1
|
Maroto M, Torvisco SN, García-Merino C, Fernández-González R, Pericuesta E. Mechanisms of Hormonal, Genetic, and Temperature Regulation of Germ Cell Proliferation, Differentiation, and Death During Spermatogenesis. Biomolecules 2025; 15:500. [PMID: 40305231 PMCID: PMC12025078 DOI: 10.3390/biom15040500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Spermatogenesis is a complex and highly regulated process involving the proliferation, differentiation, and apoptosis of germ cells. This process is controlled by various hormonal, genetic, and environmental factors, including temperature. In hormonal regulation, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) are essential for correct spermatogenesis development from the early stages and spermatogonia proliferation to germ cell maturation. Other hormones, like inhibin and activin, finely participate tuning the process of spermatogenesis. Genetic regulation involves various transcription factors, such as SOX9, SRY, and DMRT1, which are crucial for the development and maintenance of the testis and germ cells. MicroRNAs (miRNAs) play a significant role by regulating gene expression post-transcriptionally. Epigenetic modifications, including DNA methylation, histone modifications, and chromatin remodelling, are also vital. Temperature regulation is another critical aspect, with the testicular temperature maintained around 2-4 °C below body temperature, essential for efficient spermatogenesis. Heat shock proteins (HSPs) protect germ cells from heat-induced damage by acting as molecular chaperones, ensuring proper protein folding and preventing the aggregation of misfolded proteins during thermal stress. Elevated testicular temperature can impair spermatogenesis, increasing germ cell apoptosis and inducing oxidative stress, DNA damage, and the disruption of the blood-testis barrier, leading to germ cell death and impaired differentiation. The cellular mechanisms of germ cell proliferation, differentiation, and death include the mitotic divisions of spermatogonia to maintain the germ cell pool and produce spermatocytes. Spermatocytes undergo meiosis to produce haploid spermatids, which then differentiate into mature spermatozoa. Apoptosis, or programmed cell death, ensures the removal of defective germ cells and regulates the germ cell population. Hormonal imbalance, genetic defects, and environmental stress can trigger apoptosis during spermatogenesis. Understanding these mechanisms is crucial for addressing male infertility and developing therapeutic interventions. Advances in molecular biology and genetics continue to uncover the intricate details of how spermatogenesis is regulated at multiple levels, providing new insights and potential targets for treatment.
Collapse
Affiliation(s)
- María Maroto
- National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; (M.M.); (C.G.-M.)
| | - Sara N. Torvisco
- School of Agriculture and Food Science, University College Dublin, D04 W6F6 Dublin, Ireland;
| | - Cristina García-Merino
- National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; (M.M.); (C.G.-M.)
| | - Raúl Fernández-González
- National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; (M.M.); (C.G.-M.)
| | - Eva Pericuesta
- National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain; (M.M.); (C.G.-M.)
| |
Collapse
|
2
|
Barth A, Perry VEA, Hamilton LE, Sutovsky P, Oko R. The Ultrastructure and Composition of Bovine Spermatozoa. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2025; 240:1-64. [PMID: 40272586 DOI: 10.1007/978-3-031-70126-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
This chapter provides a cytological and compositional evaluation of the various compartments and sub-compartments making up the bull spermatozoon. The intention is to define the sperm head and tail compartments from an ultrastructural perspective and attribute to them their protein constituents gathered from both traditional and modern proteomic approaches. Common to both approaches, the compositional analysis is dependent on the fractionation and isolation of the sperm compartments combined with polyacrylamide gel electrophoresis (PAGE) and Western blotting to detect the identities of the proteins, and immunocytochemistry to confirm their residency. As will be appreciated, the identity of a particular sperm protein together with its residency provide valuable insights not only into its role, but also to the role of the specific sperm compartment it occupies, in development and/or fertilization. Attention is also given in this chapter to the consequences (on sperm structure and fertility) of inactivating genes that play key roles in sperm formation, especially if their phenotypes appear to match common bull sperm abnormalities. The keywords below cover the sperm head and tail compartments addressed in this chapter.
Collapse
Affiliation(s)
- Albert Barth
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Viv E A Perry
- Queensland Sperm Morphology Laboratory (QSML), Goondiwindi, QLD, Australia
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Science and Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, USA
| | - Richard Oko
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
3
|
Kitaoka M, Yamashita YM. Running the gauntlet: challenges to genome integrity in spermiogenesis. Nucleus 2024; 15:2339220. [PMID: 38594652 PMCID: PMC11005813 DOI: 10.1080/19491034.2024.2339220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Species' continuity depends on gametogenesis to produce the only cell types that can transmit genetic information across generations. Spermiogenesis, which encompasses post-meiotic, haploid stages of male gametogenesis, is a process that leads to the formation of sperm cells well-known for their motility. Spermiogenesis faces three major challenges. First, after two rounds of meiotic divisions, the genome lacks repair templates (no sister chromatids, no homologous chromosomes), making it incredibly vulnerable to any genomic insults over an extended time (typically days-weeks). Second, the sperm genome becomes transcriptionally silent, making it difficult to respond to new perturbations as spermiogenesis progresses. Third, the histone-to-protamine transition, which is essential to package the sperm genome, counterintuitively involves DNA break formation. How spermiogenesis handles these challenges remains poorly understood. In this review, we discuss each challenge and their intersection with the biology of protamines. Finally, we discuss the implication of protamines in the process of evolution.
Collapse
Affiliation(s)
- Maiko Kitaoka
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Dodd AR, Luense LJ. Contribution of the paternal histone epigenome to the preimplantation embryo. Front Cell Dev Biol 2024; 12:1476312. [PMID: 39600339 PMCID: PMC11588740 DOI: 10.3389/fcell.2024.1476312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
The paternal germline contains a plethora of information that extends beyond DNA. Packaged within the sperm cell is a wealth of epigenetic information, including DNA methylation, small RNAs, and chromatin associated histone proteins and their covalently attached post-translational modifications. Paternal chromatin is particularly unique, as during the process of spermatogenesis, nearly all histones are evicted from the genome with only a small percentage retained in the mature sperm cell. This paternal epigenetic information is encoded into chromatin during spermatogenesis and is delivered to the oocyte upon fertilization. The exact role of these paternally contributed histones to the embryo remains to be fully understood, however recent studies support the hypothesis that retained sperm histones act as a mechanism to poise genes for early embryonic gene activation. Evidence from multiple mammalian species suggests sperm histones are present at loci that are important for preimplantation embryo chromatin dynamics and transcriptional regulation. Furthermore, abnormal sperm histone epigenomes result in infertility, poor embryogenesis, and offspring development. This mini-review describes recent advances in the field of paternal histone epigenetics and their potential roles in preimplantation embryo development.
Collapse
Affiliation(s)
- Ashton R. Dodd
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Lacey J. Luense
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- Genetics and Genomics Interdisciplinary Program, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Vieira CP, Martins Lara NDLE, Procópio MS, Avelar GF. Optimization of spermatozoa analysis in mice: A comprehensive protocol. Tissue Cell 2024; 89:102463. [PMID: 38981185 DOI: 10.1016/j.tice.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Sperm quality is critical to predict reproductive alterations caused by immunological factors or toxicant agents. Yet, no detailed protocol has been published focusing on analyses of sperm parameters in mice. Our aim was to evaluate the most efficient diluent for mice sperm analyses and to optimize the sperm morphology classification, through the comparison of different staining methods. The diluents assessed were PBS (baseline), HTF, DMEM, 1 % BSA in PBS and 9 % skimmed powdered milk diluted in PBS. Spermatozoa were evaluated for vitality, motility, and morphology, smears were stained with Papanicolaou, HE, Giemsa, and Rapid staining. Sperm vitality and total motility reached better scores in milk based and DMEM diluents. HE raised up as an effective option since its combination with any of the diluents we tested, resulted in a fair staining, which was appropriated to evaluate mice spermatozoa. Finally, based on WHO manual, we have updated the current morphological classification for mice sperm, since we have detailed the head defects as well as included midpiece and tail defects on it. Taken together, we presented a useful, low cost, and reliable method to assess sperm morphology that could be employed worldwide by laboratories dedicated to study reproductive biology on mice model.
Collapse
Affiliation(s)
- Carolina Pinhol Vieira
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Marcela Santos Procópio
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gleide Fernandes Avelar
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Robertson MJ, Chambers C, Spanner EA, de Graaf SP, Rickard JP. The Assessment of Sperm DNA Integrity: Implications for Assisted Reproductive Technology Fertility Outcomes across Livestock Species. BIOLOGY 2024; 13:539. [PMID: 39056730 PMCID: PMC11273975 DOI: 10.3390/biology13070539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Sperm DNA integrity is increasingly considered a useful measure of semen quality in mammalian reproduction. However, the definition of DNA integrity, the ideal means by which it should be measured, and its predictive value for fertility remain a topic of much discussion. With an emphasis on livestock species, this review discusses the assays that have been developed to measure DNA integrity as well as their correlation with in vitro and in vivo fertility.
Collapse
Affiliation(s)
| | | | | | | | - Jessica P. Rickard
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (M.J.R.); (S.P.d.G.)
| |
Collapse
|
7
|
Zhang G, Ye F, Yang Y, Xiong D, Zhi W, Wu Y, Sun Y, Zeng J, Liu W. Identification of a novel mutation in chibby family member 2 in a non-obstructive azoospermic patient. Reprod Biol 2024; 24:100891. [PMID: 38733656 DOI: 10.1016/j.repbio.2024.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Azoospermia constitutes a significant factor in male infertility, defined by the absence of spermatozoa in the ejaculate, afflicting 15% of infertile men. However, a subset of azoospermic cases remains unattributed to known genetic variants. Prior investigations have identified the chibby family member 2 (CBY2) as prominently and specifically expressed in the testes of both humans and mice, implicating its potential involvement in spermatogenesis. In this study, we conducted whole exome sequencing (WES) on an infertile family to uncover novel genetic factors contributing to azoospermia. Our analysis revealed a homozygous c .355 C>A variant of CBY2 in a non-obstructive azoospermic patient. This deleterious variant significantly diminished the protein expression of CBY2 both in vivo and in vitro, leading to a pronounced disruption of spermatogenesis at the early round spermatid stage post-meiosis. This disruption was characterized by a nearly complete loss of elongating and elongated spermatids. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and co-immunoprecipitation assays demonstrated the interaction between CBY2 and Piwi-like protein 1 (PIWIL1). Immunofluorescence staining further confirmed the co-localization of CBY2 and PIWIL1 in the testes during the spermatogenic process in both humans and mice. Additionally, diminished PIWIL1 expression was observed in the testicular tissue from the affected patient. Our findings suggest that the homozygous c .355 C>A variant of CBY2 compromises CBY2 function, contributing to defective spermatogenesis at the round spermiogenic stage and implicating its role in the pathogenesis of azoospermia.
