, Bearne SL. Structural requirements for the activation of Escherichia coli CTP synthase by the allosteric effector GTP are stringent, but requirements for inhibition are lax. J Biol Chem 2007; 283:2010-20. [PMID: 18003612 DOI: 10.1074/jbc.m707803200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cytidine 5'-triphosphate synthase catalyzes the ATP-dependent formation of CTP from UTP using either NH(3) or l-glutamine (Gln) as the source of nitrogen. GTP acts as an allosteric effector promoting Gln hydrolysis but inhibiting Gln-dependent CTP formation at concentrations of >0.15 mM and NH(3)-dependent CTP formation at all concentrations. A structure-activity study using a variety of GTP and guanosine analogues revealed that only a few GTP analogues were capable of activating Gln-dependent CTP formation to varying degrees: GTP approximately 6-thio-GTP > ITP approximately guanosine 5'-tetraphosphate > O(6)-methyl-GTP > 2'-deoxy-GTP. No activation was observed with guanosine, GMP, GDP, 2',3'-dideoxy-GTP, acycloguanosine, and acycloguanosine monophosphate, indicating that the 5'-triphosphate, 2'-OH, and 3'-OH are required for full activation. The 2-NH(2) group plays an important role in binding recognition, whereas substituents at the 6-position play an important role in activation. The presence of a 6-NH(2) group obviates activation, consistent with the inability of ATP to substitute for GTP. Nucleotide and nucleoside analogues of GTP and guanosine, respectively, all inhibited NH(3)- and Gln-dependent CTP formation (often in a cooperative manner) to a similar extent (IC(50) approximately 0.2-0.5 mM). This inhibition appeared to be due solely to the purine base and was relatively insensitive to the identity of the purine with the exception of inosine, ITP, and adenosine (IC(50) approximately 4-12 mM). 8-Oxoguanosine was the best inhibitor identified (IC(50) = 80 microM). Our findings suggest that modifying 2-aminopurine or 2-aminopurine riboside may serve as an effective strategy for developing cytidine 5'-triphosphate synthase inhibitors.
Collapse
Affiliation(s)
- Faylene A Lunn
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | |
Collapse
|
19
|
Endrizzi JA, Kim H, Anderson PM, Baldwin EP. Mechanisms of product feedback regulation and drug resistance in cytidine triphosphate synthetases from the structure of a CTP-inhibited complex. Biochemistry 2006; 44:13491-9. [PMID: 16216072 PMCID: PMC2891682 DOI: 10.1021/bi051282o] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytidine triphosphate synthetases (CTPSs) synthesize CTP and regulate its intracellular concentration through direct interactions with the four ribonucleotide triphosphates. In particular, CTP product is a feedback inhibitor that competes with UTP substrate. Selected CTPS mutations that impart resistance to pyrimidine antimetabolite inhibitors also relieve CTP inhibition and cause a dramatic increase in intracellular CTP concentration, indicating that the drugs act by binding to the CTP inhibitory site. Resistance mutations map to a pocket that, although adjacent, does not coincide with the expected UTP binding site in apo Escherichia coli CTPS [EcCTPS; Endrizzi, J. A., et al. (2004) Biochemistry 43, 6447-6463], suggesting allosteric rather than competitive inhibition. Here, bound CTP and ADP were visualized in catalytically active EcCTPS crystals soaked in either ATP and UTP substrates or ADP and CTP products. The CTP cytosine ring resides in the pocket predicted by the resistance mutations, while the triphosphate moiety overlaps the putative UTP triphosphate binding site, explaining how CTP competes with UTP while CTP resistance mutations are acquired without loss of catalytic efficiency. Extensive complementarity and interaction networks at the interfacial binding sites provide the high specificity for pyrimidine triphosphates and mediate nucleotide-dependent tetramer formation. Overall, these results depict a novel product inhibition strategy in which shared substrate and product moieties bind to a single subsite while specificity is conferred by separate subsites. This arrangement allows for independent adaptation of UTP and CTP binding affinities while efficiently utilizing the enzyme surface.
