1
|
Fernandes JB, Naish M, Lian Q, Burns R, Tock AJ, Rabanal FA, Wlodzimierz P, Habring A, Nicholas RE, Weigel D, Mercier R, Henderson IR. Structural variation and DNA methylation shape the centromere-proximal meiotic crossover landscape in Arabidopsis. Genome Biol 2024; 25:30. [PMID: 38254210 PMCID: PMC10804481 DOI: 10.1186/s13059-024-03163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Centromeres load kinetochore complexes onto chromosomes, which mediate spindle attachment and allow segregation during cell division. Although centromeres perform a conserved cellular function, their underlying DNA sequences are highly divergent within and between species. Despite variability in DNA sequence, centromeres are also universally suppressed for meiotic crossover recombination, across eukaryotes. However, the genetic and epigenetic factors responsible for suppression of centromeric crossovers remain to be completely defined. RESULTS To explore the centromere-proximal meiotic recombination landscape, we map 14,397 crossovers against fully assembled Arabidopsis thaliana (A. thaliana) genomes. A. thaliana centromeres comprise megabase satellite repeat arrays that load nucleosomes containing the CENH3 histone variant. Each chromosome contains a structurally polymorphic region of ~3-4 megabases, which lack crossovers and include the satellite arrays. This polymorphic region is flanked by ~1-2 megabase low-recombination zones. These recombination-suppressed regions are enriched for Gypsy/Ty3 retrotransposons, and additionally contain expressed genes with high genetic diversity that initiate meiotic recombination, yet do not crossover. We map crossovers at high-resolution in proximity to CEN3, which resolves punctate centromere-proximal hotspots that overlap gene islands embedded in heterochromatin. Centromeres are densely DNA methylated and the recombination landscape is remodelled in DNA methylation mutants. We observe that the centromeric low-recombining zones decrease and increase crossovers in CG (met1) and non-CG (cmt3) mutants, respectively, whereas the core non-recombining zones remain suppressed. CONCLUSION Our work relates the genetic and epigenetic organization of A. thaliana centromeres and flanking pericentromeric heterochromatin to the zones of crossover suppression that surround the CENH3-occupied satellite repeat arrays.
Collapse
Affiliation(s)
- Joiselle B Fernandes
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Qichao Lian
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Fernando A Rabanal
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, D-72076, Tübingen, Germany
| | - Piotr Wlodzimierz
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Anette Habring
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, D-72076, Tübingen, Germany
| | - Robert E Nicholas
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, D-72076, Tübingen, Germany
- University of Tübingen, Institute for Bioinformatics and Medical Informatics, D-72076, Tübingen, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
2
|
Kindelay SM, Maggert KA. Under the magnifying glass: The ups and downs of rDNA copy number. Semin Cell Dev Biol 2023; 136:38-48. [PMID: 35595601 PMCID: PMC9976841 DOI: 10.1016/j.semcdb.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
The ribosomal DNA (rDNA) in Drosophila is found as two additive clusters of individual 35 S cistrons. The multiplicity of rDNA is essential to assure proper translational demands, but the nature of the tandem arrays expose them to copy number variation within and between populations. Here, we discuss means by which a cell responds to insufficient rDNA copy number, including a historical view of rDNA magnification whose mechanism was inferred some 35 years ago. Recent work has revealed that multiple conditions may also result in rDNA loss, in response to which rDNA magnification may have evolved. We discuss potential models for the mechanism of magnification, and evaluate possible consequences of rDNA copy number variation.
Collapse
Affiliation(s)
- Selina M Kindelay
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Keith A Maggert
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85724, USA; Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
3
|
Soriano J, Belmonte-Tebar A, de la Casa-Esperon E. Synaptonemal & CO analyzer: A tool for synaptonemal complex and crossover analysis in immunofluorescence images. Front Cell Dev Biol 2023; 11:1005145. [PMID: 36743415 PMCID: PMC9894712 DOI: 10.3389/fcell.2023.1005145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
During the formation of ova and sperm, homologous chromosomes get physically attached through the synaptonemal complex and exchange DNA at crossover sites by a process known as meiotic recombination. Chromosomes that do not recombine or have anomalous crossover distributions often separate poorly during the subsequent cell division and end up in abnormal numbers in ova or sperm, which can lead to miscarriage or developmental defects. Crossover numbers and distribution along the synaptonemal complex can be visualized by immunofluorescent microscopy. However, manual analysis of large numbers of cells is very time-consuming and a major bottleneck for recombination studies. Some image analysis tools have been created to overcome this situation, but they are not readily available, do not provide synaptonemal complex data, or do not tackle common experimental difficulties, such as overlapping chromosomes. To overcome these limitations, we have created and validated an open-source ImageJ macro routine that facilitates and speeds up the crossover and synaptonemal complex analyses in mouse chromosome spreads, as well as in other vertebrate species. It is free, easy to use and fulfills the recommendations for enhancing rigor and reproducibility in biomedical studies.
Collapse
Affiliation(s)
- Joaquim Soriano
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Angela Belmonte-Tebar
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Elena de la Casa-Esperon
- Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain,Biology of Cell Growth, Differentiation and Activation Group, Department of Inorganic and Organic Chemistry and Biochemistry, School of Pharmacy, Universidad de Castilla-La Mancha, Albacete, Spain,*Correspondence: Elena de la Casa-Esperon,
| |
Collapse
|
4
|
Sen S, Dodamani A, Nambiar M. Emerging mechanisms and roles of meiotic crossover repression at centromeres. Curr Top Dev Biol 2022; 151:155-190. [PMID: 36681469 DOI: 10.1016/bs.ctdb.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Crossover events during recombination in meiosis are essential for generating genetic diversity as well as crucial to allow accurate chromosomal segregation between homologous chromosomes. Spatial control for the distribution of crossover events along the chromosomes is largely a tightly regulated process and involves many facets such as interference, repression as well as assurance, to make sure that not too many or too few crossovers are generated. Repression of crossover events at the centromeres is a highly conserved process across all species tested. Failure to inhibit such recombination events can result in chromosomal mis-segregation during meiosis resulting in aneuploid gametes that are responsible for infertility or developmental disorders such as Down's syndrome and other trisomies in humans. In the past few decades, studies to understand the molecular mechanisms behind this repression have shown the involvement of a multitude of factors ranging from the centromere-specific proteins such as the kinetochore to the flanking pericentric heterochromatin as well as DNA double-strand break repair pathways. In this chapter, we review the different mechanisms of pericentric repression mechanisms known till date as well as highlight the importance of understanding this regulation in the context of chromosomal segregation defects. We also discuss the clinical implications of dysregulation of this process, especially in human reproductive health and genetic diseases.
Collapse
Affiliation(s)
- Sucharita Sen
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ananya Dodamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Mridula Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
5
|
Joshi A, Musicante MJ, Wheeler BS. Defining the consequences of endogenous genetic variation within a novel family of Schizosaccharomyces pombe heterochromatin nucleating sequences. G3 GENES|GENOMES|GENETICS 2021; 11:6291246. [PMID: 34849813 PMCID: PMC8496282 DOI: 10.1093/g3journal/jkab185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022]
Abstract
Centromeres are essential for genetic inheritance—they prevent aneuploidy by providing a physical link between DNA and chromosome segregation machinery. In many organisms, centromeres form at sites of repetitive DNAs that help establish the chromatin architecture required for centromere function. These repeats are often rapidly evolving and subject to homogenization, which causes the expansion of novel repeats and sequence turnover. Thus, centromere sequence varies between individuals and across species. This variation can affect centromere function. We utilized Schizosaccharomyces pombe to assess the relationship between centromere sequence and chromatin structure and determine how sensitive this relationship is to genetic variation. In S. pombe, nucleating sequences within centromere repeats recruit heterochromatin via multiple mechanisms, which include RNA-interference (RNAi) . Heterochromatin, in turn, contributes to centromere function through its participation in three essential processes; establishment of a kinetochore, cohesion of sister chromatids, and suppression of recombination. Here, we show that a centromere element containing RevCen, a target of the RNAi pathway, establishes heterochromatin and gene silencing when relocated to a chromosome arm. Within this RevCen-containing element (RCE), a highly conserved domain is necessary for full heterochromatin nucleation but cannot establish heterochromatin independently. We characterize the 10 unique RCEs in the S. pombe centromere assembly, which range from 60% to 99.6% identical, and show that all are sufficient to establish heterochromatin. These data affirm the importance of centromere repeats in establishing heterochromatin and suggest there is flexibility within the sequences that mediate this process. Such flexibility may preserve centromere function despite the rapid evolution of centromere repeats.