Collapse
Affiliation(s)
- Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China; Reproductive Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Fei Ye
- Reproductive Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dongsheng Xiong
- Reproductive Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Weiwei Zhi
- Reproductive Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Yang Wu
- Reproductive Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China
| | - Yongkang Sun
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jiuzhi Zeng
- Reproductive Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China.
| | - Weixin Liu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu 610045, China.
| |
Collapse
|
8
|
Schon SB, Moritz L, Rabbani M, Meguid J, Juliano BR, Ruotolo BT, Aston K, Hammoud SS. Proteomic analysis of human sperm reveals changes in protamine 1 phosphorylation in men with infertility. F&S SCIENCE 2024; 5:121-129. [PMID: 38065301 PMCID: PMC11116066 DOI: 10.1016/j.xfss.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE To perform a comprehensive assessment of protamine (P) isoforms and modifications in human sperm with the aim of identifying how P modifications and isoforms are altered in men with reduced sperm motility and low sperm count. DESIGN Cross-sectional. SETTING Academic medical center. PATIENTS A total of 18 men with prior reported pregnancy and normozoospermia (normal sperm), 14 men from couples with infertility and asthenozoospermia (reduced sperm motility), and 24 men from couples with infertility and oligoasthenoteratozoospermia (low sperm count and motility and abnormal sperm morphology). INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) Proteomic assessment using both top-down and bottom-up liquid chromatography mass spectrometry (MS) analysis. RESULTS A total of 13 posttranslational modifications were identified on P1 and P2 using bottom-up MS, including both phosphorylation and methylation. Top-down MS revealed an unmodified and phosphorylated isoform of P1 and the 3 major isoforms of P2, HP2, HP3, and HP4. Protamine 1 phosphorylation was overall higher in men with male factor infertility compared with those with normal semen analysis (40.5% vs. 32.6). There was no difference in P posttranslational modifications or isoforms of P2 in men with normal vs. abnormal fertility. CONCLUSION Human protamines bear a number of posttranslational modifications, with alterations in P1 phosphorylation noted in the setting of male factor infertility.
Collapse
Affiliation(s)
- Samantha B Schon
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.
| | - Lindsay Moritz
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Julia Meguid
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Kenneth Aston
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; Department of Urology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Takeuchi Y, Sato S, Nagasato C, Motomura T, Okuda S, Kasahara M, Takahashi F, Yoshikawa S. Sperm-specific histone H1 in highly condensed sperm nucleus of Sargassum horneri. Sci Rep 2024; 14:3387. [PMID: 38336896 PMCID: PMC10858212 DOI: 10.1038/s41598-024-53729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Spermatogenesis is one of the most dramatic changes in cell differentiation. Remarkable chromatin condensation of the nucleus is observed in animal, plant, and algal sperm. Sperm nuclear basic proteins (SNBPs), such as protamine and sperm-specific histone, are involved in chromatin condensation of the sperm nucleus. Among brown algae, sperm of the oogamous Fucales algae have a condensed nucleus. However, the existence of sperm-specific SNBPs in Fucales algae was unclear. Here, we identified linker histone (histone H1) proteins in the sperm and analyzed changes in their gene expression pattern during spermatogenesis in Sargassum horneri. A search of transcriptomic data for histone H1 genes in showed six histone H1 genes, which we named ShH1.1a, ShH1b, ShH1.2, ShH1.3, ShH1.4, and ShH1.5. Analysis of SNBPs using SDS-PAGE and LC-MS/MS showed that sperm nuclei contain histone ShH1.2, ShH1.3, and ShH1.4 in addition to core histones. Both ShH1.2 and ShH1.3 genes were expressed in the vegetative thallus and the male and female receptacles (the organs producing antheridium or oogonium). Meanwhile, the ShH1.4 gene was expressed in the male receptacle but not in the vegetative thallus and female receptacles. From these results, ShH1.4 may be a sperm-specific histone H1 of S. horneri.
Collapse
Affiliation(s)
- Yu Takeuchi
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Shinya Sato
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan
| | - Chikako Nagasato
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Taizo Motomura
- Field Science Center for Northern Biosphere, Muroran Marine Station, Hokkaido University, Muroran, 051-0013, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi, Chuoku, Niigata, Niigata, 951-8501, Japan
| | - Masahiro Kasahara
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Fumio Takahashi
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan
- Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, 274-8510, Japan
| | - Shinya Yoshikawa
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuencho, Obama, Fukui, 917-0003, Japan.
| |
Collapse
|
10
|
Bashghareh A, Rastegar T, Modarresi P, Kazemzadeh S, Salem M, Hedayatpour A. Recovering Spermatogenesis By Protected Cryopreservation Using Metformin and Transplanting Spermatogonial Stem Cells Into Testis in an Azoospermia Mouse Model. Biopreserv Biobank 2024; 22:68-81. [PMID: 37582284 DOI: 10.1089/bio.2022.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Cryopreservation and transplantation of spermatogonial stem cells (SSCs) may serve as a new method to restore male fertility in patients undergoing chemotherapy or radiotherapy. However, SSCs may be damaged during cryopreservation due to the production of reactive oxygen species (ROS). Therefore, different antioxidants have been used as protective agents. Studies have shown that metformin (MET) has antioxidant activity. The aim of this study was to assess the antioxidant and antiapoptotic effects of MET in frozen-thawed SSCs. In addition, the effect of MET on the proliferation and differentiation of SSCs was evaluated. To this end, SSCs were isolated from mouse pups aged 3-6 days old, cultured, identified by flow cytometry (ID4, INTEGRIN β1+), and finally evaluated for survival and ROS rate. SSCs were transplanted after busulfan and cadmium treatment. Cryopreserved SSCs with and without MET were transplanted after 1 month of cryopreservation. Eight weeks after transplantation, the recipient testes were evaluated for the expression of apoptosis (BAX, BCL2), proliferation (PLZF), and differentiation (SCP3, TP1, TP2, PRM1) markers using immunohistochemistry, Western blot, and quantitative real-time polymerase chain reaction. The findings revealed that the survival rate of SSCs was higher in the 500 μm/mL MET group compared to the other groups (50 and 5000 μm/mL). MET significantly decreased the intracellular ROS production. Transplantation of SSCs increased the expression level of proliferation (PLZF) and differentiation (SCP3, TP1, TP2, PRM1) markers compared to azoospermia group, and their levels were significantly higher in the MET group compared to the cryopreservation group containing basic freezing medium (p < 0.05). MET increased the survival rate of SSCs, proliferation, and differentiation and decreased the ROS production and the apoptosis rate. Cryopreservation by MET seems to be effective in treating infertility.
Collapse
Affiliation(s)
- Alieh Bashghareh
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Peyman Modarresi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Islamic Azad University, Shabestar, Iran
| | - Shokoofeh Kazemzadeh
- Department of Anatomy, Faculty of Medicine, Shoushtar University of Medical Sciences, Shoushtar, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Azim Hedayatpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
11
|
Dhillon VS, Shahid M, Deo P, Fenech M. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men. Int J Mol Sci 2024; 25:718. [PMID: 38255792 PMCID: PMC10815409 DOI: 10.3390/ijms25020718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Infertility affects millions of couples worldwide and has a profound impact not only on their families, but also on communities. Telomere attrition has been associated with infertility, DNA damage and fragmentation. Oxidative stress has been shown to affect sperm DNA integrity and telomere length. Sirtuins such as SIRT1 and SIRT3 are involved in aging and oxidative stress response. The aim of the present study is to determine the role of SIRT1 and SIRT3 in regulating oxidative stress, telomere shortening, and their association with oligospermia. Therefore, we assessed the protein levels of SIRT1 and SIRT3, total antioxidant capacity (TAC), superoxide dismutase (SOD), malondialdehyde (MDA) and catalase activity (CAT) in the seminal plasma of 272 patients with oligospermia and 251 fertile men. We also measured sperm telomere length (STL) and leukocyte telomere length (LTL) using a standard real-time quantitative PCR assay. Sperm chromatin and protamine deficiency were also measured as per standard methods. Our results for oligospermic patients demonstrate significant reductions in semen parameters, shorter STL and LTL, lower levels of SOD, TAC, CAT, SIRT1 and SIRT3 levels, and also significant protamine deficiency and higher levels of MDA and DNA fragmentation. We conclude that a shorter TL in sperms and leukocytes is associated with increased oxidative stress that also accounts for high levels of DNA fragmentation in sperms. Our results support the hypothesis that various sperm parameters in the state of oligospermia are associated with or caused by reduced levels of SIRT1 and SIRT3 proteins.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| |
Collapse
|
12
|
Moritz L, Schon SB, Rabbani M, Sheng Y, Agrawal R, Glass-Klaiber J, Sultan C, Camarillo JM, Clements J, Baldwin MR, Diehl AG, Boyle AP, O'Brien PJ, Ragunathan K, Hu YC, Kelleher NL, Nandakumar J, Li JZ, Orwig KE, Redding S, Hammoud SS. Sperm chromatin structure and reproductive fitness are altered by substitution of a single amino acid in mouse protamine 1. Nat Struct Mol Biol 2023; 30:1077-1091. [PMID: 37460896 PMCID: PMC10833441 DOI: 10.1038/s41594-023-01033-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/12/2023] [Indexed: 08/11/2023]
Abstract
Conventional dogma presumes that protamine-mediated DNA compaction in sperm is achieved by electrostatic interactions between DNA and the arginine-rich core of protamines. Phylogenetic analysis reveals several non-arginine residues conserved within, but not across species. The significance of these residues and their post-translational modifications are poorly understood. Here, we investigated the role of K49, a rodent-specific lysine residue in protamine 1 (P1) that is acetylated early in spermiogenesis and retained in sperm. In sperm, alanine substitution (P1(K49A)) decreases sperm motility and male fertility-defects that are not rescued by arginine substitution (P1(K49R)). In zygotes, P1(K49A) leads to premature male pronuclear decompaction, altered DNA replication, and embryonic arrest. In vitro, P1(K49A) decreases protamine-DNA binding and alters DNA compaction and decompaction kinetics. Hence, a single amino acid substitution outside the P1 arginine core is sufficient to profoundly alter protein function and developmental outcomes, suggesting that protamine non-arginine residues are essential for reproductive fitness.