Collapse
Affiliation(s)
| | | | | | - Enoch P. Baldwin
- To whom correspondence should be addressed. . Phone: (530) 752-1108. Fax: (530) 752-3085
| |
Collapse
|
20
|
Endrizzi JA, Kim H, Anderson PM, Baldwin EP. Crystal structure of Escherichia coli cytidine triphosphate synthetase, a nucleotide-regulated glutamine amidotransferase/ATP-dependent amidoligase fusion protein and homologue of anticancer and antiparasitic drug targets. Biochemistry 2004; 43:6447-63. [PMID: 15157079 PMCID: PMC2891762 DOI: 10.1021/bi0496945] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytidine triphosphate synthetases (CTPSs) produce CTP from UTP and glutamine, and regulate intracellular CTP levels through interactions with the four ribonucleotide triphosphates. We solved the 2.3-A resolution crystal structure of Escherichia coli CTPS using Hg-MAD phasing. The structure reveals a nearly symmetric 222 tetramer, in which each bifunctional monomer contains a dethiobiotin synthetase-like amidoligase N-terminal domain and a Type 1 glutamine amidotransferase C-terminal domain. For each amidoligase active site, essential ATP- and UTP-binding surfaces are contributed by three monomers, suggesting that activity requires tetramer formation, and that a nucleotide-dependent dimer-tetramer equilibrium contributes to the observed positive cooperativity. A gated channel that spans 25 A between the glutamine hydrolysis and amidoligase active sites provides a path for ammonia diffusion. The channel is accessible to solvent at the base of a cleft adjoining the glutamine hydrolysis active site, providing an entry point for exogenous ammonia. Guanine nucleotide binding sites of structurally related GTPases superimpose on this cleft, providing insights into allosteric regulation by GTP. Mutations that confer nucleoside drug resistance and release CTP inhibition map to a pocket that neighbors the UTP-binding site and can accommodate a pyrimidine ring. Its location suggests that competitive feedback inhibition is affected via a distinct product/drug binding site that overlaps the substrate triphosphate binding site. Overall, the E. coli structure provides a framework for homology modeling of other CTPSs and structure-based design of anti-CTPS therapeutics.
Collapse
Affiliation(s)
| | | | | | - Enoch P. Baldwin
- Corresponding author. . Phone: (530) 752–1108. Fax: (530) 752–3085
| |
Collapse
|
21
|
Simard D, Hewitt KA, Lunn F, Iyengar A, Bearne SL. Limited proteolysis of Escherichia coli cytidine 5'-triphosphate synthase. Identification of residues required for CTP formation and GTP-dependent activation of glutamine hydrolysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2195-206. [PMID: 12752439 DOI: 10.1046/j.1432-1033.2003.03588.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytidine 5'-triphosphate synthase catalyses the ATP-dependent formation of CTP from UTP using either ammonia or l-glutamine as the source of nitrogen. When glutamine is the substrate, GTP is required as an allosteric effector to promote catalysis. Limited trypsin-catalysed proteolysis, Edman degradation, and site-directed mutagenesis were used to identify peptide bonds C-terminal to three basic residues (Lys187, Arg429, and Lys432) of Escherichia coli CTP synthase that were highly susceptible to proteolysis. Lys187 is located at the CTP/UTP-binding site within the synthase domain, and cleavage at this site destroyed all synthase activity. Nucleotides protected the enzyme against proteolysis at Lys187 (CTP > ATP > UTP > GTP). The K187A mutant was resistant to proteolysis at this site, could not catalyse CTP formation, and exhibited low glutaminase activity that was enhanced slightly by GTP. K187A was able to form tetramers in the presence of UTP and ATP. Arg429 and Lys432 appear to reside in an exposed loop in the glutamine amide transfer (GAT) domain. Trypsin-catalyzed proteolysis occurred at Arg429 and Lys432 with a ratio of 2.6 : 1, and nucleotides did not protect these sites from cleavage. The R429A and R429A/K432A mutants exhibited reduced rates of trypsin-catalyzed proteolysis in the GAT domain and wild-type ability to catalyse NH3-dependent CTP formation. For these mutants, the values of kcat/Km and kcat for glutamine-dependent CTP formation were reduced approximately 20-fold and approximately 10-fold, respectively, relative to wild-type enzyme; however, the value of Km for glutamine was not significantly altered. Activation of the glutaminase activity of R429A by GTP was reduced 6-fold at saturating concentrations of GTP and the GTP binding affinity was reduced 10-fold. This suggests that Arg429 plays a role in both GTP-dependent activation and GTP binding.