Collapse
Affiliation(s)
- Arati Joshi
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | | | - Bayly S Wheeler
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| |
Collapse
|
6
|
Pazhayam NM, Turcotte CA, Sekelsky J. Meiotic Crossover Patterning. Front Cell Dev Biol 2021; 9:681123. [PMID: 34368131 PMCID: PMC8344875 DOI: 10.3389/fcell.2021.681123] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 12/02/2022] Open
Abstract
Proper number and placement of meiotic crossovers is vital to chromosome segregation, with failures in normal crossover distribution often resulting in aneuploidy and infertility. Meiotic crossovers are formed via homologous repair of programmed double-strand breaks (DSBs). Although DSBs occur throughout the genome, crossover placement is intricately patterned, as observed first in early genetic studies by Muller and Sturtevant. Three types of patterning events have been identified. Interference, first described by Sturtevant in 1915, is a phenomenon in which crossovers on the same chromosome do not occur near one another. Assurance, initially identified by Owen in 1949, describes the phenomenon in which a minimum of one crossover is formed per chromosome pair. Suppression, first observed by Beadle in 1932, dictates that crossovers do not occur in regions surrounding the centromere and telomeres. The mechanisms behind crossover patterning remain largely unknown, and key players appear to act at all scales, from the DNA level to inter-chromosome interactions. There is also considerable overlap between the known players that drive each patterning phenomenon. In this review we discuss the history of studies of crossover patterning, developments in methods used in the field, and our current understanding of the interplay between patterning phenomena.
Collapse
Affiliation(s)
- Nila M. Pazhayam
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carolyn A. Turcotte
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Hassold TJ, Hunt PA. Missed connections: recombination and human aneuploidy. Prenat Diagn 2021; 41:584-590. [PMID: 33484483 DOI: 10.1002/pd.5910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
The physical exchange of DNA between homologs, crossing-over, is essential to orchestrate the unique, reductional first meiotic division (MI). In females, the events of meiotic recombination that serve to tether homologs and facilitate their disjunction at MI occur during fetal development, preceding the MI division by several decades in our species. Data from studies in humans and mice demonstrate that placement of recombination sites during fetal development influences the likelihood of an MI nondisjunction event that results in the production of an aneuploid egg. Here we briefly summarize what we know about the relationship between aneuploidy and meiotic recombination and important considerations for the future of human assisted reproduction.
Collapse
Affiliation(s)
- Terry J Hassold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, USA
| | - Patricia A Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, USA
| |
Collapse
|
8
|
Mogessie B. Advances and surprises in a decade of oocyte meiosis research. Essays Biochem 2020; 64:263-275. [PMID: 32538429 DOI: 10.1042/ebc20190068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Eggs are produced from progenitor oocytes through meiotic cell division. Fidelity of meiosis is critical for healthy embryogenesis - fertilisation of aneuploid eggs that contain the wrong number of chromosomes is a leading cause of genetic disorders including Down's syndrome, human embryo deaths and infertility. Incidence of meiosis-related oocyte and egg aneuploidies increases dramatically with advancing maternal age, which further complicates the 'meiosis problem'. We have just emerged from a decade of meiosis research that was packed with exciting and transformative research. This minireview will focus primarily on studies of mechanisms that directly influence chromosome segregation.
Collapse
Affiliation(s)
- Binyam Mogessie
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
| |
Collapse
|
9
|
Hughes SE, Hawley RS. Meiosis: Location, Location, Location, How Crossovers Ensure Segregation. Curr Biol 2020; 30:R311-R313. [PMID: 32259504 DOI: 10.1016/j.cub.2020.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The proper behavior of homologous chromosomes at the first meiotic division is usually ensured by crossing over. A new study shows that crossover position influences the successful completion of the chromatin remodeling processes that facilitate homologous segregation.
Collapse
Affiliation(s)
- Stacie E Hughes
- Stowers Institute for Medical Research, 1000 E. 50(th) St., Kansas City, MO 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, 1000 E. 50(th) St., Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| |
Collapse
|
10
|
Abstract
Through recombination, genes are freed to evolve more independently of one another, unleashing genetic variance hidden in the linkage disequilibrium that accumulates through selection combined with drift. Yet crossover numbers are evolutionarily constrained, with at least one and not many more than one crossover per bivalent in most taxa. Crossover interference, whereby a crossover reduces the probability of a neighboring crossover, contributes to this homogeneity. The mechanisms by which interference is achieved and crossovers are regulated are a major current subject of inquiry, facilitated by novel methods to visualize crossovers and to pinpoint recombination events. Here, we review patterns of crossover interference and the models built to describe this process. We then discuss the selective forces that have likely shaped interference and the regulation of crossover numbers.
Collapse
Affiliation(s)
- Sarah P Otto
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada;
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
11
|
Abstract
The absence of a paternal contribution in an unfertilized ovum presents two developmental constraints against the evolution of parthenogenesis. We discuss the constraint caused by the absence of a centrosome and the one caused by the missing set of chromosomes and how they have been broken in specific taxa. They are examples of only a few well-underpinned examples of developmental constraints acting at macro-evolutionary scales in animals. Breaking of the constraint of the missing chromosomes is the best understood and generally involves rare occasions of drastic changes of meiosis. These drastic changes can be best explained by having been induced, or at least facilitated, by sudden cytological events (e.g., repeated rounds of hybridization, endosymbiont infections, and contagious infections). Once the genetic and developmental machinery is in place for regular or obligate parthenogenesis, shifts to other types of parthenogenesis can apparently rather easily evolve, for example, from facultative to obligate parthenogenesis, or from pseudoarrhenotoky to haplodiploidy. We argue that the combination of the two developmental constraints forms a near-absolute barrier against the gradual evolution from sporadic to obligate or regular facultative parthenogenesis, which can probably explain why the occurrence of the highly advantageous mode of regular facultative parthenogenesis is so rare and entirely absent in vertebrates.
Collapse
|
12
|
Hartmann M, Umbanhowar J, Sekelsky J. Centromere-Proximal Meiotic Crossovers in Drosophila melanogaster Are Suppressed by Both Highly Repetitive Heterochromatin and Proximity to the Centromere. Genetics 2019; 213:113-125. [PMID: 31345993 PMCID: PMC6727794 DOI: 10.1534/genetics.119.302509] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/19/2019] [Indexed: 11/18/2022] Open
Abstract
Crossovers are essential in meiosis of most organisms to ensure the proper segregation of chromosomes, but improper placement of crossovers can result in nondisjunction and aneuploidy in progeny. In particular, crossovers near the centromere can cause nondisjunction. Centromere-proximal crossovers are suppressed by what is termed the centromere effect, but the mechanism is unknown. Here, we investigate contributions to centromere-proximal crossover suppression in Drosophila melanogaster We mapped a large number of centromere-proximal crossovers, and find that crossovers are essentially absent from the highly repetitive (HR)-heterochromatin surrounding the centromere but occur at a low frequency within the less-repetitive (LR)-heterochromatic region and adjacent euchromatin. Previous research suggested that flies that lack the Bloom syndrome helicase (Blm) lose meiotic crossover patterning, including the centromere effect. Mapping of centromere-proximal crossovers in Blm mutants reveals that the suppression within the HR-heterochromatin is intact, but the distance-dependent centromere effect is lost. We conclude that centromere-proximal crossovers are suppressed by two separable mechanisms: an HR-heterochromatin effect that completely suppresses crossovers in the HR-heterochromatin, and the centromere effect, which suppresses crossovers with a dissipating effect with distance from the centromere.