Collapse
Affiliation(s)
- Lindsay Moritz
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Samantha B Schon
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ritvija Agrawal
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Juniper Glass-Klaiber
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Caleb Sultan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jeannie M Camarillo
- Departments of Chemistry, Molecular Biosciences, and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Jourdan Clements
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael R Baldwin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Adam G Diehl
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences, and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sy Redding
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Saher Sue Hammoud
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Malla AB, Rainsford SR, Smith ZD, Lesch BJ. DOT1L promotes spermatid differentiation by regulating expression of genes required for histone-to-protamine replacement. Development 2023; 150:dev201497. [PMID: 37082969 PMCID: PMC10259660 DOI: 10.1242/dev.201497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023]
Abstract
Unique chromatin remodeling factors orchestrate dramatic changes in nuclear morphology during differentiation of the mature sperm head. A crucial step in this process is histone-to-protamine exchange, which must be executed correctly to avoid sperm DNA damage, embryonic lethality and male sterility. Here, we define an essential role for the histone methyltransferase DOT1L in the histone-to-protamine transition. We show that DOT1L is abundantly expressed in mouse meiotic and postmeiotic germ cells, and that methylation of histone H3 lysine 79 (H3K79), the modification catalyzed by DOT1L, is enriched in developing spermatids in the initial stages of histone replacement. Elongating spermatids lacking DOT1L fail to fully replace histones and exhibit aberrant protamine recruitment, resulting in deformed sperm heads and male sterility. Loss of DOT1L results in transcriptional dysregulation coinciding with the onset of histone replacement and affecting genes required for histone-to-protamine exchange. DOT1L also deposits H3K79me2 and promotes accumulation of elongating RNA Polymerase II at the testis-specific bromodomain gene Brdt. Together, our results indicate that DOT1L is an important mediator of transcription during spermatid differentiation and an indispensable regulator of male fertility.
Collapse
Affiliation(s)
- Aushaq B. Malla
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Zachary D. Smith
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Stem Cell Center, New Haven, CT 06510, USA
| | - Bluma J. Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
14
|
Lu Y, Nagamori I, Kobayashi H, Kojima-Kita K, Shirane K, Chang HY, Nishimura T, Koyano T, Yu Z, Castañeda JM, Matsuyama M, Kuramochi-Miyagawa S, Matzuk MM, Ikawa M. ADAD2 functions in spermiogenesis and piRNA biogenesis in mice. Andrology 2023; 11:698-709. [PMID: 36698249 PMCID: PMC10073342 DOI: 10.1111/andr.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Adenosine deaminase domain containing 2 (ADAD2) is a testis-specific protein composed of a double-stranded RNA binding domain and a non-catalytic adenosine deaminase domain. A recent study showed that ADAD2 is indispensable for the male reproduction in mice. However, the detailed functions of ADAD2 remain elusive. OBJECTIVES This study aimed to investigate the cause of male sterility in Adad2 mutant mice and to understand the molecular functions of ADAD2. MATERIALS AND METHODS Adad2 homozygous mutant mouse lines, Adad2-/- and Adad2Δ/Δ , were generated by CRISPR/Cas9. Western blotting and immunohistochemistry were used to reveal the expression and subcellular localization of ADAD2. Co-immunoprecipitation tandem mass spectrometry was employed to determine the ADAD2-interacting proteins in mouse testes. RNA-sequencing analyses were carried out to analyze the transcriptome and PIWI-interacting RNA (piRNA) populations in wildtype and Adad2 mutant testes. RESULTS Adad2-/- and Adad2Δ/Δ mice exhibit male-specific sterility because of abnormal spermiogenesis. ADAD2 interacts with multiple RNA-binding proteins involved in piRNA biogenesis, including MILI, MIWI, RNF17, and YTHDC2. ADAD2 co-localizes and forms novel granules with RNF17 in spermatocytes. Ablation of ADAD2 impairs the formation of RNF17 granules, decreases the number of cluster-derived pachytene piRNAs, and increases expression of ping-pong-derived piRNAs. DISCUSSION AND CONCLUSION In collaboration with RNF17 and other RNA-binding proteins in spermatocytes, ADAD2 directly or indirectly functions in piRNA biogenesis.
Collapse
Affiliation(s)
- Yonggang Lu
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Ippei Nagamori
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Nara 634-0813, Japan
| | - Kanako Kojima-Kita
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kenjiro Shirane
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Hsin-Yi Chang
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Toru Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama 701-0202, Japan
| | - Zhifeng Yu
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Julio M. Castañeda
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, Okayama 701-0202, Japan
| | - Satomi Kuramochi-Miyagawa
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Martin M. Matzuk
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Masahito Ikawa
- Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Laboratory of Reproductive Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Tan H, Wang W, Zhou C, Wang Y, Zhang S, Yang P, Guo R, Chen W, Zhang J, Ye L, Cui Y, Ni T, Zheng K. Single-cell RNA-seq uncovers dynamic processes orchestrated by RNA-binding protein DDX43 in chromatin remodeling during spermiogenesis. Nat Commun 2023; 14:2499. [PMID: 37120627 DOI: 10.1038/s41467-023-38199-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Mammalian spermatogenesis shows prominent chromatin and transcriptomic switches in germ cells, but it is unclear how such dynamics are controlled. Here we identify RNA helicase DDX43 as an essential regulator of the chromatin remodeling process during spermiogenesis. Testis-specific Ddx43 knockout mice show male infertility with defective histone-to-protamine replacement and post-meiotic chromatin condensation defects. The loss of its ATP hydrolysis activity by a missense mutation replicates the infertility phenotype in global Ddx43 knockout mice. Single-cell RNA sequencing analyses of germ cells depleted of Ddx43 or expressing the Ddx43 ATPase-dead mutant reveals that DDX43 regulates dynamic RNA regulatory processes that underlie spermatid chromatin remodeling and differentiation. Transcriptomic profiling focusing on early-stage spermatids combined with enhanced crosslinking immunoprecipitation and sequencing further identifies Elfn2 as DDX43-targeted hub gene. These findings illustrate an essential role for DDX43 in spermiogenesis and highlight the single-cell-based strategy to dissect cell-state-specific regulation of male germline development.
Collapse
Affiliation(s)
- Huanhuan Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, 400016, Chongqing, Yuzhong District, China
| | - Weixu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, 200438, Shanghai, China
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Congjin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Shu Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Rui Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Wei Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, 200438, Shanghai, China
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China.
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, 200438, Shanghai, China.
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
16
|
Park JI, Bell GW, Yamashita YM. Derepression of Y-linked multicopy protamine-like genes interferes with sperm nuclear compaction in D. melanogaster. Proc Natl Acad Sci U S A 2023; 120:e2220576120. [PMID: 37036962 PMCID: PMC10120018 DOI: 10.1073/pnas.2220576120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
Across species, sperm maturation involves the dramatic reconfiguration of chromatin into highly compact nuclei that enhance hydrodynamic ability and ensure paternal genomic integrity. This process is mediated by the replacement of histones by sperm nuclear basic proteins, also referred to as protamines. In humans, a carefully balanced dosage between two known protamine genes is required for optimal fertility. However, it remains unknown how their proper balance is regulated and how defects in balance may lead to compromised fertility. Here, we show that a nucleolar protein, modulo, a homolog of nucleolin, mediates the histone-to-protamine transition during Drosophila spermatogenesis. We find that modulo mutants display nuclear compaction defects during late spermatogenesis due to decreased expression of autosomal protamine genes (including Mst77F) and derepression of Y-linked multicopy Mst77F homologs (Mst77Y), leading to the mutant's known sterility. Overexpression of Mst77Y in a wild-type background is sufficient to cause nuclear compaction defects, similar to modulo mutant, indicating that Mst77Y is a dominant-negative variant interfering with the process of histone-to-protamine transition. Interestingly, ectopic overexpression of Mst77Y caused decompaction of X-bearing spermatids nuclei more frequently than Y-bearing spermatid nuclei, although this did not greatly affect the sex ratio of offspring. We further show that modulo regulates these protamine genes at the step of transcript polyadenylation. We conclude that the regulation of protamines mediated by modulo, ensuring the expression of functional ones while repressing dominant-negative ones, is critical for male fertility.
Collapse
Affiliation(s)
- Jun I. Park
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI48109
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI48109
| | - George W. Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA02142
- Department of Biology, School of Science, Massachusetts Institute of Technology, Cambridge, MA02142
- HHMI, Cambridge, MA02142
| |
Collapse
|
17
|
Chen Y, Zhang X, Jiang J, Luo M, Tu H, Xu C, Tan H, Zhou X, Chen H, Han X, Yue Q, Guo Y, Zheng K, Qi Y, Situ C, Cui Y, Guo X. Regulation of Miwi-mediated mRNA stabilization by Ck137956/Tssa is essential for male fertility. BMC Biol 2023; 21:89. [PMID: 37069605 PMCID: PMC10111675 DOI: 10.1186/s12915-023-01589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Sperm is formed through spermiogenesis, a highly complex process involving chromatin condensation that results in cessation of transcription. mRNAs required for spermiogenesis are transcribed at earlier stages and translated in a delayed fashion during spermatid formation. However, it remains unknown that how these repressed mRNAs are stabilized. RESULTS Here we report a Miwi-interacting testis-specific and spermiogenic arrest protein, Ck137956, which we rename Tssa. Deletion of Tssa led to male sterility and absence of sperm formation. The spermiogenesis arrested at the round spermatid stage and numerous spermiogenic mRNAs were down-regulated in Tssa-/- mice. Deletion of Tssa disrupted the localization of Miwi to chromatoid body, a specialized assembly of cytoplasmic messenger ribonucleoproteins (mRNPs) foci present in germ cells. We found that Tssa interacted with Miwi in repressed mRNPs and stabilized Miwi-interacting spermiogenesis-essential mRNAs. CONCLUSIONS Our findings indicate that Tssa is indispensable in male fertility and has critical roles in post-transcriptional regulations by interacting with Miwi during spermiogenesis.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiayin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mengjiao Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haixia Tu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xudong Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chenghao Situ
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
18
|
Lismer A, Kimmins S. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development. Nat Commun 2023; 14:2142. [PMID: 37059740 PMCID: PMC10104880 DOI: 10.1038/s41467-023-37820-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Although more studies are demonstrating that a father's environment can influence child health and disease, the molecular mechanisms underlying non-genetic inheritance remain unclear. It was previously thought that sperm exclusively contributed its genome to the egg. More recently, association studies have shown that various environmental exposures including poor diet, toxicants, and stress, perturbed epigenetic marks in sperm at important reproductive and developmental loci that were associated with offspring phenotypes. The molecular and cellular routes that underlie how epigenetic marks are transmitted at fertilization, to resist epigenetic reprogramming in the embryo, and drive phenotypic changes are only now beginning to be unraveled. Here, we provide an overview of the state of the field of intergenerational paternal epigenetic inheritance in mammals and present new insights into the relationship between embryo development and the three pillars of epigenetic inheritance: chromatin, DNA methylation, and non-coding RNAs. We evaluate compelling evidence of sperm-mediated transmission and retention of paternal epigenetic marks in the embryo. Using landmark examples, we discuss how sperm-inherited regions may escape reprogramming to impact development via mechanisms that implicate transcription factors, chromatin organization, and transposable elements. Finally, we link paternally transmitted epigenetic marks to functional changes in the pre- and post-implantation embryo. Understanding how sperm-inherited epigenetic factors influence embryo development will permit a greater understanding related to the developmental origins of health and disease.