Collapse
Affiliation(s)
- Dave Simard
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
22
|
Willemoës M. Thr-431 and Arg-433 are part of a conserved sequence motif of the glutamine amidotransferase domain of CTP synthases and are involved in GTP activation of the Lactococcus lactis enzyme. J Biol Chem 2003; 278:9407-11. [PMID: 12522217 DOI: 10.1074/jbc.m212995200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A conserved sequence motif within the class 1 glutamine amidotransferase (GATase) domain of CTP synthases was identified. The sequence motif in the Lactococcus lactis enzyme is (429)GGTLRLG(435). This motif was present only in CTP synthases and not in other enzymes that harbor the GATase domain. Therefore, it was speculated that this sequence was involved in GTP activation of CTP synthase. Other members of the GATase protein family are not activated allosterically by GTP. Residues Thr-431 and Arg-433 were changed by site directed mutagenesis to the sterically similar residues valine and methionine, respectively. The resulting enzymes, T431V and R433M, had both lost the ability for GTP to activate the uncoupled glutaminase activity and showed reduced GTP activation of the glutamine-dependent CTP synthesis reaction. The T431V enzyme had a similar activation constant, K(A), for GTP, but the activation was only 2-3-fold compared with 35-fold for the wild type enzyme. The R433M enzyme was found to have a 10-15-fold lower K(A) for GTP and a concomitant decrease in V(app). The activation by GTP of this enzyme was about 7-fold. The kinetic parameters for saturation with ATP, UTP, and NH(4)Cl were similar for wild type and mutant enzymes, except that the R433M enzyme only had half the V(app) of the wild type enzyme when NH(4)Cl was the amino donor. The mutant enzymes T431V and R433M apparently had not lost the ability to bind GTP, but the signal transmitted through the enzyme to the active sites upon binding of the allosteric effector was clearly disrupted in the mutant enzymes.
Collapse
Affiliation(s)
- Martin Willemoës
- Center for Crystallographic Studies, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
23
|
Iyengar A, Bearne SL. Aspartate-107 and leucine-109 facilitate efficient coupling of glutamine hydrolysis to CTP synthesis by Escherichia coli CTP synthase. Biochem J 2003; 369:497-507. [PMID: 12383057 PMCID: PMC1223111 DOI: 10.1042/bj20021110] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2002] [Revised: 10/01/2002] [Accepted: 10/17/2002] [Indexed: 11/17/2022]
Abstract
CTP synthase catalyses the ATP-dependent formation of CTP from UTP using either NH(3) or L-glutamine as the nitrogen source. GTP is required as an allosteric effector to promote glutamine hydrolysis. In an attempt to identify nucleotide-binding sites, scanning alanine mutagenesis was conducted on a highly conserved region of amino acid sequence (residues 102-118) within the synthase domain of Escherichia coli CTP synthase. Mutant K102A CTP synthase exhibited wild-type activity with respect to NH(3) and glutamine; however, the R105A, D107A, L109A and G110A enzymes exhibited wild-type NH(3)-dependent activity and affinity for glutamine, but impaired glutamine-dependent CTP formation. The E103A, R104A and H118A enzymes exhibited no glutamine-dependent activity and were only partially active with NH(3). Although these observations were compatible with impaired activation by GTP, the apparent affinity of the D107A, L109A and G110A enzymes for GTP was reduced only 2-4-fold, suggesting that these residues do not play a significant role in GTP binding. In the presence of GTP, the k (cat) values for glutamine hydrolysis by the D107A and L109A enzymes were identical with that of wild-type CTP synthase. Overall, the kinetic properties of L109A CTP synthase were consistent with an uncoupling of glutamine hydrolysis from CTP formation that occurs because an NH(3) tunnel has its normal structure altered or fails to form. L109F CTP synthase was prepared to block totally the putative NH(3) tunnel; however, this enzyme's rate of glutamine-dependent CTP formation and glutaminase activity were both impaired. In addition, we observed that mutation of amino acids located between residues 102 and 118 in the synthase domain can affect the enzyme's glutaminase activity, suggesting that these residues interact with residues in the glutamine amide transfer domain because they are in close proximity or via a conformationally dependent signalling mechanism.
Collapse
Affiliation(s)
- Akshai Iyengar
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | |
Collapse
|
24
|
van Kuilenburg AB, Meinsma R, Vreken P, Waterham HR, van Gennip AH. Isoforms of human CTP synthetase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 486:257-61. [PMID: 11783495 DOI: 10.1007/0-306-46843-3_50] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- A B van Kuilenburg
- Academic Medical Center, University of Amsterdam, Emma Children's Hospital, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
van Kuilenburg AB, Meinsma R, Vreken P, Waterham HR, van Gennip AH. Identification of a cDNA encoding an isoform of human CTP synthetase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:548-52. [PMID: 10899599 DOI: 10.1016/s0167-4781(00)00141-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A full-length cDNA clone encoding an isoform of human CTP synthetase (type II) was isolated. A 1761-nucleotide open reading frame which corresponds to a protein of 586 amino acids with a predicted molecular mass of 65678 Da was identified. The predicted protein sequence showed 74% identity with the translation product of a previously identified human CTP synthetase cDNA clone (type I). The function of the human cDNA encoding type II CTP synthetase was verified by successful complementation of the cytidine-requiring CTP synthetase deficient mutant JF618 of Escherichia coli. The gene encoding type II CTP synthetase has been localized on chromosome Xp22.