Collapse
Affiliation(s)
- Michaelyn Hartmann
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - James Umbanhowar
- Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
13
|
Scelfo A, Fachinetti D. Keeping the Centromere under Control: A Promising Role for DNA Methylation. Cells 2019; 8:cells8080912. [PMID: 31426433 PMCID: PMC6721688 DOI: 10.3390/cells8080912] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 01/22/2023] Open
Abstract
In order to maintain cell and organism homeostasis, the genetic material has to be faithfully and equally inherited through cell divisions while preserving its integrity. Centromeres play an essential task in this process; they are special sites on chromosomes where kinetochores form on repetitive DNA sequences to enable accurate chromosome segregation. Recent evidence suggests that centromeric DNA sequences, and epigenetic regulation of centromeres, have important roles in centromere physiology. In particular, DNA methylation is abundant at the centromere, and aberrant DNA methylation, observed in certain tumors, has been correlated to aneuploidy and genomic instability. In this review, we evaluate past and current insights on the relationship between centromere function and the DNA methylation pattern of its underlying sequences.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75005 Paris, France.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
14
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
15
|
Underwood CJ, Choi K, Lambing C, Zhao X, Serra H, Borges F, Simorowski J, Ernst E, Jacob Y, Henderson IR, Martienssen RA. Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Res 2018; 28:519-531. [PMID: 29530927 PMCID: PMC5880242 DOI: 10.1101/gr.227116.117] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/15/2018] [Indexed: 02/02/2023]
Abstract
Eukaryotic centromeres contain the kinetochore, which connects chromosomes to the spindle allowing segregation. During meiosis, centromeres are suppressed for inter-homolog crossover, as recombination in these regions can cause chromosome missegregation and aneuploidy. Plant centromeres are surrounded by transposon-dense pericentromeric heterochromatin that is epigenetically silenced by histone 3 lysine 9 dimethylation (H3K9me2), and DNA methylation in CG and non-CG sequence contexts. However, the role of these chromatin modifications in control of meiotic recombination in the pericentromeres is not fully understood. Here, we show that disruption of Arabidopsis thaliana H3K9me2 and non-CG DNA methylation pathways, for example, via mutation of the H3K9 methyltransferase genes KYP/SUVH4 SUVH5 SUVH6, or the CHG DNA methyltransferase gene CMT3, increases meiotic recombination in proximity to the centromeres. Using immunocytological detection of MLH1 foci and genotyping by sequencing of recombinant plants, we observe that H3K9me2 and non-CG DNA methylation pathway mutants show increased pericentromeric crossovers. Increased pericentromeric recombination in H3K9me2/non-CG mutants occurs in hybrid and inbred backgrounds and likely involves contributions from both the interfering and noninterfering crossover repair pathways. We also show that meiotic DNA double-strand breaks (DSBs) increase in H3K9me2/non-CG mutants within the pericentromeres, via purification and sequencing of SPO11-1-oligonucleotides. Therefore, H3K9me2 and non-CG DNA methylation exert a repressive effect on both meiotic DSB and crossover formation in plant pericentromeric heterochromatin. Our results may account for selection of enhancer trap Dissociation (Ds) transposons into the CMT3 gene by recombination with proximal transposon launch-pads.
Collapse
Affiliation(s)
- Charles J. Underwood
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;,Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Xiaohui Zhao
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Heïdi Serra
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Filipe Borges
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Joe Simorowski
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Yannick Jacob
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Robert A. Martienssen
- Howard Hughes Medical Institute, Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
16
|
Brand CL, Cattani MV, Kingan SB, Landeen EL, Presgraves DC. Molecular Evolution at a Meiosis Gene Mediates Species Differences in the Rate and Patterning of Recombination. Curr Biol 2018; 28:1289-1295.e4. [PMID: 29606420 DOI: 10.1016/j.cub.2018.02.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
Abstract
Crossing over between homologous chromosomes during meiosis repairs programmed DNA double-strand breaks, ensures proper segregation at meiosis I [1], shapes the genomic distribution of nucleotide variability in populations, and enhances the efficacy of natural selection among genetically linked sites [2]. Between closely related Drosophila species, large differences exist in the rate and chromosomal distribution of crossing over. Little, however, is known about the molecular genetic changes or population genetic forces that mediate evolved differences in recombination between species [3, 4]. Here, we show that a meiosis gene with a history of rapid evolution acts as a trans-acting modifier of species differences in crossing over. In transgenic flies, the dicistronic gene, mei-217/mei-218, recapitulates a large part of the species differences in the rate and chromosomal distribution of crossing over. These phenotypic differences appear to result from changes in protein sequence not gene expression. Our population genetics analyses show that the protein-coding sequence of mei-218, but not mei-217, has a history of recurrent positive natural selection. By modulating the intensity of centromeric and telomeric suppression of crossing over, evolution at mei-217/-218 has incidentally shaped gross differences in the chromosomal distribution of nucleotide variability between species. We speculate that recurrent bouts of adaptive evolution at mei-217/-218 might reflect a history of coevolution with selfish genetic elements.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - M Victoria Cattani
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Sarah B Kingan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Emily L Landeen
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Daven C Presgraves
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
17
|
Loss of Drosophila Mei-41/ATR Alters Meiotic Crossover Patterning. Genetics 2017; 208:579-588. [PMID: 29247012 DOI: 10.1534/genetics.117.300634] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/14/2017] [Indexed: 11/18/2022] Open
Abstract
Meiotic crossovers must be properly patterned to ensure accurate disjunction of homologous chromosomes during meiosis I. Disruption of the spatial distribution of crossovers can lead to nondisjunction, aneuploidy, gamete dysfunction, miscarriage, or birth defects. One of the earliest identified genes involved in proper crossover patterning is Drosophila mei-41, which encodes the ortholog of the checkpoint kinase ATR. Analysis of hypomorphic mutants suggested the existence of crossover patterning defects, but it was not possible to assess this in null mutants because of maternal-effect embryonic lethality. To overcome this lethality, we constructed mei-41 null mutants in which we expressed wild-type Mei-41 in the germline after completion of meiotic recombination, allowing progeny to survive. We find that crossovers are decreased to about one-third of wild-type levels, but the reduction is not uniform, being less severe in the proximal regions of chromosome 2L than in medial or distal 2L or on the X chromosome. None of the crossovers formed in the absence of Mei-41 require Mei-9, the presumptive meiotic resolvase, suggesting that Mei-41 functions everywhere, despite the differential effects on crossover frequency. Interference appears to be significantly reduced or absent in mei-41 mutants, but the reduction in crossover density in centromere-proximal regions is largely intact. We propose that crossover patterning is achieved in a stepwise manner, with the crossover suppression related to proximity to the centromere occurring prior to and independently of crossover designation and enforcement of interference. In this model, Mei-41 has an essential function in meiotic recombination after the centromere effect is established but before crossover designation and interference occur.
Collapse
|
18
|
Capalbo A, Hoffmann ER, Cimadomo D, Maria Ubaldi F, Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update 2017; 23:706-722. [DOI: 10.1093/humupd/dmx026] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022] Open
|
19
|
Hatkevich T, Sekelsky J. Bloom syndrome helicase in meiosis: Pro-crossover functions of an anti-crossover protein. Bioessays 2017; 39. [PMID: 28792069 DOI: 10.1002/bies.201700073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The functions of the Bloom syndrome helicase (BLM) and its orthologs are well characterized in mitotic DNA damage repair, but their roles within the context of meiotic recombination are less clear. In meiotic recombination, multiple repair pathways are used to repair meiotic DSBs, and current studies suggest that BLM may regulate the use of these pathways. Based on literature from Saccharomyces cerevisiae, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans, we present a unified model for a critical meiotic role of BLM and its orthologs. In this model, BLM and its orthologs utilize helicase activity to regulate the use of various pathways in meiotic recombination by continuously disassembling recombination intermediates. This unwinding activity provides the meiotic program with a steady pool of early recombination substrates, increasing the probability for a DSB to be processed by the appropriate pathway. As a result of BLM activity, crossovers are properly placed throughout the genome, promoting proper chromosomal disjunction at the end of meiosis. This unified model can be used to further refine the complex role of BLM and its orthologs in meiotic recombination.
