1
|
Ferris MA, Smith AM, Heath SE, Duncavage EJ, Oberley M, Freyer D, Wynn R, Douzgou S, Maris JM, Reilly AF, Wu MD, Choo F, Fiets RB, Koene S, Spencer DH, Miller CA, Shinawi M, Ley TJ. DNMT3A overgrowth syndrome is associated with the development of hematopoietic malignancies in children and young adults. Blood 2022; 139:461-464. [PMID: 34788385 PMCID: PMC8777205 DOI: 10.1182/blood.2021014052] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Affiliation(s)
| | | | | | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University, St Louis, MO
| | | | - David Freyer
- Children's Hospital Los Angeles, Los Angeles, CA
| | - Robert Wynn
- Paediatric Haematology and Bone Marrow Transplant (BMT), Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Sofia Douzgou
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - John M Maris
- Children's Hospital of Philadelphia, Philadelphia, PA and
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anne F Reilly
- Children's Hospital of Philadelphia, Philadelphia, PA and
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Melinda D Wu
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, OR
| | - Florence Choo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, OR
| | - Roel B Fiets
- Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands; and
| | - Saskia Koene
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
2
|
Genetic and regulatory mechanism of susceptibility to high-hyperdiploid acute lymphoblastic leukaemia at 10p21.2. Nat Commun 2017; 8:14616. [PMID: 28256501 PMCID: PMC5337971 DOI: 10.1038/ncomms14616] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/17/2017] [Indexed: 01/28/2023] Open
Abstract
Despite high-hyperdiploid acute lymphoblastic leukaemia (HD-ALL) being the most common subgroup of paediatric ALL, its aetiology remains unknown. Genome-wide association studies have demonstrated association at 10q21.2. Here, we sought to determine how this region influences HD-ALL risk. We impute genotypes across the locus, finding the single nucleotide polymorphism rs7090445 highly associated with HD-ALL (P=1.54 × 10−38), and residing in a predicted enhancer element. We show this region physically interacts with the transcription start site of ARID5B, that alleles of rs7090445 have differential enhancer activity and influence RUNX3 binding. RUNX3 knock-down reduces ARID5B expression and rs7090445 enhancer activity. Individuals carrying the rs7090445-C risk allele also have reduced ARID5B expression. Finally, the rs7090445-C risk allele is preferentially retained in HD-ALL blasts consistent with inherited genetic variation contributing to arrest of normal lymphocyte development, facilitating leukaemic clonal expansion. These data provide evidence for a biological mechanism underlying hereditary risk of HD-ALL at 10q21.2. Risk for the paediatric cancer high-hyperdiploid acute lymphoblastic leukaemia (HD-ALL) has been associated with genetic variants at 10q21.2. Here, the authors characterize this region, establishing a single risk variant and showing its role in dysregulated expression of ARID5B.
Collapse
|
3
|
Zeng H, Wang XB, Cui NH, Nam S, Zeng T, Long X. Associations between AT-rich interactive domain 5B gene polymorphisms and risk of childhood acute lymphoblastic leukemia: a meta-analysis. Asian Pac J Cancer Prev 2017; 15:6211-7. [PMID: 25124600 DOI: 10.7314/apjcp.2014.15.15.6211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Previous genome-wide association studies (GWAS) have implicated several single nucleotide polymorphisms (SNPs) in the AT-rich interactive domain 5B (ARID5B) gene with childhood acute lymphoblastic leukemia (ALL). However, replicated studies reported some inconsistent results in different populations. Using meta-analysis, we here aimed to clarify the nature of the genetic risks contributed by the two polymorphisms (rs10994982, rs7089424) for developing childhood ALL. Through searches of PubMed, EMBASE, and manually searching relevant references, a total of 14 articles with 16 independent studies were included. Odds ratios (ORs) with 95% confidence intervals (95%CI) were calculated to assess the associations. Both SNPs rs10994982 and rs7089424 showed significant associations with childhood ALL risk in all genetic models after Bonferroni correction. Furthermore, subtype analyses of B-lineage ALL provided strong evidence that SNP rs10994982 is highly associated with the risk of developing B-hyperdiploid ALL. These results indicate that SNPs rs10994982 and rs7089424 are indeed significantly associated with increased risk of childhood ALL.