Collapse
Affiliation(s)
- A B van Kuilenburg
- Academic Medical Center, University of Amsterdam, Emma Children's Hospital and Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, PO Box 22700, 1100 DE, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
26
|
Ostrander DB, O'Brien DJ, Gorman JA, Carman GM. Effect of CTP synthetase regulation by CTP on phospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 1998; 273:18992-9001. [PMID: 9668079 DOI: 10.1074/jbc.273.30.18992] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTP synthetase (EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)) activity in Saccharomyces cerevisiae is allosterically regulated by CTP product inhibition. Amino acid residue Glu161 in the URA7-encoded and URA8-encoded CTP synthetases was identified as being involved in the regulation of these enzymes by CTP product inhibition. The specific activities of the URA7-encoded and URA8-encoded enzymes with a Glu161 --> Lys (E161K) mutation were 2-fold greater when compared with the wild-type enzymes. The E161K mutant URA7-encoded and URA8-encoded CTP synthetases were less sensitive to CTP product inhibition with inhibitor constants for CTP of 8.4- and 5-fold greater, respectively, than those of their wild-type counterparts. Cells expressing the E161K mutant enzymes on a multicopy plasmid exhibited an increase in resistance to the pyrimidine poison and cancer therapeutic drug cyclopentenylcytosine and accumulated elevated (6-15-fold) levels of CTP when compared with cells expressing the wild-type enzymes. Cells expressing the E161K mutation in the URA7-encoded CTP synthetase exhibited an increase (1.5-fold) in the utilization of the Kennedy pathway for phosphatidylcholine synthesis when compared with control cells. Cells bearing the mutation also exhibited an increase in the synthesis of phosphatidylcholine (1.5-fold), phosphatidylethanolamine (1.3-fold), and phosphatidate (2-fold) and a decrease in the synthesis of phosphatidylserine (1.7-fold). These alterations were accompanied by an inositol excretion phenotype due to the misregulation of the INO1 gene. Moreover, cells bearing the E161K mutation exhibited an increase (1.6-fold) in the ratio of total neutral lipids to phospholipids, an increase in triacylglycerol (1.4-fold), free fatty acids (1.7-fold), and ergosterol ester (1.8-fold), and a decrease in diacylglycerol (1. 3-fold) when compared with control cells. These data indicated that the regulation of CTP synthetase activity by CTP plays an important role in the regulation of phospholipid synthesis.
Collapse
Affiliation(s)
- D B Ostrander
- Department of Food Science, Cook College, New Jersey Agricultural Experiment Station, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | |
Collapse
|
27
|
Van Kuilenburg AB, Elzinga L, Van Gennip AH. Kinetic properties of CTP synthetase from HL-60 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 431:255-8. [PMID: 9598070 DOI: 10.1007/978-1-4615-5381-6_50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A B Van Kuilenburg
- Academic Medical Center, University of Amsterdam, Department Clinical Chemistry, The Netherlands
| | | | | |
Collapse
|
28
|
Abstract
The antimetabolite cytosine arabinoside (ara-C) represents a prototype of the nucleoside analog class of antineoplastic agents and remains one of the most effective drugs used in the treatment of acute leukemia as well as other hematopoietic malignancies. The ability of ara-C to kill neoplastic cells is regulated at three distinct but interrelated levels. First, the activity of ara-C depends on conversion to its lethal triphosphate derivative, ara-CTP, a process that is influenced by multiple factors, including nucleoside transport, phosphorylation, deamination, and levels of competing metabolites, particularly dCTP. Second, the antiproliferative and lethal effects of ara-C are linked to the ability of ara-CTP to interfere with one or more DNA polymerases as well as the degree to which it is incorporated into elongating DNA strands, leading to DNA fragmentation and chain termination. Finally, the fate of the cell is ultimately determined by whether a threshold level of ara-C-mediated DNA damage is exceeded, thereby inducing apoptosis, or programmed cell death. The latter process is influenced by components of various signal transduction pathways (e.g., PKC) and expression of oncogenes (e.g., bcl-2, c-Jun), perturbations in which may significantly alter ara-C sensitivity. A better understanding of these factors could eventually lead to the development of novel therapeutic strategies capable of overcoming ara-C resistance and improving therapeutic efficacy.