Collapse
Affiliation(s)
- Talia Hatkevich
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Integrative Program in Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Hatkevich T, Kohl KP, McMahan S, Hartmann MA, Williams AM, Sekelsky J. Bloom Syndrome Helicase Promotes Meiotic Crossover Patterning and Homolog Disjunction. Curr Biol 2016; 27:96-102. [PMID: 27989672 DOI: 10.1016/j.cub.2016.10.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 11/28/2022]
Abstract
In most sexually reproducing organisms, crossover formation between homologous chromosomes is necessary for proper chromosome disjunction during meiosis I. During meiotic recombination, a subset of programmed DNA double-strand breaks (DSBs) are repaired as crossovers, with the remainder becoming noncrossovers [1]. Whether a repair intermediate is designated to become a crossover is a highly regulated decision that integrates several crossover patterning processes, both along chromosome arms (interference and the centromere effect) and between chromosomes (crossover assurance) [2]. Because the mechanisms that generate crossover patterning have remained elusive for over a century, it has been difficult to assess the relationship between crossover patterning and meiotic chromosome behavior. We show here that meiotic crossover patterning is lost in Drosophila melanogaster mutants that lack the Bloom syndrome helicase. In the absence of interference and the centromere effect, crossovers are distributed more uniformly along chromosomes. Crossovers even occur on the small chromosome 4, which normally never has meiotic crossovers [3]. Regulated distribution of crossovers between chromosome pairs is also lost, resulting in an elevated frequency of homologs that do not receive a crossover, which in turn leads to elevated nondisjunction.
Collapse
Affiliation(s)
- Talia Hatkevich
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Kathryn P Kohl
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Susan McMahan
- Department of Biology, University of North Carolina, 120 South Road, Chapel Hill, NC 27599-3280, USA; Integrative Program in Biological and Genome Sciences, 250 Bell Tower Drive, University of North Carolina, Chapel Hill, NC 27599-7100, USA
| | - Michaelyn A Hartmann
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Andrew M Williams
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, 120 Mason Farm Road, University of North Carolina, Chapel Hill, NC 27599-7264, USA; Department of Biology, University of North Carolina, 120 South Road, Chapel Hill, NC 27599-3280, USA; Integrative Program in Biological and Genome Sciences, 250 Bell Tower Drive, University of North Carolina, Chapel Hill, NC 27599-7100, USA.
| |
Collapse
|
21
|
Meiotic Centromere Coupling and Pairing Function by Two Separate Mechanisms in Saccharomyces cerevisiae. Genetics 2016; 205:657-671. [PMID: 27913618 DOI: 10.1534/genetics.116.190264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/25/2016] [Indexed: 12/17/2022] Open
Abstract
In meiosis I, chromosomes become paired with their homologous partners and then are pulled toward opposite poles of the spindle. In the budding yeast, Saccharomyces cerevisiae, in early meiotic prophase, centromeres are observed to associate in pairs in a homology-independent manner; a process called centromere coupling. Later, as homologous chromosomes align, their centromeres associate in a process called centromere pairing. The synaptonemal complex protein Zip1 is necessary for both types of centromere association. We aimed to test the role of centromere coupling in modulating recombination at centromeres, and to test whether the two types of centromere associations depend upon the same sets of genes. The zip1-S75E mutation, which blocks centromere coupling but no other known functions of Zip1, was used to show that in the absence of centromere coupling, centromere-proximal recombination was unchanged. Further, this mutation did not diminish centromere pairing, demonstrating that these two processes have different genetic requirements. In addition, we tested other synaptonemal complex components, Ecm11 and Zip4, for their contributions to centromere pairing. ECM11 was dispensable for centromere pairing and segregation of achiasmate partner chromosomes; while ZIP4 was not required for centromere pairing during pachytene, but was required for proper segregation of achiasmate chromosomes. These findings help differentiate the two mechanisms that allow centromeres to interact in meiotic prophase, and illustrate that centromere pairing, which was previously shown to be necessary to ensure disjunction of achiasmate chromosomes, is not sufficient for ensuring their disjunction.
Collapse
|
22
|
Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc Natl Acad Sci U S A 2016; 113:E6823-E6830. [PMID: 27791141 DOI: 10.1073/pnas.1612047113] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In humans, errors in meiotic chromosome segregation that produce aneuploid gametes increase dramatically as women age, a phenomenon termed the "maternal age effect." During meiosis, cohesion between sister chromatids keeps recombinant homologs physically attached and premature loss of cohesion can lead to missegregation of homologs during meiosis I. A growing body of evidence suggests that meiotic cohesion deteriorates as oocytes age and contributes to the maternal age effect. One hallmark of aging cells is an increase in oxidative damage caused by reactive oxygen species (ROS). Therefore, increased oxidative damage in older oocytes may be one of the factors that leads to premature loss of cohesion and segregation errors. To test this hypothesis, we used an RNAi strategy to induce oxidative stress in Drosophila oocytes and measured the fidelity of chromosome segregation during meiosis. Knockdown of either the cytoplasmic or mitochondrial ROS scavenger superoxide dismutase (SOD) caused a significant increase in segregation errors, and heterozygosity for an smc1 deletion enhanced this phenotype. FISH analysis indicated that SOD knockdown moderately increased the percentage of oocytes with arm cohesion defects. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the frequency at which recombinant homologs missegregate during meiosis I is significantly greater in SOD knockdown oocytes than in controls. Together these results provide an in vivo demonstration that oxidative stress during meiotic prophase induces chromosome segregation errors and support the model that accelerated loss of cohesion in aging human oocytes is caused, at least in part, by oxidative damage.
Collapse
|
23
|
Adrian AB, Corchado JC, Comeron JM. Predictive Models of Recombination Rate Variation across the Drosophila melanogaster Genome. Genome Biol Evol 2016; 8:2597-612. [PMID: 27492232 PMCID: PMC5010912 DOI: 10.1093/gbe/evw181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In all eukaryotic species examined, meiotic recombination, and crossovers in particular, occur non‐randomly along chromosomes. The cause for this non-random distribution remains poorly understood but some specific DNA sequence motifs have been shown to be enriched near crossover hotspots in a number of species. We present analyses using machine learning algorithms to investigate whether DNA motif distribution across the genome can be used to predict crossover variation in Drosophila melanogaster, a species without hotspots. Our study exposes a combinatorial non-linear influence of motif presence able to account for a significant fraction of the genome-wide variation in crossover rates at all genomic scales investigated, from 20% at 5-kb to almost 70% at 2,500-kb scale. The models are particularly predictive for regions with the highest and lowest crossover rates and remain highly informative after removing sub-telomeric and -centromeric regions known to have strongly reduced crossover rates. Transcriptional activity during early meiosis and differences in motif use between autosomes and the X chromosome add to the predictive power of the models. Moreover, we show that population-specific differences in crossover rates can be partly explained by differences in motif presence. Our results suggest that crossover distribution in Drosophila is influenced by both meiosis-specific chromatin dynamics and very local constitutive open chromatin associated with DNA motifs that prevent nucleosome stabilization. These findings provide new information on the genetic factors influencing variation in recombination rates and a baseline to study epigenetic mechanisms responsible for plastic recombination as response to different biotic and abiotic conditions and stresses.