Collapse
Affiliation(s)
- Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
19
|
Robinson BR, Netherton JK, Ogle RA, Baker MA. Testicular heat stress, a historical perspective and two postulates for why male germ cells are heat sensitive. Biol Rev Camb Philos Soc 2023; 98:603-622. [PMID: 36412227 DOI: 10.1111/brv.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
Herein, we compare the different experimental regimes used to induce testicular heat stress and summarise their impact on sperm production and male fertility. Irrespective of the protocol used, scrotal heat stress causes loss of sperm production. This is first seen 1-2 weeks post heat stress, peaking 4-5 weeks thereafter. The higher the temperature, or the longer the duration of heat, the more pronounced germ cell loss becomes, within extreme cases this leads to azoospermia. The second, and often underappreciated impact of testicular hyperthermia is the production of poor-quality spermatozoa. Typically, those cells that survive hyperthermia develop into morphologically abnormal and poorly motile spermatozoa. While both apoptotic and non-apoptotic pathways are known to contribute to hyperthermic germ cell loss, the mechanisms leading to formation of poor-quality sperm remain unclear. Mechanistically, it is unlikely that testicular hyperthermia affects messenger RNA (mRNA) abundance, as a comparison of four different mammalian studies shows no consistent single gene changes. Using available evidence, we propose two novel models to explain how testicular hyperthermia impairs sperm formation. Our first model suggests aberrant alternative splicing, while the second model proposes a loss of RNA repression. Importantly, neither model requires consistent changes in RNA species.
Collapse
Affiliation(s)
- Benjamin R Robinson
- Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jacob K Netherton
- Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rachel A Ogle
- Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mark A Baker
- Faculty of Science and Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
20
|
de la Iglesia A, Jodar M, Oliva R, Castillo J. Insights into the sperm chromatin and implications for male infertility from a protein perspective. WIREs Mech Dis 2023; 15:e1588. [PMID: 36181449 DOI: 10.1002/wsbm.1588] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Male germ cells undergo an extreme but fascinating process of chromatin remodeling that begins in the testis during the last phase of spermatogenesis and continues through epididymal sperm maturation. Most of the histones are replaced by small proteins named protamines, whose high basicity leads to a tight genomic compaction. This process is epigenetically regulated at many levels, not only by posttranslational modifications, but also by readers, writers, and erasers, in a context of a highly coordinated postmeiotic gene expression program. Protamines are key proteins for acquiring this highly specialized chromatin conformation, needed for sperm functionality. Interestingly, and contrary to what could be inferred from its very specific DNA-packaging function across protamine-containing species, human sperm chromatin contains a wide spectrum of protamine proteoforms, including truncated and posttranslationally modified proteoforms. The generation of protamine knock-out models revealed not only chromatin compaction defects, but also collateral sperm alterations contributing to infertile phenotypes, evidencing the importance of sperm chromatin protamination toward the generation of a new individual. The unique features of sperm chromatin have motivated its study, applying from conventional to the most ground-breaking techniques to disentangle its peculiarities and the cellular mechanisms governing its successful conferment, especially relevant from the protein point of view due to the important epigenetic role of sperm nuclear proteins. Gathering and contextualizing the most striking discoveries will provide a global understanding of the importance and complexity of achieving a proper chromatin compaction and exploring its implications on postfertilization events and beyond. This article is categorized under: Reproductive System Diseases > Genetics/Genomics/Epigenetics Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Alberto de la Iglesia
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain.,Biochemistry and Molecular Genetics Service, Hospital Clinic, Barcelona, Spain
| | - Judit Castillo
- Molecular Biology of Reproduction and Development Research Group, Fundació Clínic per a la Recerca Biomèdica, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
21
|
Alfadel F, Yimer N, Hiew MWH. Aniline blue test for sperm protamination-a valuable add-on to the bull breeding soundness evaluation. Trop Anim Health Prod 2023; 55:76. [PMID: 36764981 DOI: 10.1007/s11250-023-03490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023]
Abstract
Bull breeding soundness evaluation (BBSE) is the most common procedure used to predict bull potential fertility. However, the use of traditional methods for semen evaluation can affect its reliability. The inclusion of additional advanced test in BBSE may increase its accuracy. This study aimed to investigate the correlation between the degree of sperm protamination and BBSE main parameters of scrotal circumference (SC), progressive motility (PM), morphologically normal sperm (NS), and different categories of morphological defects. In addition, to determine the correlation between the three methods used for protamine assessment, five Brangus bulls were subjected to the BBSE. Semen samples were collected via electro-ejaculation and evaluated using traditional methods. Three different methods were used to determine the degree of sperm protamination: aniline blue (AB) staining, chromomycin A3 staining with fluorescent microscope (CMA3-FLM), and CMA3 with flow cytometry (CMA3-FCM). Sperm protamine deficiency assessed using the three methods exhibited significant differences among bulls according to their classification by BBSE, and showed significant negative correlation with semen quality parameters of NS and PM. A significant positive correlation was found between AB positivity and morphological abnormalities. The three methods used for protamine assessment also revealed significant positive correlations. Among the three tests, AB staining was the cheapest and easiest test that offers an objective assessment method for sperm protamination. Hence, it can be concluded that the assessment of protamination using AB staining test might serve as an additional valuable parameter or a replacement whenever detail sperm motility and morphology analyses in conducting BBSE to predict bull fertility are not possible.
Collapse
Affiliation(s)
- F Alfadel
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - N Yimer
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Malaysia.
| | - M W H Hiew
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| |
Collapse
|
22
|
Chang CH, Mejia Natividad I, Malik HS. Expansion and loss of sperm nuclear basic protein genes in Drosophila correspond with genetic conflicts between sex chromosomes. eLife 2023; 12:85249. [PMID: 36763410 PMCID: PMC9917458 DOI: 10.7554/elife.85249] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Many animal species employ sperm nuclear basic proteins (SNBPs) or protamines to package sperm genomes tightly. SNBPs vary across animal lineages and evolve rapidly in mammals. We used a phylogenomic approach to investigate SNBP diversification in Drosophila species. We found that most SNBP genes in Drosophila melanogaster evolve under positive selection except for genes essential for male fertility. Unexpectedly, evolutionarily young SNBP genes are more likely to be critical for fertility than ancient, conserved SNBP genes. For example, CG30056 is dispensable for male fertility despite being one of three SNBP genes universally retained in Drosophila species. We found 19 independent SNBP gene amplification events that occurred preferentially on sex chromosomes. Conversely, the montium group of Drosophila species lost otherwise-conserved SNBP genes, coincident with an X-Y chromosomal fusion. Furthermore, SNBP genes that became linked to sex chromosomes via chromosomal fusions were more likely to degenerate or relocate back to autosomes. We hypothesize that autosomal SNBP genes suppress meiotic drive, whereas sex-chromosomal SNBP expansions lead to meiotic drive. X-Y fusions in the montium group render autosomal SNBPs dispensable by making X-versus-Y meiotic drive obsolete or costly. Thus, genetic conflicts between sex chromosomes may drive SNBP rapid evolution during spermatogenesis in Drosophila species.
Collapse
Affiliation(s)
- Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States
| | - Isabel Mejia Natividad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, United States
| |
Collapse
|
23
|
Legrand JMD, Hobbs RM. Defining Gene Function in Spermatogonial Stem Cells Through Conditional Knockout Approaches. Methods Mol Biol 2023; 2656:261-307. [PMID: 37249877 DOI: 10.1007/978-1-0716-3139-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mammalian male fertility is maintained throughout life by a population of self-renewing mitotic germ cells known as spermatogonial stem cells (SSCs). Much of our current understanding regarding the molecular mechanisms underlying SSC activity is derived from studies using conditional knockout mouse models. Here, we provide a guide for the selection and use of mouse strains to develop conditional knockout models for the study of SSCs, as well as their precursors and differentiation-committed progeny. We describe Cre recombinase-expressing strains, breeding strategies to generate experimental groups, and treatment regimens for inducible knockout models and provide advice for verifying and improving conditional knockout efficiency. This resource can be beneficial to those aiming to develop conditional knockout models for the study of SSC development and postnatal function.
Collapse
Affiliation(s)
- Julien M D Legrand
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
24
|
Liu Z, Dai H, Huo H, Li W, Jiang Y, Zhang X, Huo J. Molecular characteristics and transcriptional regulatory of spermatogenesis-related gene RFX2 in adult Banna mini-pig inbred line (BMI). Anim Reprod 2023; 20:e20220090. [PMID: 36922987 PMCID: PMC10010159 DOI: 10.1590/1984-3143-ar2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/31/2022] [Indexed: 03/08/2023] Open
Abstract
RFX2 plays critical roles in mammalian spermatogenesis and cilium maturation. Here, the testes of 12-month-old adult boars of Banna mini-pig inbred line (BMI) were subjected to whole-transcriptome sequencing. The results indicated that the average expression (raw count) of RFX2 gene in BMI testes was 16138.25, and the average expression value of the corresponding transcript ENSSSCT00000043271.2 was 123.1898. The CDS of RFX2 obtained from BMI testes was 2,817 bp (GenBank accession number: OL362242). Gene structure analysis showed that RFX2 was located on chromosome 2 of the pig genome with 19 exons. Protein structure analysis indicated that RFX2 contains 728 amino acids with two conserved domains. Phylogenetic analysis revealed that RFX2 was highly conserved with evolutionary homologies among mammalian species. Other analyses, including PPI networks, KEGG, and GO, indicated that BMI RFX2 had interactions with 43 proteins involving various functions, such as in cell cycle, spermatid development, spermatid differentiation, cilium assembly, and cilium organization, etc. Correlation analysis between these proteins and the transcriptome data implied that RFX2 was significantly associated with FOXJ1, DNAH9, TMEM138, E2F7, and ATR, and particularly showed the highest correlation with ATR, demonstrating the importance of RFX2 and ART in spermatogenesis. Functional annotation implied that RFX2 was involved in 17 GO terms, including three cellular components (CC), six molecular functions (MF), and eight biological processes (BP). The analysis of miRNA-gene targeting indicated that BMI RFX2 was mainly regulated by two miRNAs, among which four lncRNAs and five lncRNAs competitively bound ssc-miR-365-5p and ssc-miR-744 with RFX2, respectively. Further, the dual-luciferase report assay indicated that the ssc-miR-365-5p and ssc-miR-744 significantly reduced luciferase activity of RFX2 3'UTR in the 293T cells, suggesting that these two miRNAs regulated the expression of RFX2. Our results revealed the important role of RFX2 in BMI spermatogenesis, making it an intriguing candidate for follow-up studies.