Collapse
Affiliation(s)
- Hui Zeng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China E-mail :
| | | | | | | | | | | |
Collapse
|
4
|
Pasmant E, Gilbert-Dussardier B, Petit A, de Laval B, Luscan A, Gruber A, Lapillonne H, Deswarte C, Goussard P, Laurendeau I, Uzan B, Pflumio F, Brizard F, Vabres P, Naguibvena I, Fasola S, Millot F, Porteu F, Vidaud D, Landman-Parker J, Ballerini P. SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia. Oncogene 2014; 34:631-8. [PMID: 24469042 DOI: 10.1038/onc.2013.587] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 01/10/2023]
Abstract
Constitutional dominant loss-of-function mutations in the SPRED1 gene cause a rare phenotype referred as neurofibromatosis type 1 (NF1)-like syndrome or Legius syndrome, consisted of multiple café-au-lait macules, axillary freckling, learning disabilities and macrocephaly. SPRED1 is a negative regulator of the RAS MAPK pathway and can interact with neurofibromin, the NF1 gene product. Individuals with NF1 have a higher risk of haematological malignancies. SPRED1 is highly expressed in haematopoietic cells and negatively regulates haematopoiesis. SPRED1 seemed to be a good candidate for leukaemia predisposition or transformation. We performed SPRED1 mutation screening and expression status in 230 paediatric lymphoblastic and acute myeloblastic leukaemias (AMLs). We found a loss-of-function frameshift SPRED1 mutation in a patient with Legius syndrome. In this patient, the leukaemia blasts karyotype showed a SPRED1 loss of heterozygosity, confirming SPRED1 as a tumour suppressor. Our observation confirmed that acute leukaemias are rare complications of the Legius syndrome. Moreover, SPRED1 was significantly decreased at RNA and protein levels in the majority of AMLs at diagnosis compared with normal or paired complete remission bone marrows. SPRED1 decreased expression correlated with genetic features of AML. Our study reveals a new mechanism which contributes to deregulate RAS MAPK pathway in the vast majority of paediatric AMLs.
Collapse
Affiliation(s)
- E Pasmant
- 1] UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France [2] Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - A Petit
- 1] Service d'Hématologie-Oncologie, Hôpital A Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France [2] Université Pierre et Marie Curie Paris 6, Paris, France [3] UMR938, Université Paris 6, Pierre et Marie Curie, Paris, France
| | - B de Laval
- INSERM 1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - A Luscan
- 1] UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France [2] Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - A Gruber
- UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - H Lapillonne
- 1] UMR938, Université Paris 6, Pierre et Marie Curie, Paris, France [2] Service d'Hématologie Biologique, Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - C Deswarte
- 1] Service d'Hématologie-Oncologie, Hôpital A Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France [2] Université Pierre et Marie Curie Paris 6, Paris, France [3] UMR938, Université Paris 6, Pierre et Marie Curie, Paris, France
| | - P Goussard
- Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - I Laurendeau
- UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - B Uzan
- UMR967, CEA, Université Paris 7, Fontenay aux Roses, France
| | - F Pflumio
- UMR967, CEA, Université Paris 7, Fontenay aux Roses, France
| | - F Brizard
- Laboratoire d'Hématologie Biologique, C.H.U. de Poitiers, Poitiers, France
| | - P Vabres
- Service de Dermatologie, C.H.U. de Dijon et EA 4271, Université de Bourgogne, France
| | - I Naguibvena
- UMR967, CEA, Université Paris 7, Fontenay aux Roses, France
| | - S Fasola
- 1] Service d'Hématologie-Oncologie, Hôpital A Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France [2] Université Pierre et Marie Curie Paris 6, Paris, France
| | - F Millot
- Service de Pédiatrie, C.H.U de Poitiers, Poitiers, France
| | - F Porteu
- INSERM 1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - D Vidaud
- 1] UMR_S745 INSERM, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes Sorbonne Paris Cité, Paris, France [2] Service de Biochimie et Génétique Moléculaire, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France [3] Service de Génétique, C.H.U. de Poitiers, Poitiers, France
| | - J Landman-Parker
- 1] Service d'Hématologie-Oncologie, Hôpital A Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France [2] Université Pierre et Marie Curie Paris 6, Paris, France [3] UMR938, Université Paris 6, Pierre et Marie Curie, Paris, France
| | - P Ballerini
- Service d'Hématologie Biologique, Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
5
|
High-resolution melting analyses for genetic variants in ARID5B and IKZF1 with childhood acute lymphoblastic leukemia susceptibility loci in Taiwan. Blood Cells Mol Dis 2013; 52:140-5. [PMID: 24200646 DOI: 10.1016/j.bcmd.2013.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Childhood acute lymphoblastic leukemia (ALL), a heterogeneous disease that includes multiple subtypes is defined by cell lineage and chromosome anomalies. Previous genome-wide association studies have reported several ARID5B and IKZF1 single nucleotide polymorphisms (SNPs) associated with the incidence of ALL. High-resolution melting (HRM) analysis is a rapid and convenient technique to detect SNPs; we thereby detected SNPs in ARID5B and IKZF1 genes. METHODS We enrolled 79 pediatric ALL patients and 80 healthy controls. Polymorphic variants of IKZF1 (rs6964823, rs4132601, and rs6944602) and ARID5B (rs7073837, rs10740055, and rs7089424) were detected by HRM, and SNPs were analyzed for association with childhood ALL. RESULTS The distribution of genotype rs7073837 in ARID5B significantly differed between ALL and controls (P=0.046), while those of IKZF1 (rs6964823, rs4132601, and rs6944602) and ARID5B (rs10740055 and rs7089424) did not. We analyzed the association for SNPs with B lineage ALL to find rs7073837 in ARID5B, conferring a higher risk for B lineage ALL (odds ratio, OR=1.70, 95% confidence interval, CI=1.01-2.87, P=0.049). CONCLUSION HRM is a practical method to detect SNPs in ARID5B and IKZF1 genes. We found that rs7073837 in ARID5B correlated with a risk for childhood B lineage ALL.