Collapse
Affiliation(s)
| | | | - Josep M Comeron
- Department of Biology, University of Iowa Interdisciplinary Graduate Program in Genetics, University of Iowa
| |
Collapse
|
24
|
|
25
|
Jagut M, Hamminger P, Woglar A, Millonigg S, Paulin L, Mikl M, Dello Stritto MR, Tang L, Habacher C, Tam A, Gallach M, von Haeseler A, Villeneuve AM, Jantsch V. Separable Roles for a Caenorhabditis elegans RMI1 Homolog in Promoting and Antagonizing Meiotic Crossovers Ensure Faithful Chromosome Inheritance. PLoS Biol 2016; 14:e1002412. [PMID: 27011106 PMCID: PMC4807110 DOI: 10.1371/journal.pbio.1002412] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/19/2016] [Indexed: 11/30/2022] Open
Abstract
During the first meiotic division, crossovers (COs) between homologous chromosomes ensure their correct segregation. COs are produced by homologous recombination (HR)-mediated repair of programmed DNA double strand breaks (DSBs). As more DSBs are induced than COs, mechanisms are required to establish a regulated number of COs and to repair remaining intermediates as non-crossovers (NCOs). We show that the Caenorhabditis elegans RMI1 homolog-1 (RMH-1) functions during meiosis to promote both CO and NCO HR at appropriate chromosomal sites. RMH-1 accumulates at CO sites, dependent on known pro-CO factors, and acts to promote CO designation and enforce the CO outcome of HR-intermediate resolution. RMH-1 also localizes at NCO sites and functions in parallel with SMC-5 to antagonize excess HR-based connections between chromosomes. Moreover, RMH-1 also has a major role in channeling DSBs into an NCO HR outcome near the centers of chromosomes, thereby ensuring that COs form predominantly at off-center positions. A nematode homolog of the conserved DNA repair factor RMI1 plays multiple genetically separable roles that together ensure the faithful inheritance of intact genomes during sexual reproduction. During meiosis, faithful separation of chromosomes into gametes is essential for fertility and healthy progeny. During the first meiotic division, crossovers (CO) between parental homologs ensure their correct segregation. Programmed DNA double strand breaks (DSBs) and resection steps generate single-stranded overhangs that invade a sister chromatid of the homolog to initiate homologous recombination. This culminates in the generation of a DNA double Holliday junction (dHJ). This can be acted upon by resolvases to produce CO and non-crossover (NCO) products, depending on where the resolvases cut the DNA. Alternatively, NCOs can also be produced by decatenation via the RecQ helicase–topoisomeraseIII–Rmi1 (RTR) complex. The mammalian RTR contains a topoisomerase, Bloom’s helicase, and RMI1/2 scaffolding components. It disassembles dHJs in vitro and contributes the major NCO activity in mitosis. Here, we provide evidence that the Caenorhabditis elegans RMH-1 functions in distinct complexes during meiosis to produce both COs and NCOs in an in vivo animal model system. Strikingly, RMH-1 spatially regulates the distribution of COs on chromosomes, demonstrating that the RTR complex can act locally within specific chromosome domains.
Collapse
Affiliation(s)
- Marlène Jagut
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Patricia Hamminger
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Alexander Woglar
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sophia Millonigg
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Luis Paulin
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Martin Mikl
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Maria Rosaria Dello Stritto
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Lois Tang
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Cornelia Habacher
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Angela Tam
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Miguel Gallach
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna and Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Austria
| | - Anne M. Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
26
|
Nambiar M, Smith GR. Repression of harmful meiotic recombination in centromeric regions. Semin Cell Dev Biol 2016; 54:188-97. [PMID: 26849908 DOI: 10.1016/j.semcdb.2016.01.042] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
During the first division of meiosis, segregation of homologous chromosomes reduces the chromosome number by half. In most species, sister chromatid cohesion and reciprocal recombination (crossing-over) between homologous chromosomes are essential to provide tension to signal proper chromosome segregation during the first meiotic division. Crossovers are not distributed uniformly throughout the genome and are repressed at and near the centromeres. Rare crossovers that occur too near or in the centromere interfere with proper segregation and can give rise to aneuploid progeny, which can be severely defective or inviable. We review here how crossing-over occurs and how it is prevented in and around the centromeres. Molecular mechanisms of centromeric repression are only now being elucidated. However, rapid advances in understanding crossing-over, chromosome structure, and centromere functions promise to explain how potentially deleterious crossovers are avoided in certain chromosomal regions while allowing beneficial crossovers in others.
Collapse
Affiliation(s)
- Mridula Nambiar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, United States.
| | - Gerald R Smith
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA, United States.
| |
Collapse
|
27
|
Lake CM, Hawley RS. Becoming a crossover-competent DSB. Semin Cell Dev Biol 2016; 54:117-25. [PMID: 26806636 DOI: 10.1016/j.semcdb.2016.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 12/16/2022]
Abstract
The proper execution of meiotic recombination (or crossing over) is essential for chromosome segregation during the first meiotic division, and thus this process is regulated by multiple, and often elaborate, mechanisms. Meiotic recombination begins with the programmed induction of DNA double-strand breaks (DSBs), of which only a subset are selected to be repaired into crossovers. This crossover selection process is carried out by a number of pro-crossover proteins that regulate the fashion in which DSBs are repaired. Here, we highlight recent studies regarding the process of DSB fate selection by a family of pro-crossover proteins known as the Zip-3 homologs.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
28
|
Abstract
The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology & Molecular Genetics, Department of Molecular & Cellular Biology, Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California 95616
| |
Collapse
|
29
|
Limborg MT, Waples RK, Allendorf FW, Seeb JE. Linkage Mapping Reveals Strong Chiasma Interference in Sockeye Salmon: Implications for Interpreting Genomic Data. G3 (BETHESDA, MD.) 2015; 5:2463-73. [PMID: 26384769 PMCID: PMC4632065 DOI: 10.1534/g3.115.020222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/14/2015] [Indexed: 01/15/2023]
Abstract
Meiotic recombination is fundamental for generating new genetic variation and for securing proper disjunction. Further, recombination plays an essential role during the rediploidization process of polyploid-origin genomes because crossovers between pairs of homeologous chromosomes retain duplicated regions. A better understanding of how recombination affects genome evolution is crucial for interpreting genomic data; unfortunately, current knowledge mainly originates from a few model species. Salmonid fishes provide a valuable system for studying the effects of recombination in nonmodel species. Salmonid females generally produce thousands of embryos, providing large families for conducting inheritance studies. Further, salmonid genomes are currently rediploidizing after a whole genome duplication and can serve as models for studying the role of homeologous crossovers on genome evolution. Here, we present a detailed interrogation of recombination patterns in sockeye salmon (Oncorhynchus nerka). First, we use RAD sequencing of haploid and diploid gynogenetic families to construct a dense linkage map that includes paralogous loci and location of centromeres. We find a nonrandom distribution of paralogs that mainly cluster in extended regions distally located on 11 different chromosomes, consistent with ongoing homeologous recombination in these regions. We also estimate the strength of interference across each chromosome; results reveal strong interference and crossovers are mostly limited to one per arm. Interference was further shown to continue across centromeres, but metacentric chromosomes generally had at least one crossover on each arm. We discuss the relevance of these findings for both mapping and population genomic studies.
Collapse
Affiliation(s)
- Morten T Limborg
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195 National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, Silkeborg, Denmark
| | - Ryan K Waples
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195
| | - Fred W Allendorf
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
30
|
Liu XJ. Targeting oocyte maturation to improve fertility in older women. Cell Tissue Res 2015; 363:57-68. [PMID: 26329301 DOI: 10.1007/s00441-015-2264-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
Abstract
Reproductive aging is an increasingly pressing problem facing women in modern society, due to delay in child bearing. According to Statistics Canada, 52% of all Canadian births in 2011 were by women aged 30 years and older, up from 24% in 1981 ( http://www.statcan.gc.ca/pub/91-209-x/2013001/article/11784-eng.htm ). Women older than 35 years of age experience significantly increased risks of infertility, miscarriage and congenital birth defects, mostly due to poor quality of the eggs. Increasingly sophisticated, and often invasive, assisted reproductive technologies (ARTs) have helped millions of women to achieve reproductive success. However, by and large, ARTs do not address the fundamental issue of reproductive aging in women: age-related decline in egg quality. More importantly, ARTs are not, and will never be, the main solution for the general population. Here, I attempt to review the scientific literature on age-related egg quality decline, based mostly on studies in mice and in humans. Emphasis is given to the brief period of time called oocyte maturation, which occurs just prior to ovulation. The rationale for this emphasis is that oocyte maturation represents a critical window where unfavorable ovarian conditions in older females contribute significantly to the decline of egg quality, and that science-based intervention during oocyte maturation represents the best chance of improving egg quality in older women. Finally, I summarize our own work in recent years on peri-ovulatory putrescine supplementation as a possible remedy for reproductive aging.