Collapse
Affiliation(s)
- Zhipeng Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hongmei Dai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hailong Huo
- Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| | - Weizhen Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yun Jiang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xia Zhang
- College of Life Science, Lyuliang University, Lvliang, Shanxi, China
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.,Department of Biology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
25
|
Disruption of male fertility-critical Dcaf17 dysregulates mouse testis transcriptome. Sci Rep 2022; 12:21456. [PMID: 36509865 PMCID: PMC9744869 DOI: 10.1038/s41598-022-25826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
During mammalian spermatogenesis, the ubiquitin proteasome system maintains protein homoeostasis (proteastasis) and spermatogenic cellular functions. DCAF17 is a substrate receptor in the ubiquitin CRL4 E3 Ligase complex, absence of which causes oligoasthenoteratozoospermia in mice resulting in male infertility. To determine the molecular phenomenon underlying the infertility phenotype caused by disrupting Dcaf17, we performed RNA-sequencing-based gene expression profiling of 3-weeks and 8-weeks old Dcaf17 wild type and Dcaf17 disrupted mutant mice testes. At three weeks, 44% and 56% differentially expressed genes (DEGs) were up- and down-regulated, respectively, with 32% and 68% DEGs were up- and down-regulated, respectively at 8 weeks. DEGs include protein coding genes and lncRNAs distributed across all autosomes and the X chromosome. Gene ontology analysis revealed major biological processes including proteolysis, regulation of transcription and chromatin remodelling are affected due to Dcaf17 disruption. We found that Dcaf17 disruption up-regulated several somatic genes, while germline-associated genes were down-regulated. Up to 10% of upregulated, and 12% of downregulated, genes were implicated in male reproductive phenotypes. Moreover, a large proportion of the up-regulated genes were highly expressed in spermatogonia and spermatocytes, while the majority of downregulated genes were predominantly expressed in round spermatids. Collectively, these data show that the Dcaf17 disruption affects directly or indirectly testicular proteastasis and transcriptional signature in mouse.
Collapse
|
26
|
Ryu DY, Pang WK, Adegoke EO, Rahman MS, Park YJ, Pang MG. Abnormal histone replacement following BPA exposure affects spermatogenesis and fertility sequentially. ENVIRONMENT INTERNATIONAL 2022; 170:107617. [PMID: 36347119 DOI: 10.1016/j.envint.2022.107617] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical widely distributed in the environment. Its exposure has been linked to male infertility in animals and humans due to its ability to induce epigenetic modification. Despite extensive research confirming the impact of BPA on epigenetic regulation, fundamental concerns about how BPA causes epigenetic changes and the underlying mechanism of BPA on the male reproductive system remain unresolved. Therefore, we sought to investigate the effects of BPA on epigenetic regulation and the histone-to-protamine (PRM) transition, which is fundamental process for male fertility in testes and spermatozoa by exposing male mice to BPA for 6 weeks while giving the mice in the control group corn oil by oral gavage. Our results demonstrated that the mRNA levels of the histone family and PRMs were significantly altered by BPA exposure in testes and spermatozoa. Subsequently, core histone proteins, the PRM1/PRM2 ratio, directly linked to male fertility, and transition proteins were significantly reduced. Furthermore, we discovered that BPA significantly caused abnormal histone-to-protamine replacement during spermiogenesis by increased histone variants-related to histone-to-PRM transition. The levels of histone H3 modification in the testes and DNA methylation in spermatozoa were significantly increased. Consequently, sperm concentration/motility/hyperactivation, fertilization, and early embryonic development were adversely affected as a consequence of altered signaling proteins following BPA exposure. To our knowledge, this is the first study to indicate that BPA exposure influences the histone-to-PRM transition via altering epigenetic modification and eventually causing reduced male fertility.
Collapse
Affiliation(s)
- Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
27
|
Patankar A, Sudhakar DVS, Gajbhiye R, Surve S, Thangaraj K, Parte P. Proteomic and genetic dissection of testis-specific histone 2B in infertile men reveals its contribution to meiosis and sperm motility. F&S SCIENCE 2022; 3:322-330. [PMID: 35840050 DOI: 10.1016/j.xfss.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate testis-specific histone 2B (TSH2B) and its gene anomalies in infertile men. DESIGN Case-control study. SETTING Basic science laboratory. PATIENT(S) Fertile and infertile men. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) The histone and protamine status of sperm was studied by aniline blue and chromomycin A3 staining, respectively. Testis-specific histone 2B, total H2B, and phosphorylated TSH2B (pTSH2B) were estimated by Western blot analysis. The frequency of genetic polymorphisms and rare variants in H2BC1 was studied by Sanger sequencing. Phosphosites on TSH2B in sperm were identified by reverse-phase high-performance liquid chromatography purification of TSH2B followed by mass spectrometric analysis. RESULT(S) Aniline blue and chromomycin A3 staining revealed significantly higher histone retention and low protamine in sperm of infertile men. Sperm TSH2B and total H2B levels were significantly lower in oligozoospermic and oligoasthenozoospermic men (in both groups). The TSH2B levels were comparable in asthenozoospermic men; however, the pTSH2B level was significantly low. The H2BC1 gene sequencing identified 6 variants, of which 2 are rare variants (rs368672899 and rs544942090) and 4 (rs4711096, rs4712959, rs4712960 and rs4712961) are single nucleotide polymorphisms. Minor allele frequency of 5'-untranslated region variant rs4711096 was significantly lower in infertile men (OR = 0.65). The rare nonsynonymous variant, rs368672899, p.Ser5Pro was seen in 1 oligoasthenoteratozoospermic individual. Interestingly, mass spectrometric analysis identified a site on TSH2B to bear a phosphate group in the sperm of fertile men. CONCLUSION(S) Our study reveals a defect in the replacement of somatic histones with testis-specific variants in infertile men. Chromatin compaction positively correlates with sperm motility, which is suggestive of its utility in diagnostic semen analysis of infertile individuals. Our observations with TSH2B and its cognate gene in sperm of infertile men indicate an essential role for TSH2B in meiosis and its phosphorylation in sperm motility, respectively.
Collapse
Affiliation(s)
- Aniket Patankar
- Department of Gamete Immunobiology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Digumarthi V S Sudhakar
- Department of Gamete Immunobiology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Rahul Gajbhiye
- Clinical Research Laboratory & Andrology Clinic, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Suchitra Surve
- Clinical Research Laboratory & Andrology Clinic, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Kumarasamy Thangaraj
- Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology, Hyderabad, India; Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Priyanka Parte
- Department of Gamete Immunobiology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive and Child Health, Mumbai, India.
| |
Collapse
|
28
|
Arévalo L, Esther Merges G, Schneider S, Schorle H. Protamines: lessons learned from mouse models. Reproduction 2022; 164:R57-R74. [PMID: 35900356 DOI: 10.1530/rep-22-0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
In brief Protamines package and shield the paternal DNA in the sperm nucleus and have been studied in many mouse models over decades. This review recapitulates and updates our knowledge about protamines and reveals a surprising complexity in protamine function and their interactions with other sperm nuclear proteins. Abstract The packaging and safeguarding of paternal DNA in the sperm cell nucleus is a critical feature of proper sperm function. Histones cannot mediate the necessary hypercondensation and shielding of chromatin required for motility and transit through the reproductive tracts. Paternal chromatin is therefore reorganized and ultimately packaged by protamines. In most mammalian species, one protamine is present in mature sperm (PRM1). In rodents and primates among others, however, mature sperm contain a second protamine (PRM2). Unlike PRM1, PRM2 is cleaved at its N-terminal end. Although protamines have been studied for decades due to their role in chromatin hypercondensation and involvement in male infertility, key aspects of their function are still unclear. This review updates and integrates our knowledge of protamines and their function based on lessons learned from mouse models and starts to answer open questions. The combined insights from recent work reveal that indeed both protamines are crucial for the production of functional sperm and indicate that the two protamines perform distinct functions beyond simple DNA compaction. Loss of one allele of PRM1 leads to subfertility whereas heterozygous loss of PRM2 does not. Unprocessed PRM2 seems to play a distinct role related to the eviction of intermediate DNA-bound proteins and the incorporation of both protamines into chromatin. For PRM1, on the other hand, heterozygous loss leads to strongly reduced sperm motility as the main phenotype, indicating that PRM1 might be important for processes ensuring correct motility, apart from DNA compaction.
Collapse
Affiliation(s)
- Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Gina Esther Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany.,Bonn Technology Campus, Core Facility 'Gene-Editing', University Hospital Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
29
|
Comparative Proteomic Analyses of Poorly Motile Swamp Buffalo Spermatozoa Reveal Low Energy Metabolism and Deficiencies in Motility-Related Proteins. Animals (Basel) 2022; 12:ani12131706. [PMID: 35804605 PMCID: PMC9264820 DOI: 10.3390/ani12131706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
The acquisition of mammalian sperm motility is a main indicator of epididymal sperm maturation and helps ensure fertilization. Poor sperm motility will prevent sperm cells from reaching the fertilization site, resulting in fertilization failure. To investigate the proteomic profiling of normal and poorly motile buffalo spermatozoa, a strategy applying liquid chromatography tandem mass spectrometry combined with tandem mass targeting was used. As a result, 145 differentially expressed proteins (DEPs) were identified in poorly motile spermatozoa (fold change > 1.5), including 52 upregulated and 93 downregulated proteins. The upregulated DEPs were mainly involved in morphogenesis and regulation of cell differentiation. The downregulated DEPs were involved with transport, oxidation-reduction, sperm motility, regulation of cAMP metabolism and regulation of DNA methylation. The mRNA and protein levels of PRM1 and AKAP3 were lower in poorly motile spermatozoa, while the expressions of SDC2, TEKT3 and IDH1 were not correlated with motility, indicating that their protein changes were affected by transcription or translation. Such changes in the expression of these proteins suggest that the formation of poorly motile buffalo spermatozoa reflects a low efficiency of energy metabolism, decreases in sperm protamine proteins, deficiencies in motility-related proteins, and variations in tail structural proteins. Such proteins could be biomarkers of poorly motile spermatozoa. These results illustrate some of the molecular mechanisms associated with poorly motile spermatozoa and provide clues for finding molecular markers of these pathways.
Collapse
|
30
|
Moritz L, Hammoud SS. The Art of Packaging the Sperm Genome: Molecular and Structural Basis of the Histone-To-Protamine Exchange. Front Endocrinol (Lausanne) 2022; 13:895502. [PMID: 35813619 PMCID: PMC9258737 DOI: 10.3389/fendo.2022.895502] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
Male fertility throughout life hinges on the successful production of motile sperm, a developmental process that involves three coordinated transitions: mitosis, meiosis, and spermiogenesis. Germ cells undergo both mitosis and meiosis to generate haploid round spermatids, in which histones bound to the male genome are replaced with small nuclear proteins known as protamines. During this transformation, the chromatin undergoes extensive remodeling to become highly compacted in the sperm head. Despite its central role in spermiogenesis and fertility, we lack a comprehensive understanding of the molecular mechanisms underlying the remodeling process, including which remodelers/chaperones are involved, and whether intermediate chromatin proteins function as discrete steps, or unite simultaneously to drive successful exchange. Furthermore, it remains largely unknown whether more nuanced interactions instructed by protamine post-translational modifications affect chromatin dynamics or gene expression in the early embryo. Here, we bring together past and more recent work to explore these topics and suggest future studies that will elevate our understanding of the molecular basis of the histone-to-protamine exchange and the underlying etiology of idiopathic male infertility.