Collapse
|
6
|
Mulama DH, Bailey JA, Foley J, Chelimo K, Ouma C, Jura WGZO, Otieno J, Vulule J, Moormann AM. Sickle cell trait is not associated with endemic Burkitt lymphoma: an ethnicity and malaria endemicity-matched case-control study suggests factors controlling EBV may serve as a predictive biomarker for this pediatric cancer. Int J Cancer 2013; 134:645-53. [PMID: 23832374 PMCID: PMC3830732 DOI: 10.1002/ijc.28378] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 11/13/2022]
Abstract
Endemic Burkitt lymphoma (eBL) is associated with Epstein–Barr virus (EBV) and Plasmodium falciparum coinfections. Malaria appears to dysregulate immunity that would otherwise control EBV, thereby contributing to eBL etiology. Juxtaposed to human genetic variants associated with protection from malaria, it has been hypothesized that such variants could decrease eBL susceptibility, historically referred to as “the protective hypothesis.” Past studies attempting to link sickle cell trait (HbAS), which is known to be protective against malaria, with protection from eBL were contradictory and underpowered. Therefore, using a case–control study design, we examined HbAS frequency in 306 Kenyan children diagnosed with eBL compared to 537 geographically defined and ethnically matched controls. We found 23.8% HbAS for eBL patients, which was not significantly different compared to 27.0% HbAS for controls [odds ratio (OR) = 0.85; 95% confidence interval (CI) 0.61–1.17; p-value = 0.33]. Even though cellular EBV titers, indicative of the number of latently infected B cells, were significantly higher (p-value < 0.0003) in children residing in malaria holoendemic compared to hypoendemic areas, levels were not associated with HbAS genotype. Combined, this suggests that although HbAS protects against severe malaria and hyperparasitemia, it is not associated with viral control or eBL protection. However, based on receiver operating characteristic curves factors that enable the establishment of EBV persistence, in contrast to those involved in EBV lytic reactivation, may have utility as an eBL precursor biomarker. This has implications for future human genetic association studies to consider variants influencing control over EBV in addition to malaria as risk factors for eBL.
Collapse
Affiliation(s)
- David H Mulama
- Center for Global Health Research, Kenyan Medical Research InstituteKisumu, Kenya
- Department of Biomedical Sciences and Technology, Maseno UniversityMaseno, Kenya
| | - Jeffrey A Bailey
- Department of Medicine and Program in Bioinformatics & Computational Biology, University of Massachusetts Medical SchoolWorcester, MA
| | - Joslyn Foley
- Department of Pediatrics, University of Massachusetts Medical SchoolWorcester, MA
| | - Kiprotich Chelimo
- Center for Global Health Research, Kenyan Medical Research InstituteKisumu, Kenya
- Department of Biomedical Sciences and Technology, Maseno UniversityMaseno, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno UniversityMaseno, Kenya
| | | | - Juliana Otieno
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Medical ServicesKisumu, Kenya
| | - John Vulule
- Center for Global Health Research, Kenyan Medical Research InstituteKisumu, Kenya
| | - Ann M Moormann
- Department of Pediatrics, University of Massachusetts Medical SchoolWorcester, MA
- Department of Quantitative Health Sciences, University of Massachusetts Medical SchoolWorcester, MA
- Correspondence to: Ann M. Moormann, PhD, MPH, University of Massachusetts Medical School, 373 Plantation St., Biotech 2, Suite 318, Worcester, MA 01605, USA, E-mail:
| |
Collapse
|