Collapse
Affiliation(s)
- S Grant
- Department of Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA
| |
Collapse
|
29
|
Van Kuilenburg AB, Elzinga L, Verschuur AC, Van den Berg AA, Slingerland RJ, Van Gennip AH. Determination of CTP synthetase activity in crude cell homogenates by a fast and sensitive non-radiochemical assay using anion-exchange high-performance liquid chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 693:287-95. [PMID: 9210431 DOI: 10.1016/s0378-4347(97)00060-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A non-radiochemical assay procedure for CTP synthetase was developed in which CTP is detected at 280 nm after separation with anion-exchange HPLC. A complete separation of all nucleoside triphosphates was achieved within 11 min and the minimum amount of CTP which could be accurately determined proved to be 5 pmol. Therefore, our assay procedure is ten-fold more sensitive compared to the frequently used radiochemical assays. The assay was linear with time and protein concentration, although at low protein concentration a lag phase was observed. An amount of 2 x 10(6) cells was already sufficient to determine the specific activity of CTP synthetase in HL-60 cells, lymphocytes and in lymphoblasts obtained from pediatric patients suffering from acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- A B Van Kuilenburg
- Academic Medical Center, University of Amsterdam, Division of Clinical Chemistry, Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Wylie JL, Wang LL, Tipples G, McClarty G. A single point mutation in CTP synthetase of Chlamydia trachomatis confers resistance to cyclopentenyl cytosine. J Biol Chem 1996; 271:15393-400. [PMID: 8663065 DOI: 10.1074/jbc.271.26.15393] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A Chlamydia trachomatis strain (L2/CPEC) resistant to the cytotoxic effects of cyclopentenyl cytosine (CPEC) was isolated by a stepwise selection procedure. This strain showed an approximate 350-fold increase in resistance to CPEC. Sequencing of the gene encoding CTP synthetase from this resistant strain revealed a single point mutation, resulting in a change of amino acid 149 from Asp to Glu. This appeared to be the only mutation in L2/CPEC, because no changes in CTP transport, CTP synthetase expression, or incorporation of CPEC into DNA or RNA could be detected. The mutation in the chlamydial CTP synthetase resulted in a loss of CTP feedback inhibition. This was demonstrated both in vivo using Escherichia coli cells carrying the cloned gene, and an in vitro assay using partially purified preparations of CTP synthetase. As a result of the loss of feedback inhibition, E. coli cells carrying the CPECR CTP synthetase showed a 22-fold increase in their CTP pools. However, examination of the CTP pools of L2/CPEC revealed no change in CTP levels when compared with wild type C. trachomatis.
Collapse
Affiliation(s)
- J L Wylie
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E OW3 Canada
| | | | | | | |
Collapse
|
31
|
Chan TS, Nelson JA. Specific selection of deoxycytidine kinase mutants with tritiated deoxyadenosine. Biochem Genet 1995; 33:327-40. [PMID: 8748457 DOI: 10.1007/bf02399931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have shown previously that a low concentration of tritiated deoxyadenosine, i.e., 1 microCi/ml, selectively kills wild-type S49 murine lymphoma cells. Mutant cells resistant to [3H] deoxyadenosine lacked adenosine kinase completely but retained a significant level of deoxyadenosine phosphorylating activity. To study further the specificity of [3H] deoxyadenosine selection, lymphoma cell clones resistant to 15 microCi/ml [3H] deoxyadenosine have been derived. The resistant line, S49-dA15, is also resistant to high levels of nonradioactive deoxyadenosine and to deoxyguanosine but remains sensitive to thymidine. The thymidine inhibition of the growth of the mutant, in contrast to that of the wild-type cells, cannot be prevented by deoxycytidine. The mutant line lacks deoxycytidine kinase that also phosphorylates deoxyadenosine. In addition, the mutant cells excrete a large amount of deoxycytidine into culture medium, consistent with a failure of salvage of the nucleoside in the absence of an appropriate kinase, i.e., deoxycytidine kinase. In contrast, a deoxycytidine kinase-deficient cell line that was selected with arabinosylcytosine does not excrete deoxycytidine and contains high deoxycytidine deaminase activity. [3H] Deoxyadenosine can be used as a selective agent for specific selection of deoxycytidine kinase-negative mutants.
Collapse
Affiliation(s)
- T S Chan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555-1019, USA
| | | |
Collapse
|
32
|
Specific selection of deoxycytidine kinase mutants with tritiated deoxyadenosine. Biochem Genet 1995. [DOI: 10.1007/pl00020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|