Collapse
Affiliation(s)
- Lindsay Moritz
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Urology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
31
|
Merges GE, Meier J, Schneider S, Kruse A, Fröbius AC, Kirfel G, Steger K, Arévalo L, Schorle H. Loss of Prm1 leads to defective chromatin protamination, impaired PRM2 processing, reduced sperm motility and subfertility in male mice. Development 2022; 149:275502. [PMID: 35608054 PMCID: PMC9270976 DOI: 10.1242/dev.200330] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
One of the key events during spermiogenesis is the hypercondensation of chromatin by substitution of the majority of histones by protamines. In humans and mice, protamine 1 (PRM1/Prm1) and protamine 2 (PRM2/Prm2) are expressed in a species-specific ratio. Using CRISPR-Cas9-mediated gene editing, we generated Prm1-deficient mice and demonstrated that Prm1+/- mice were subfertile, whereas Prm1-/- mice were infertile. Prm1-/- and Prm2-/- sperm showed high levels of reactive oxygen species-mediated DNA damage and increased histone retention. In contrast, Prm1+/- sperm displayed only moderate DNA damage. The majority of Prm1+/- sperm were CMA3 positive, indicating protamine-deficient chromatin, although this was not the result of increased histone retention in Prm1+/- sperm. However, sperm from Prm1+/- and Prm1-/- mice contained high levels of incompletely processed PRM2. Furthermore, the PRM1:PRM2 ratio was skewed from 1:2 in wild type to 1:5 in Prm1+/- animals. Our results reveal that PRM1 is required for proper PRM2 processing to produce mature PRM2, which, together with PRM1, is able to hypercondense DNA. Thus, the species-specific PRM1:PRM2 ratio has to be precisely controlled in order to retain full fertility.
Collapse
Affiliation(s)
- Gina Esther Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julia Meier
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Simon Schneider
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Kruse
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Biomedical Research Center of the Justus-Liebig University, 35392 Giessen, Germany
| | - Andreas Christian Fröbius
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Biomedical Research Center of the Justus-Liebig University, 35392 Giessen, Germany
| | - Gregor Kirfel
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Biomedical Research Center of the Justus-Liebig University, 35392 Giessen, Germany
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
32
|
Okada Y. Sperm chromatin condensation: epigenetic mechanisms to compact the genome and spatiotemporal regulation from inside and outside the nucleus. Gene 2022; 97:41-53. [PMID: 35491100 DOI: 10.1266/ggs.21-00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sperm chromatin condensation is a critical step in mammalian spermatogenesis to protect the paternal DNA from external damaging factors and to acquire fertility. During chromatin condensation, various events proceed in a chronological order, independently or in sequence, interacting with each other both inside and outside the nucleus to support the dramatic chromatin changes. Among these events, histone-protamine replacement, which is concomitant with acrosome biogenesis and cytoskeletal alteration, is the most critical step associated with nuclear elongation. Failures of not only intranuclear events but also extra-nuclear events severely affect sperm shape and chromatin state and are subsequently linked to infertility. This review focuses on nuclear and non-nuclear factors that affect sperm chromatin condensation and its effects, and further discusses the possible utility of sperm chromatin for clinical applications.
Collapse
Affiliation(s)
- Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo
| |
Collapse
|
33
|
Xiong F, Zhou B, Wu NX, Deng LJ, Xie JY, Li XJ, Chen YJ, Wang YX, Zeng Q, Yang P. The Association of Certain Seminal Phthalate Metabolites on Spermatozoa Apoptosis: An Exploratory Mediation Analysis via Sperm Protamine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118969. [PMID: 35157934 DOI: 10.1016/j.envpol.2022.118969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Earlier studies have suggested that exposure to phthalates (PAEs) may induce spermatozoa apoptosis. Sperm protamine as a molecular biomarker during spermatozoa apoptotic processes may mediate the association between PAE exposure and spermatozoa apoptosis. This study aimed to explore whether sperm protamine mediates the association of PAE exposure with spermatozoa apoptosis. We determined sperm protamine levels, 8 PAE metabolite concentrations in seminal plasma, and 3 spermatozoa apoptosis parameters among 111 men from an infertility clinic. The associations of PAEs as individual chemicals and mixtures with sperm protamine were determined. The mediating roles of protamine in the associations between PAEs and spermatozoa apoptosis parameters were examined by mediation analysis. After adjusting for confounders, we observed positive correlations between seminal plasma concentrations of mono(2-ethylhexyl) phthalate (MEHP) and sperm protamine-1 and protamine ratio. Estimates comparing highest vs. lowest quartiles of MEHP concentration were 4.65% (95% CI: 1.47%, 7.82%) for protamine-1 and 25.86% (95% CI: 3.05%, 53.73%) for protamine ratio. The quantile g-computation models showed that the adjusted protamine-1 per quartile increase in PAE mixture was 9.42% (95% CI: 1.00, 20.92) with MEHP being the major contributor. Although the joint association between PAE mixture and protamine ratio was negligible, MEHP was still identified as the main contributor. Furthermore, we found that protamine-2 and protamine ratio levels in the highest quartiles exhibited a decrease of 43.45% (95% CI: 60.54%, -19.75%) and an increase of 122.55% (95% CI: 60.00%, 209.57%) in Annexin V+/PI- spermatozoa relative to the lowest quartiles, respectively. Mediation analysis revealed that protamine ratio significantly mediated 55.6% of the association between MEHP and Annexin V+/PI- spermatozoa elevation (5.13%; 95% CI: 0.04%, 10.52%). Our findings provided evidence that human exposure to PAEs was associated with increased protamine levels which may mediate the process of spermatozoa apoptosis.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Nan-Xin Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Lang-Jing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jin-Ying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Xiao-Jie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong, PR China.
| |
Collapse
|
34
|
CEP128 is involved in spermatogenesis in humans and mice. Nat Commun 2022; 13:1395. [PMID: 35296684 PMCID: PMC8927350 DOI: 10.1038/s41467-022-29109-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Centrosomal proteins are necessary components of the centrosome, a conserved eukaryotic organelle essential to the reproductive process. However, few centrosomal proteins have been genetically linked to fertility. Herein we identify a homozygous missense variant of CEP128 (c.665 G > A [p.R222Q]) in two infertile males. Remarkably, male homozygous knock-in mice harboring the orthologous CEP128R222Q variant show anomalies in sperm morphology, count, and motility. Moreover, Cep128 knock-out mice manifest male infertility associated with disrupted sperm quality. We observe defective sperm flagella in both homozygous Cep128 KO and KI mice; the cilia development in other organs is normal—suggesting that CEP128 variants predominantly affected the ciliogenesis in the testes. Mechanistically, CEP128 is involved in male reproduction via regulating the expression of genes and/or the phosphorylation of TGF-β/BMP-signalling members during spermatogenesis. Altogether, our findings unveil a crucial role for CEP128 in male fertility and provide important insights into the functions of centrosomal proteins in reproductive biology. CEP128 is a centrosomal protein important for the organization of centriolar microtubules. Here, the authors show that a CEP128 variant observed in human male siblings causes reduced sperm counts and morphologically abnormal sperm when modeled in mice, suggesting a role for CEP128 in male fertility.
Collapse
|
35
|
PRM1 Gene Expression and Its Protein Abundance in Frozen-Thawed Spermatozoa as Potential Fertility Markers in Breeding Bulls. Vet Sci 2022; 9:vetsci9030111. [PMID: 35324839 PMCID: PMC8951773 DOI: 10.3390/vetsci9030111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Functional genes and proteins in sperm play an essential role in bulls’ reproductive processes. They are more accurate in determining bull fertility than conventional semen quality tests. Protamine-1 (PRM1) is a gene or protein crucial for packaging and protecting sperm DNA until fertilization affects normal sperm function. This study analyzes the genes and proteins potential from PRM1 as fertility markers for different breeds of bulls utilized in the artificial insemination programs, expected to be an accurate tool in interpreting bull fertility in Indonesia. This study used Limousin, Holstein, and Ongole Grade bulls divided into two groups based on fertility, high-fertility (HF) and low fertility (LF). The semen quality assessment included progressive motility (computer-assisted semen analysis), viability (eosin-nigrosine), and plasma membrane integrity (HOS test). Sperm DNA fragmentation (SDF) was assessed using the acridine orange staining and the Halomax test. Sperm PRM deficiency was evaluated with the chromomycin A3 method. Moreover, PRM1 gene expression was measured using qRT-PCR, and the PRM1 protein abundance was measured with the enzyme immunoassay method. Semen quality values, relative expression of PRM1 gene, and quantity of PRM1 protein were significantly higher (p < 0.05) in HF bulls than in LF bulls. The SDF and PRM deficiency values in LF bulls were significantly higher (p < 0.05) than HF bulls. Additionally, PRM1 at the gene and protein levels correlated significantly (p < 0.01) with fertility. Therefore, PRM1 is a potential candidate for fertility markers in bulls in Indonesia.