Collapse
Affiliation(s)
- X Johné Liu
- Ottawa Hospital Research Institute, The Ottawa Hospital - General Campus, 501 Smyth Road, Box 511, Ottawa, Ontario, K1H 8L6, Canada. .,Department of Obstetrics and Gynecology and Department of Biochemistry, Microbiology and Immunology (BMI), University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
31
|
Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat Genet 2015; 47:727-735. [PMID: 25985139 PMCID: PMC4770575 DOI: 10.1038/ng.3306] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
Crossover recombination reshuffles genes and prevents errors in segregation that lead to extra or missing chromosomes (aneuploidy) in human eggs, a major cause of pregnancy failure and congenital disorders. Here, we generate genome-wide maps of crossovers and chromosome segregation patterns by recovering all three products of single female meioses. Genotyping > 4 million informative single-nucleotide polymorphisms (SNPs) from 23 complete meioses allowed us to map 2,032 maternal and 1,342 paternal crossovers and to infer the segregation patterns of 529 chromosome pairs. We uncover a novel reverse chromosome segregation pattern in which both homologs separate their sister chromatids at meiosis I; detect selection for higher recombination rates in the female germline by the elimination of aneuploid embryos; and report chromosomal drive against non-recombinant chromatids at meiosis II. Collectively, our findings reveal that recombination not only affects homolog segregation at meiosis I but also the fate of sister chromatids at meiosis II.
Collapse
|
32
|
Weng KA, Jeffreys CA, Bickel SE. Rejuvenation of meiotic cohesion in oocytes during prophase I is required for chiasma maintenance and accurate chromosome segregation. PLoS Genet 2014; 10:e1004607. [PMID: 25211017 PMCID: PMC4161318 DOI: 10.1371/journal.pgen.1004607] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/14/2014] [Indexed: 11/19/2022] Open
Abstract
Chromosome segregation errors in human oocytes are the leading cause of birth defects, and the risk of aneuploid pregnancy increases dramatically as women age. Accurate segregation demands that sister chromatid cohesion remain intact for decades in human oocytes, and gradual loss of the original cohesive linkages established in fetal oocytes is proposed to be a major cause of age-dependent segregation errors. Here we demonstrate that maintenance of meiotic cohesion in Drosophila oocytes during prophase I requires an active rejuvenation program, and provide mechanistic insight into the molecular events that underlie rejuvenation. Gal4/UAS inducible knockdown of the cohesion establishment factor Eco after meiotic S phase, but before oocyte maturation, causes premature loss of meiotic cohesion, resulting in destabilization of chiasmata and subsequent missegregation of recombinant homologs. Reduction of individual cohesin subunits or the cohesin loader Nipped B during prophase I leads to similar defects. These data indicate that loading of newly synthesized replacement cohesin rings by Nipped B and establishment of new cohesive linkages by the acetyltransferase Eco must occur during prophase I to maintain cohesion in oocytes. Moreover, we show that rejuvenation of meiotic cohesion does not depend on the programmed induction of meiotic double strand breaks that occurs during early prophase I, and is therefore mechanistically distinct from the DNA damage cohesion re-establishment pathway identified in G2 vegetative yeast cells. Our work provides the first evidence that new cohesive linkages are established in Drosophila oocytes after meiotic S phase, and that these are required for accurate chromosome segregation. If such a pathway also operates in human oocytes, meiotic cohesion defects may become pronounced in a woman's thirties, not because the original cohesive linkages finally give out, but because the rejuvenation program can no longer supply new cohesive linkages at the same rate at which they are lost.
Collapse
Affiliation(s)
- Katherine A. Weng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Charlotte A. Jeffreys
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Sharon E. Bickel
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
33
|
Global linkage map connects meiotic centromere function to chromosome size in budding yeast. G3-GENES GENOMES GENETICS 2013; 3:1741-51. [PMID: 23979930 PMCID: PMC3789798 DOI: 10.1534/g3.113.007377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Synthetic genetic array (SGA) analysis automates yeast genetics, enabling high-throughput construction of ordered arrays of double mutants. Quantitative colony sizes derived from SGA analysis can be used to measure cellular fitness and score for genetic interactions, such as synthetic lethality. Here we show that SGA colony sizes also can be used to obtain global maps of meiotic recombination because recombination frequency affects double-mutant formation for gene pairs located on the same chromosome and therefore influences the size of the resultant double-mutant colony. We obtained quantitative colony size data for ~1.2 million double mutants located on the same chromosome and constructed a genome-scale genetic linkage map at ~5 kb resolution. We found that our linkage map is reproducible and consistent with previous global studies of meiotic recombination. In particular, we confirmed that the total number of crossovers per chromosome tends to follow a simple linear model that depends on chromosome size. In addition, we observed a previously unappreciated relationship between the size of linkage regions surrounding each centromere and chromosome size, suggesting that crossovers tend to occur farther away from the centromere on larger chromosomes. The pericentric regions of larger chromosomes also appeared to load larger clusters of meiotic cohesin Rec8, and acquire fewer Spo11-catalyzed DNA double-strand breaks. Given that crossovers too near or too far from centromeres are detrimental to homolog disjunction and increase the incidence of aneuploidy, our data suggest that chromosome size may have a direct role in regulating the fidelity of chromosome segregation during meiosis.
Collapse
|
34
|
Variation in meiotic recombination frequencies between allelic transgenes inserted at different sites in the Drosophila melanogaster genome. G3-GENES GENOMES GENETICS 2013; 3:1419-27. [PMID: 23797104 PMCID: PMC3737181 DOI: 10.1534/g3.113.006411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Meiotic crossovers are distributed nonrandomly across the genome. Classic studies in Drosophila suggest that the position of a gene along a chromosome arm can affect the outcome of the recombination process, with proximity to the centromere being associated with lower crossing over. To examine this phenomenon molecularly, we developed an assay that measures meiotic crossovers and noncrossover gene conversions between allelic transgenes inserted into different genomic positions. To facilitate collecting a large number of virgin females, we developed a useful genetic system that kills males and undesired classes of females. We found that the recombination frequency at a site in the middle of the X chromosome, where crossovers are normally frequent, was similar to the frequency at the centromere-proximal end of the euchromatin, where crossovers are normally infrequent. In contrast, we recovered no recombinants--crossovers or noncrossovers--at a site on chromosome 4 and at a site toward the distal end of the X chromosome. These results suggest that local sequence or chromatin features have a stronger impact on recombination rates in this transgene assay than position along the chromosome arm.
Collapse
|
35
|
Cattani MV, Kingan SB, Presgraves DC. Cis
‐
and
trans
‐acting genetic factors contribute to heterogeneity in the rate of crossing over between the
D
rosophila simulans
clade species. J Evol Biol 2012; 25:2014-2022. [DOI: 10.1111/j.1420-9101.2012.02578.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 12/19/2022]
Affiliation(s)
- M. V. Cattani
- Department of Biology University of Rochester Rochester NY USA
| | - S. B. Kingan
- Department of Biology University of Rochester Rochester NY USA
| | | |
Collapse
|
36
|
Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet 2012; 13:493-504. [PMID: 22705668 PMCID: PMC3551553 DOI: 10.1038/nrg3245] [Citation(s) in RCA: 655] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trisomic and monosomic (aneuploid) embryos account for at least 10% of human pregnancies and, for women nearing the end of their reproductive lifespan, the incidence may exceed 50%. The errors that lead to aneuploidy almost always occur in the oocyte but, despite intensive investigation, the underlying molecular basis has remained elusive. Recent studies of humans and model organisms have shed new light on the complexity of meiotic defects, providing evidence that the age-related increase in errors in the human female is not attributable to a single factor but to an interplay between unique features of oogenesis and a host of endogenous and exogenous factors.
Collapse
Affiliation(s)
- So I Nagaoka
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
37
|
Lake CM, Hawley RS. The molecular control of meiotic chromosomal behavior: events in early meiotic prophase in Drosophila oocytes. Annu Rev Physiol 2012; 74:425-51. [PMID: 22335798 DOI: 10.1146/annurev-physiol-020911-153342] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the critical events in early meiotic prophase in Drosophila melanogaster oocytes. We focus on four aspects of this process: the formation of the synaptonemal complex (SC) and its role in maintaining homologous chromosome pairings, the critical roles of the meiosis-specific process of centromere clustering in the formation of a full-length SC, the mechanisms by which preprogrammed double-strand breaks initiate meiotic recombination, and the checkpoints that govern the progression and coordination of these processes. Central to this discussion are the roles that somatic pairing events play in establishing the necessary conditions for proper SC formation, the roles of centromere pairing in synapsis initiation, and the mechanisms by which oocytes detect failures in SC formation and/or recombination. Finally, we correlate what is known in Drosophila oocytes with our understanding of these processes in other systems.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
38
|
Naranjo T. Finding the correct partner: the meiotic courtship. SCIENTIFICA 2012; 2012:509073. [PMID: 24278707 PMCID: PMC3820632 DOI: 10.6064/2012/509073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/15/2012] [Indexed: 05/02/2023]
Abstract
Homologous chromosomes are usually separated at the entrance of meiosis; how they become paired is one of the outstanding mysteries of the meiotic process. Reduction of spacing between homologues makes possible the occurrence of chromosomal interactions leading to homology detection and the formation of bivalents. In many organisms, telomere-led chromosome movements are generated that bring homologues together. Additional movements produced by chromatin conformational changes at early meiosis may also facilitate homologous contacts. Organisms used in the study of meiosis show a surprising variety of strategies for homology detection. In dipterans, homologous chromosomes remain paired throughout most of development. Pairing seems to arise as a balance between promoter and suppressor pairing genes. Some fungi, plants and animals, use mechanisms based on recombinational interactions. Other mechanisms leading to homology search are recombination-independent and require specialized pairing sites. In the worm Caenorhabditis elegans, each chromosome carries a pairing center consisting of a chromosome-specific DNA-protein complex, and in the fission yeast Schizosaccharomyces pombe, the sme2 locus encodes a meiosis-specific non-coding RNA that mediates on homologous recognition. In addition, mismatch correction plays a relevant role, especially in polyploids, which evolved genetic systems that suppress pairing between non-homologous related (homoeologus) chromosomes.
Collapse
Affiliation(s)
- Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
- *Tomás Naranjo:
| |
Collapse
|
39
|
Kitajima TS, Ohsugi M, Ellenberg J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 2011; 146:568-81. [PMID: 21854982 DOI: 10.1016/j.cell.2011.07.031] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 05/17/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Chromosomes must establish stable biorientation prior to anaphase to achieve faithful segregation during cell division. The detailed process by which chromosomes are bioriented and how biorientation is coordinated with spindle assembly and chromosome congression remain unclear. Here, we provide complete 3D kinetochore-tracking datasets throughout cell division by high-resolution imaging of meiosis I in live mouse oocytes. We show that in acentrosomal oocytes, chromosome congression forms an intermediate chromosome configuration, the prometaphase belt, which precedes biorientation. Chromosomes then invade the elongating spindle center to form the metaphase plate and start biorienting. Close to 90% of all chromosomes undergo one or more rounds of error correction of their kinetochore-microtubule attachments before achieving correct biorientation. This process depends on Aurora kinase activity. Our analysis reveals the error-prone nature of homologous chromosome biorientation, providing a possible explanation for the high incidence of aneuploid eggs observed in mammals, including humans.
Collapse
Affiliation(s)
- Tomoya S Kitajima
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | | | | |
Collapse
|
40
|
Abstract
The perpetuation of most eukaryotic species requires differentiation of pluripotent progenitors into egg and sperm and subsequent fusion of these gametes to form a new zygote. Meiosis is a distinguishing feature of gamete formation as it leads to the twofold reduction in chromosome number thereby maintaining ploidy across generations. This process increases offspring diversity through the random segregation of chromosomes and the exchange of genetic material between homologous parental chromosomes, known as meiotic crossover recombination. These exchanges require the establishment of unique and dynamic chromatin configurations that facilitate cohesion, homolog pairing, synapsis, double strand break formation and repair. The precise orchestration of these events is critical for gamete survival as demonstrated by the majority of human aneuploidies that can be traced to defects in the first meiotic division (Hassold T, Hall H, Hunt P: The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet 2007, 16 Spec No. 2:R203-R208.). This review will focus on recent advances in our understanding of key meiotic events and how coordination of these events is occurring.
Collapse
Affiliation(s)
- Judith Yanowitz
- Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
41
|
Harrison CJ, Alvey E, Henderson IR. Meiosis in flowering plants and other green organisms. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2863-75. [PMID: 20576791 DOI: 10.1093/jxb/erq191] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sexual eukaryotes generate gametes using a specialized cell division called meiosis that serves both to halve the number of chromosomes and to reshuffle genetic variation present in the parent. The nature and mechanism of the meiotic cell division in plants and its effect on genetic variation are reviewed here. As flowers are the site of meiosis and fertilization in angiosperms, meiotic control will be considered within this developmental context. Finally, we review what is known about the control of meiosis in green algae and non-flowering land plants and discuss evolutionary transitions relating to meiosis that have occurred in the lineages giving rise to the angiosperms.
Collapse
Affiliation(s)
- C Jill Harrison
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
42
|
Abstract
Geneticists have long known that centromeres suppress crossing over, but considerable evidence indicates that they appear to recombine. Confirmation of gene conversion in maize centromeres explains this paradox.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | |
Collapse
|
43
|
Jaramillo-Lambert A, Engebrecht J. A single unpaired and transcriptionally silenced X chromosome locally precludes checkpoint signaling in the Caenorhabditis elegans germ line. Genetics 2010; 184:613-28. [PMID: 20008570 PMCID: PMC2845332 DOI: 10.1534/genetics.109.110338] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/07/2009] [Indexed: 12/26/2022] Open
Abstract
In many organisms, female and male meiosis display extensive sexual dimorphism in the temporal meiotic program, the number and location of recombination events, sex chromosome segregation, and checkpoint function. We show here that both meiotic prophase timing and germ-line apoptosis, one output of checkpoint signaling, are dictated by the sex of the germ line (oogenesis vs. spermatogenesis) in Caenorhabditis elegans. During oogenesis in feminized animals (fem-3), a single pair of asynapsed autosomes elicits a checkpoint response, yet an unpaired X chromosome fails to induce checkpoint activation. The single X in males and fem-3 worms is a substrate for the meiotic recombination machinery and repair of the resulting double strand breaks appears to be delayed compared with worms carrying paired X chromosomes. Synaptonemal complex axial HORMA domain proteins, implicated in repair of meiotic double strand breaks (DSBs) and checkpoint function, are assembled and disassembled on the single X similarly to paired chromosomes, but the central region component, SYP-1, is not loaded on the X chromosome in males. In fem-3 worms some X chromosomes achieve nonhomologous self-synapsis; however, germ cells with SYP-1-positive X chromosomes are not preferentially protected from apoptosis. Analyses of chromatin and X-linked gene expression indicate that a single X, unlike asynapsed X chromosomes or autosomes, maintains repressive chromatin marks and remains transcriptionally silenced and suggests that this state locally precludes checkpoint signaling.
Collapse
Affiliation(s)
- Aimee Jaramillo-Lambert
- Department of Molecular and Cellular Biology, Genetics Graduate Group, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
44
|
Abstract
Both chromatin and DNA sequence account for individual differences in the location and frequency of genetic recombination.