Collapse
|
36
|
Cheng H, Zhou R. Decoding genome recombination and sex reversal. Trends Endocrinol Metab 2022; 33:175-185. [PMID: 35000844 DOI: 10.1016/j.tem.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022]
Abstract
Over the past 440 years since the discovery of the medicinal value of swamp eels, much progress has been made in the study of their biology. The fish is emerging as an important model animal in sexual development, in addition to economic and pharmaceutical implications. Tracing genomic history that shapes speciation of the fish has led to discovery of the whole genome-wide chromosome fission/fusion events. Natural intersex differentiation is a compelling feature for sexual development research. Notably, identification of progenitors of germline stem cells that have bipotential to differentiate into either male or female germline stem cells provides new insight into sex reversal. Here, we review these advances that have propelled the field forwards and present unsolved issues that will guide future investigations to finally elucidate vertebrate sexual development using the new model.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
37
|
Khawar MB, Sohail AM, Li W. SIRT1: A Key Player in Male Reproduction. Life (Basel) 2022; 12:318. [PMID: 35207605 PMCID: PMC8880319 DOI: 10.3390/life12020318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/23/2022] Open
Abstract
Reproduction is the way to immortality for an individual, and it is essential to the continuation of the species. Sirtuins are involved in cellular homeostasis, energy metabolism, apoptosis, age-related problems, and sexual reproduction. Sirtuin 1 (SIRT1) belongs to the sirtuin family of deacetylases, and it is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase. It removes the acetyl group from a variety of substrates. SIRT1 regulates endocrine/metabolic, reproductive, and placental development by deacetylating histone, different transcription factors, and signal transduction molecules in a variety of cellular processes. It also plays a very important role in the synthesis and secretion of sex hormones via regulating the hypothalamus-pituitary-gonadal (HPG) axis. Moreover, SIRT1 participates in several key stages of spermatogenesis and sperm maturation. The current review will give a thorough overview of SIRT1's functions in male reproductive processes, thus paving the way for more research on restorative techniques and their uses in reproductive medicine.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Applied Molecular Biology and Biomedicine Laboratory, Department of Zoology, University of Narowal, Narowal 51600, Pakistan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Abdullah Muhammad Sohail
- Molecular Medicine and Cancer Therapeutics Laboratory, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore 54782, Pakistan
| | - Wei Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
38
|
Abstract
Sperm nuclei present a highly organized and condensed chromatin due to the interchange of histones by protamines during spermiogenesis. This high DNA condensation leads to almost inert chromatin, with the impossibility of conducting gene transcription as in most other somatic cells. The major chromosomal structure responsible for DNA condensation is the formation of protamine-DNA toroids containing 25-50 kilobases of DNA. These toroids are connected by toroid linker regions (TLR), which attach them to the nuclear matrix, as matrix attachment regions (MAR) do in somatic cells. Despite this high degree of condensation, evidence shows that sperm chromatin contains vulnerable elements that can be degraded even in fully condensed chromatin, which may correspond to chromatin regions that transfer functionality to the zygote at fertilization. This chapter covers an updated review of our model for sperm chromatin structure and its potential functional elements that affect embryo development.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Hieu Nguyen
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hongwen Wu
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - W. Steven Ward
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
39
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
40
|
Sinha S, Knapp M, Pywtorak J, McCain G, Wingerden K, VanDervoort C, Gondek JM, Madrid P, Parman T, Gerrard S, Long JE, Blithe DL, Moss S, Lee MS. Contraceptive and Infertility Target DataBase: a contraceptive drug development tool for targeting and analysis of human reproductive specific tissues†. Biol Reprod 2021; 105:1366-1374. [PMID: 34514504 DOI: 10.1093/biolre/ioab172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
The long and challenging drug development process begins with discovery biology for the selection of an appropriate target for a specific indication. Target is a broad term that can be applied to a range of biological entities such as proteins, genes, and ribonucleic acids (RNAs). Although there are numerous databases available for mining biological entities, publicly available searchable, downloadable databases to aid in target selection for a specific disease or indication (e.g., developing contraceptives and infertility treatments) are limited. We report the development of the Contraceptive and Infertility Target DataBase (https://www.citdbase.org), which provides investigators an interface to mine existing transcriptomic and proteomic resources to identify high-quality contraceptive/infertility targets. The development of similar databases is applicable to the identification of targets for other diseases and conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jill E Long
- Contraceptive Development Program, Division of Intramural Population Health Research, Bethesda, MD, USA
| | - Diana L Blithe
- Contraceptive Development Program, Division of Intramural Population Health Research, Bethesda, MD, USA
| | - Stuart Moss
- Fertility and Infertility Branch, Division of Extramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Min S Lee
- Contraceptive Development Program, Division of Intramural Population Health Research, Bethesda, MD, USA
| |
Collapse
|
41
|
Liu N, Qadri F, Busch H, Huegel S, Sihn G, Chuykin I, Hartmann E, Bader M, Rother F. Kpna6 deficiency causes infertility in male mice by disrupting spermatogenesis. Development 2021; 148:272018. [PMID: 34473250 PMCID: PMC8513612 DOI: 10.1242/dev.198374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/18/2021] [Indexed: 11/20/2022]
Abstract
Spermatogenesis is driven by an ordered series of events, which rely on trafficking of specific proteins between nucleus and cytoplasm. The karyopherin α family of proteins mediates movement of specific cargo proteins when bound to karyopherin β. Karyopherin α genes have distinct expression patterns in mouse testis, implying they may have unique roles during mammalian spermatogenesis. Here, we use a loss-of-function approach to determine specifically the role of Kpna6 in spermatogenesis and male fertility. We show that ablation of Kpna6 in male mice leads to infertility and has multiple cumulative effects on both germ cells and Sertoli cells. Kpna6-deficient mice exhibit impaired Sertoli cell function, including loss of Sertoli cells and a compromised nuclear localization of the androgen receptor. Furthermore, our data demonstrate devastating defects on spermiogenesis, including incomplete sperm maturation and a massive reduction in sperm number, accompanied by disturbed histone-protamine exchange, differential localization of the transcriptional regulator BRWD1 and altered expression of RFX2 target genes. Our work uncovers an essential role of Kpna6 in spermatogenesis and, hence, in male fertility. Summary: Two different mouse models delineate the morphological and functional impact of Kpna6 on spermatogenesis and Sertoli cell function and show that this protein is crucial for fertility in male mice.
Collapse
Affiliation(s)
- Na Liu
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | | | - Hauke Busch
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Lübeck 23562, Germany
| | - Stefanie Huegel
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Gabin Sihn
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany
| | - Ilya Chuykin
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Enno Hartmann
- Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| | - Franziska Rother
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.,Institute for Biology, Center for Structural and Cellular Biology in Medicine, University of Lübeck, Lübeck 23562, Germany
| |
Collapse
|
42
|
Karimian M, Parvaresh L, Behjati M. Genetic variations as molecular diagnostic factors for idiopathic male infertility: current knowledge and future perspectives. Expert Rev Mol Diagn 2021; 21:1191-1210. [PMID: 34555965 DOI: 10.1080/14737159.2021.1985469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Infertility is a major health problem, worldwide, which affects 10-15% of couples. About half a percent of infertility cases are related to male-related factors. Male infertility is a complex disease that is the result of various insults as lifestyle issues, genetics, and epigenetic factors. Idiopathic infertility is responsible for 30% of total cases. The genetic factors responsible for male infertility include chromosomal abnormalities, deletions of chromosome Y, and mutations and genetic variations of key genes. AREAS COVERED In this review article, we aim to narrate performed studies on polymorphisms of essential genes involved in male infertility including folate metabolizing genes, oxidative stress-related genes, inflammation, and cellular pathways related to spermatogenesis. Moreover, possible pathophysiologic mechanisms responsible for genetic polymorphisms are discussed. EXPERT OPINION Analysis and assessment of these genetic variations could help in screening, diagnosis, and treatment of idiopathic male infertility.
Collapse
Affiliation(s)
- Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Leila Parvaresh
- Department of Anatomy, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohaddeseh Behjati
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
43
|
Liu J, Li X, Zhou G, Zhang Y, Sang Y, Wang J, Li Y, Ge W, Sun Z, Zhou X. Silica nanoparticles inhibiting the differentiation of round spermatid and chromatin remodeling of haploid period via MIWI in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117446. [PMID: 34058501 DOI: 10.1016/j.envpol.2021.117446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Researches have shown that silica nanoparticles (SiNPs) could reduce both the quantity and quality of sperm. However, the mechanism of toxicity induced by SiNPs in the male reproductive system is still unclear. In this study, male mice were randomly divided into a control group, and SiNPs treated group (20 mg/kg dose; n = 30 per group). Half of the mice per group were sacrificed on 35 days and the remaining on 50 days of the SiNPs exposure. SiNPs were found to decrease sperm count and mobility, increase the sperm abnormality rate, and damage the testes' structure. Furthermore, SiNPs decreased the protein levels of Protamine 1(PRM1) and elevated the histones' levels and suppressed the chromatin condensation of sperm. There was a significant reduction of the ubiquitinated H2A (ubH2A)/H2B (ubH2B) and RING finger protein 8 (RNF8) levels in the spermatid nucleus, while the RNF8 level in the spermatid cytoplasm increased evidently. The protein expression levels of PIWI-like protein 1(MIWI) in the late spermatids significantly increased on day 35 of SiNPs exposure. After 15 days of the withdrawal, the sperm parameters and protamine levels, and histones in the epididymal sperm were unrecovered; however, the changes in testis induced by SiNPs were recovered. Our results suggested that SiNPs could decrease the RNF8 level in the nucleus of spermatid either by upregulating of the expression of MIWI or by inhibiting its degradation. This resulted in the detention of RNF8 in the cytoplasm that maybe inhibited the RNF8-mediated ubiquitination of ubH2A and ubH2B. These events culminated in creating obstacles during the H2A and H2B removal and chromatin condensation, thereby suppressing the differentiation of round spermatids and chromatin remodeling, which compromised the sperm quality and quantity.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
44
|
Campos LGA, Requejo LC, Miñano CAR, Orrego JD, Loyaga EC, Cornejo LG. Correlation between sperm DNA fragmentation index and semen parameters in 418 men seen at a fertility center. JBRA Assist Reprod 2021; 25:349-357. [PMID: 33624489 PMCID: PMC8312297 DOI: 10.5935/1518-0557.20200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective: Methods: Results: Conclusions:
Collapse
Affiliation(s)
- Láyonal Germán Acosta Campos
- IN VITRO GESTAR Assisted Reproduction Center Chiclayo Perú IN VITRO GESTAR, Assisted Reproduction Center. Chiclayo, Perú
| | - Lissett Chiscul Requejo
- IN VITRO GESTAR Assisted Reproduction Center Chiclayo Perú IN VITRO GESTAR, Assisted Reproduction Center. Chiclayo, Perú
| | - Carlos Antonio Rivas Miñano
- IN VITRO GESTAR Assisted Reproduction Center Chiclayo Perú IN VITRO GESTAR, Assisted Reproduction Center. Chiclayo, Perú
| | - Jheny Díaz Orrego
- IN VITRO GESTAR Assisted Reproduction Center Chiclayo Perú IN VITRO GESTAR, Assisted Reproduction Center. Chiclayo, Perú
| | - Elmer Chávez Loyaga
- IN VITRO GESTAR Assisted Reproduction Center Chiclayo Perú IN VITRO GESTAR, Assisted Reproduction Center. Chiclayo, Perú
| | - Luis Gonzales Cornejo
- IN VITRO GESTAR Assisted Reproduction Center Chiclayo Perú IN VITRO GESTAR, Assisted Reproduction Center. Chiclayo, Perú
| |
Collapse
|
45
|
Arévalo L, Tourmente M, Varea-Sánchez M, Ortiz-García D, Roldan ERS. Sexual selection towards a protamine expression ratio optimum in two rodent groups? Evolution 2021; 75:2124-2131. [PMID: 34224143 DOI: 10.1111/evo.14305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Post-copulatory sexual selection is thought to influence the evolution of genes involved in reproduction. However, the detection of straightforward effects has been proven difficult due to the complexity and diversity of reproductive landscapes found in different taxa. Here, we compare the possible effect of relative testes mass as a sperm competition proxy on protamine genotype (protamine 1/protamine 2 ratio) and the link to sperm head phenotype in two rodent groups, mice, and voles. In mice, protamine expression ratios were found to increase from low values toward a 1:1 ratio in a positive association with testes mass, and relative sperm head area. In contrast, in voles, decreasing protamine expression ratios were found in species with larger testes but, surprisingly, they range from high values, again toward a 1:1 ratio, and showing a negative correlation with relative sperm head area. Altogether, we found differences in the way protamines seem to be selected and involved in adaptations of the sperm head in voles and mice. However, sexual selection driven by sperm competition seems to exhibit a common evolutionary pattern in both groups toward an equilibrium in the expression of the two protamines.