Collapse
Affiliation(s)
- Vivian G. Cheung
- Howard Hughes Medical Institute, Departments of Pediatrics and Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
45
|
The synaptonemal complex protein, Zip1, promotes the segregation of nonexchange chromosomes at meiosis I. Proc Natl Acad Sci U S A 2009; 107:781-5. [PMID: 20080752 DOI: 10.1073/pnas.0913435107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crossing over establishes connections between homologous chromosomes that promote their proper segregation at the first meiotic division. However, there exists a backup system to ensure the correct segregation of those chromosome pairs that fail to cross over. We have found that, in budding yeast, a mutation eliminating the synaptonemal complex protein, Zip1, increases the meiosis I nondisjunction rate of nonexchange chromosomes (NECs). The centromeres of NECs become tethered during meiotic prophase, and this tethering is disrupted by the zip1 mutation. Furthermore, the Zip1 protein often colocalizes to the centromeres of the tethered chromosomes, suggesting that Zip1 plays a direct role in holding NECs together. Zip3, a protein involved in the initiation of synaptonemal complex formation, is also important for NEC segregation. In the absence of Zip3, both the tethering of NECs and the localization of Zip1 to centromeres are impaired. A mutation in the MAD3 gene, which encodes a component of the spindle checkpoint, also increases the nondisjunction of NECs. Together, the zip1 and mad3 mutations have an additive effect, suggesting that these proteins act in parallel pathways to promote NEC segregation. We propose that Mad3 promotes the segregation of NECs that are not tethered by Zip1 at their centromeres.
Collapse
|
46
|
Székvölgyi L, Nicolas A. From meiosis to postmeiotic events: homologous recombination is obligatory but flexible. FEBS J 2009; 277:571-89. [PMID: 20015080 DOI: 10.1111/j.1742-4658.2009.07502.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sexual reproduction depends on the success of faithful chromosome transmission during meiosis to yield viable gametes. Central to meiosis is the process of recombination between paternal and maternal chromosomes, which boosts the genetic diversity of progeny and ensures normal homologous chromosome segregation. Imperfections in meiotic recombination are the source of de novo germline mutations, abnormal gametes, and infertility. Thus, not surprisingly, cells have developed a variety of mechanisms and tight controls to ensure sufficient and well-distributed recombination events within their genomes, the details of which remain to be fully elucidated. Local and genome-wide studies of normal and genetically engineered cells have uncovered a remarkable stochasticity in the number and positioning of recombination events per chromosome and per cell, which reveals an impressive level of flexibility. In this minireview, we summarize our contemporary understanding of meiotic recombination and its control mechanisms, and address the seemingly paradoxical and poorly understood diversity of recombination sites. Flexibility in the distribution of meiotic recombination events within genomes may reside in regulation at the chromatin level, with histone modifications playing a recently recognized role.
Collapse
Affiliation(s)
- Lóránt Székvölgyi
- Recombination and Genome Instability Unit, Institut Curie, Centre de Recherche, UMR 3244 CNRS, Universite Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
47
|
Garcia-Cruz R, Casanovas A, Brieno-Enriquez M, Robles P, Roig I, Pujol A, Cabero L, Durban M, Garcia Caldes M. Cytogenetic analyses of human oocytes provide new data on non-disjunction mechanisms and the origin of trisomy 16. Hum Reprod 2009; 25:179-91. [DOI: 10.1093/humrep/dep347] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
48
|
A positive but complex association between meiotic double-strand break hotspots and open chromatin in Saccharomyces cerevisiae. Genome Res 2009; 19:2245-57. [PMID: 19801530 DOI: 10.1101/gr.096297.109] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During meiosis, chromatin undergoes extensive changes to facilitate recombination, homolog pairing, and chromosome segregation. To investigate the relationship between chromatin organization and meiotic processes, we used formaldehyde-assisted isolation of regulatory elements (FAIRE) to map open chromatin during the transition from mitosis to meiosis in the budding yeast Saccharomyces cerevisiae. We found that meiosis-induced opening of chromatin is associated with meiotic DSB hotpots. The positive association between open chromatin and DSB hotspots is most prominent 3 h into meiosis, when the early meiotic genes DMC1 and HOP1 exhibit maximum transcription and the early recombination genes SPO11 and RAD51 are strongly up-regulated. While the degree of chromatin openness is positively associated with the occurrence of recombination hotspots, many hotspots occur outside of open chromatin. Of particular interest, many DSB hotspots that fell outside of meiotic open chromatin nonetheless occurred in chromatin that had recently been open during mitotic growth. Finally, we find evidence for meiosis-specific opening of chromatin at the regions adjacent to boundaries of subtelomeric sequences, which exhibit specific crossover control patterns hypothesized to be regulated by chromatin.
Collapse
|
49
|
Ghosh S, Feingold E, Dey SK. Etiology of Down syndrome: Evidence for consistent association among altered meiotic recombination, nondisjunction, and maternal age across populations. Am J Med Genet A 2009; 149A:1415-20. [PMID: 19533770 DOI: 10.1002/ajmg.a.32932] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Down syndrome caused by meiotic nondisjunction of chromosome 21 in humans, is well known to be associated with advanced maternal age, but success in identifying and understanding other risk factors has been limited. Recently published work in a U.S. population suggested intriguing interactions between the maternal age effect and altered recombination patterns during meiosis, but some of the results were counter-intuitive. We have tested these hypotheses in a population sample from India, and found that essentially all of the results of the U.S. study are replicated even in our ethnically very different population. We examined meiotic recombination patterns in a total of 138 families from the eastern part of India, each with a single free trisomy 21 child. We genotyped each family with a set of STR markers using PCR and characterized the stage of origin of nondisjunction and the recombination pattern of maternal chromosome 21 during oogenesis. Our sample contains 107 maternal meiosis I errors and 31 maternal meiosis II errors and we subsequently stratified them with respect to maternal age and the number of detectable crossover events. We observed an association between meiosis I nondisjunction and recombination in the telomeric 5.1 Mb of chromosome 21. By contrast, in meiosis II cases we observed preferential pericentromeric exchanges covering the proximal 5.7 Mb region, with interaction between maternal age and the location of the crossover. Overall reduction of recombination irrespective of maternal age is also evident in meiosis I cases. Our findings are very consistent with previously reported data in a U.S. population and our results are the first independent confirmation of those previous reports. This not only provides much needed confirmation of previous results, but it suggests that the genetic etiology underlying the occurrence of trisomy 21 may be similar across human populations.
Collapse
Affiliation(s)
- Sujoy Ghosh
- Department of Biotechnology, Human Genetics Research Unit, West Bengal University of Technology, Salt lake City, Kolkata, West Bengal, India
| | | | | |
Collapse
|
50
|
Cheng EY, Hunt PA, Naluai-Cecchini TA, Fligner CL, Fujimoto VY, Pasternack TL, Schwartz JM, Steinauer JE, Woodruff TJ, Cherry SM, Hansen TA, Vallente RU, Broman KW, Hassold TJ. Meiotic recombination in human oocytes. PLoS Genet 2009; 5:e1000661. [PMID: 19763179 PMCID: PMC2735652 DOI: 10.1371/journal.pgen.1000661] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 08/24/2009] [Indexed: 11/19/2022] Open
Abstract
Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g., MLH1) in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and, more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for the presence of "vulnerable" crossover configurations in the fetal oocyte, consistent with the idea that these are subsequently translated into nondisjunctional events in the adult oocyte.
Collapse
Affiliation(s)
- Edith Y. Cheng
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Patricia A. Hunt
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Theresa A. Naluai-Cecchini
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Corrine L. Fligner
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Victor Y. Fujimoto
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Tanya L. Pasternack
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Jackie M. Schwartz
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Jody E. Steinauer
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Tracey J. Woodruff
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Sheila M. Cherry
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Terah A. Hansen
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Rhea U. Vallente
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Karl W. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Terry J. Hassold
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|