Collapse
Affiliation(s)
- Lena Arévalo
- Reproductive Ecology and Biology Group, Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, 28006, Spain.,Developmental Pathology, University of Bonn Medical School, Bonn, 53127, Germany
| | - Maximiliano Tourmente
- Reproductive Ecology and Biology Group, Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, 28006, Spain.,Centre for Cell and Molecular Biology. Faculty of Exact, Physical and Natural Sciences, Universidad Nacional de Córdoba, Córdoba, X5016GCA, Argentina.,Institute for Biological and Technological Research (IIByT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, X5016GCA, Argentina
| | - María Varea-Sánchez
- Reproductive Ecology and Biology Group, Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, 28006, Spain
| | - Daniel Ortiz-García
- Reproductive Ecology and Biology Group, Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, 28006, Spain
| | - Eduardo R S Roldan
- Reproductive Ecology and Biology Group, Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, 28006, Spain
| |
Collapse
|
46
|
Tian H, Petkov PM. Mouse EWSR1 is crucial for spermatid post-meiotic transcription and spermiogenesis. Development 2021; 148:269056. [PMID: 34100066 DOI: 10.1242/dev.199414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
Spermatogenesis is precisely controlled by complex gene-expression programs. During mammalian male germ-cell development, a crucial feature is the repression of transcription before spermatid elongation. Previously, we discovered that the RNA-binding protein EWSR1 plays an important role in meiotic recombination in mouse, and showed that EWSR1 is highly expressed in late meiotic cells and post-meiotic cells. Here, we used an Ewsr1 pachytene stage-specific knockout mouse model to study the roles of Ewsr1 in late meiotic prophase I and in spermatozoa maturation. We show that loss of EWSR1 in late meiotic prophase I does not affect proper meiosis completion, but does result in defective spermatid elongation and chromocenter formation in the developing germ cells. As a result, male mice lacking EWSR1 after pachynema are sterile. We found that, in Ewsr1 CKO round spermatids, transition from a meiotic gene-expression program to a post-meiotic and spermatid gene expression program related to DNA condensation is impaired, suggesting that EWSR1 plays an important role in regulation of spermiogenesis-related mRNA synthesis necessary for spermatid differentiation into mature sperm.
Collapse
Affiliation(s)
- Hui Tian
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
47
|
Hong SH, Han G, Lee SJ, Cocquet J, Cho C. Testicular germ cell-specific lncRNA, Teshl, is required for complete expression of Y chromosome genes and a normal offspring sex ratio. SCIENCE ADVANCES 2021; 7:7/24/eabg5177. [PMID: 34108217 PMCID: PMC8189594 DOI: 10.1126/sciadv.abg5177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/23/2021] [Indexed: 05/09/2023]
Abstract
Heat shock factor 2 (HSF2) regulates the transcription of the male-specific region of the mouse Y chromosome long arm (MSYq) multicopy genes only in testes, but the molecular mechanism underlying this tissue specificity remains largely unknown. Here, we report that the testicular germ cell-specific long noncoding RNA (lncRNA), NR_038002, displays a characteristic spatiotemporal expression pattern in the nuclei of round and elongating spermatids. NR_038002-knockout male mice produced sperm with abnormal head morphology and exhibited reduced fertility accompanied by a female-biased sex ratio in offspring. Molecular analyses revealed that NR_038002 interacts with HSF2 and thereby activates expression of the MSYq genes. We designate NR_038002 as testicular germ cell-specific HSF2-interacting lncRNA (Teshl). Together, our study is the first to demonstrate that the testis specificity of HSF2 activity is regulated by the lncRNA Teshl and establishes a Teshl-HSF2-MSYq molecular axis for normal Y-bearing sperm qualities and consequent balanced offspring sex ratio.
Collapse
Affiliation(s)
- Seong Hyeon Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gwidong Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seung Jae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Julie Cocquet
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, F-75014 Paris, France
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
48
|
Cao A, Li J, Asadi M, Basgen JM, Zhu B, Yi Z, Jiang S, Doke T, El Shamy O, Patel N, Cravedi P, Azeloglu EU, Campbell KN, Menon M, Coca S, Zhang W, Wang H, Zen K, Liu Z, Murphy B, He JC, D’Agati VD, Susztak K, Kaufman L. DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity. J Clin Invest 2021; 131:141279. [PMID: 33998601 PMCID: PMC8121508 DOI: 10.1172/jci141279] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Dachshund homolog 1 (DACH1), a key cell-fate determinant, regulates transcription by DNA sequence-specific binding. We identified diminished Dach1 expression in a large-scale screen for mutations that convert injury-resistant podocytes into injury-susceptible podocytes. In diabetic kidney disease (DKD) patients, podocyte DACH1 expression levels are diminished, a condition that strongly correlates with poor clinical outcomes. Global Dach1 KO mice manifest renal hypoplasia and die perinatally. Podocyte-specific Dach1 KO mice, however, maintain normal glomerular architecture at baseline, but rapidly exhibit podocyte injury after diabetes onset. Furthermore, podocyte-specific augmentation of DACH1 expression in mice protects from DKD. Combined RNA sequencing and in silico promoter analysis reveal conversely overlapping glomerular transcriptomic signatures between podocyte-specific Dach1 and Pax transactivation-domain interacting protein (Ptip) KO mice, with upregulated genes possessing higher-than-expected numbers of promoter Dach1-binding sites. PTIP, an essential component of the activating histone H3 lysine 4 trimethylation (H3K4Me3) complex, interacts with DACH1 and is recruited by DACH1 to its promoter-binding sites. DACH1-PTIP recruitment represses transcription and reduces promoter H3K4Me3 levels. DACH1 knockdown in podocytes combined with hyperglycemia triggers target gene upregulation and increases promoter H3K4Me3. These findings reveal that in DKD, diminished DACH1 expression enhances podocyte injury vulnerability via epigenetic derepression of its target genes.
Collapse
Affiliation(s)
- Aili Cao
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Morad Asadi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John M. Basgen
- Life Science Institute, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Bingbing Zhu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengzi Yi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Tomohito Doke
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Osama El Shamy
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Niralee Patel
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paolo Cravedi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Evren U. Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kirk N. Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav Menon
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steve Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hao Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Zen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Barbara Murphy
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John C. He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vivette D. D’Agati
- Department of Pathology, Columbia University Medical Center, New York, New York, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lewis Kaufman
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
49
|
PHF7 Modulates BRDT Stability and Histone-to-Protamine Exchange during Spermiogenesis. Cell Rep 2021; 32:107950. [PMID: 32726616 DOI: 10.1016/j.celrep.2020.107950] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/16/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a complex process of sperm generation, including mitosis, meiosis, and spermiogenesis. During spermiogenesis, histones in post-meiotic spermatids are removed from chromatin and replaced by protamines. Although histone-to-protamine exchange is important for sperm nuclear condensation, the underlying regulatory mechanism is still poorly understood. Here, we identify PHD finger protein 7 (PHF7) as an E3 ubiquitin ligase for histone H3K14 in post-meiotic spermatids. Generation of Phf7-deficient mice and Phf7 C160A knockin mice with impaired E3 ubiquitin ligase activity reveals defects in histone-to-protamine exchange caused by dysregulation of histone removal factor Bromodomain, testis-specific (BRDT) in early condensing spermatids. Surprisingly, E3 ubiquitin ligase activity of PHF7 on histone ubiquitination leads to stabilization of BRDT by attenuating ubiquitination of BRDT. Collectively, our findings identify PHF7 as a critical factor for sperm chromatin condensation and contribute to mechanistic understanding of fundamental phenomenon of histone-to-protamine exchange and potential for drug development for the male reproduction system.
Collapse
|
50
|
Ribas-Maynou J, Garcia-Bonavila E, Hidalgo CO, Catalán J, Miró J, Yeste M. Species-Specific Differences in Sperm Chromatin Decondensation Between Eutherian Mammals Underlie Distinct Lysis Requirements. Front Cell Dev Biol 2021; 9:669182. [PMID: 33996825 PMCID: PMC8120241 DOI: 10.3389/fcell.2021.669182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Sperm present a highly particular DNA condensation that is acquired during their differentiation. Protamines are key elements for DNA condensation. However, whereas the presence of protamine 1 (P1) is conserved across mammalian species, that of protamine 2 (P2) has evolved differentially, existing only few species that use both protamines for sperm DNA condensation. In addition, altered P1/P2 ratios and alterations in the expression of P1 have previously been associated to infertility and DNA damage disorders. On the other hand, different methods evaluating DNA integrity, such as Sperm Chromatin Dispersion (SCD) and Comet tests, need a previous complete DNA decondensation to properly assess DNA breaks. Related with this, the present study aims to analyze the resilience of sperm DNA to decodensation in different eutherian mammals. Sperm samples from humans, horses, cattle, pigs and donkeys were used. Samples were embedded in low melting point agarose and treated with lysis solutions to induce DNA decondensation and formation of sperm haloes. The treatment consisted of three steps: (1) incubation in SDS + DTT for 30 min; (2) incubation in DTT + NaCl for 30 min; and (3) incubation in DTT + NaCl with or without proteinase K for a variable time of 0, 30, or 180 min. How incubation with the third lysis solution (with or without proteinase K) for 0, 30, and 180 min affected DNA decondensation was tested through analyzing core and halo diameters in 50 sperm per sample. Halo/core length ratio was used as an indicator of complete chromatin decondensation. While incubation time with the third lysis solution had no impact on halo/core length ratios in species having P1 and P2 (human, equine and donkey), DNA decondensation of pig and cattle sperm, which only present P1, significantly (P < 0.05) increased following incubation with the third lysis solution for 180 min. In addition, the inclusion of proteinase K was found to accelerate DNA decondensation. In conclusion, longer incubations in lysis solution including proteinase K lead to higher DNA decondensation in porcine and bovine sperm. This suggests that tests intended to analyze DNA damage, such as halo or Comet assays, require complete chromatin deprotamination to achieve high sensitivity in the detection of DNA breaks.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Estela Garcia-Bonavila
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Carlos O Hidalgo
- Department of Animal Selection and Reproduction, Regional Agrifood Research and Development Service of Asturias (SERIDA), Gijón, Spain
| | - Jaime Catalán
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Jordi Miró
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|